Volume 40 Issue 2
Apr.  2023
Turn off MathJax
Article Contents

YAN Yue, JIN Hexian, WANG Ying, CHEN Chaoyi, FAN Yingjia, LIU Dan. Effects of intercropping patterns on physiological characteristics and Pb uptake of edible plants in community gardens[J]. Journal of Zhejiang A&F University, 2023, 40(2): 338-347. doi: 10.11833/j.issn.2095-0756.20220365
Citation: YAN Yue, JIN Hexian, WANG Ying, CHEN Chaoyi, FAN Yingjia, LIU Dan. Effects of intercropping patterns on physiological characteristics and Pb uptake of edible plants in community gardens[J]. Journal of Zhejiang A&F University, 2023, 40(2): 338-347. doi: 10.11833/j.issn.2095-0756.20220365

Effects of intercropping patterns on physiological characteristics and Pb uptake of edible plants in community gardens

doi: 10.11833/j.issn.2095-0756.20220365
  • Received Date: 2022-05-23
  • Accepted Date: 2022-09-18
  • Rev Recd Date: 2022-09-15
  • Available Online: 2022-10-28
  • Publish Date: 2023-04-20
  •   Objective  The objective is to study the physiological characteristics of plants in Pb contaminated soil and uptake characteristics of Pb in community gardens intercropped with Sedum alfredi, in order to screen out the best planting mode to reduce the uptake of Pb by edible plants.  Method  S. alfredii, Apium graveolens, Brassica chinensis, Capsicum annuum and Raphanus sativus were used as research materials. A pot experiment was carried out in Pingshan Nursery of Lin’an District of Hangzhou City, Zhejiang Province. The effects of intercropping S. alfredii on physiological and biochemical indexes of edible plants, uptake and transfer characteristics of Pb, the pH of rhizosphere soil and distribution characteristics of Pb were analyzed.  Result  (1) Intercropping significantly improved the biomass of S. alfredii, A. graveolens and C. annuum, and reduced the biomass of B. chinensis and R. sativus (P<0.05). (2) The content of MDA in leaves of S. alfredii and edible plants showed a consistent pattern, and intercropping was lower than monoculture. In the intercropping system, CAT activities in leaves of A. graveolens, C. annuum and R. sativus significantly increased by 33.92%, 41.94% and 53.80%, compared with the monoculture system (P<0.05). (3) Intercropping S. alfredii significantly reduced Pb accumulation in edible parts of A. graveolens, C. annuum and R. sativus, which decreased by 24.37%, 162.50% and 39.82%, respectively (P< 0.05), compared with monoculture. (4) Intercropping decreased the pH of rhizosphere soil and changed the distribution of Pb in soil. Intercropping S. alfredii decreased the form proportion of weak acid extracted and oxidized Pb in the rhizosphere soil of edible plants, but increased the form proportion of reducible Pb in soil.   Conclusion  The intercropping mode can promote the enrichment and migration of Pb in S. alfredii and reduce the toxic effect of Pb on edible plants. Intercropping S. alfredii significantly reduces Pb content in edible parts of A. graveolens and C. annuum, reaching the safe edible standard. The Pb content in edible parts of R. sativus tends to decrease, which is an ideal combination mode for intercropping restoration. [Ch, 6 fig. 3 tab. 31 ref.]
  • [1] CHEN Zihang, TAO Li, CHOU Tianze, YANG Hanxi, LIU Zhigao, YU Huiting, SHEN Yamei.  Effects of shading treatment on growth and physiological characteristics of Clematis henryi . Journal of Zhejiang A&F University, 2024, 41(3): 615-623. doi: 10.11833/j.issn.2095-0756.20230508
    [2] XIA Honglei, WANG Lei, FANG Chaochu, WANG Minyan, LIU Wanpeng, SHEN Cheng, ZHANG Jin.  Effects of river sediment as the main substrate on the growth and physiological indexes of Agrostis stolonifera ‘PENN A-4’ . Journal of Zhejiang A&F University, 2024, 41(5): 1075-1084. doi: 10.11833/j.issn.2095-0756.20240157
    [3] HE Dan, LI Haitao, YUAN Jiangqin, WANG Anyin, WANG Yifei, LI Yonghua, LIU Yiping.  Dust retention capacity and leaf physiology and photosynthesis response of 7 garden plants in Zhengzhou City . Journal of Zhejiang A&F University, 2023, 40(6): 1205-1214. doi: 10.11833/j.issn.2095-0756.20230160
    [4] MIAO Dapeng, JIA Ruirui, LI Shenghao, XI Shuo, ZHU Ge, WEN Shusheng.  Research advances in the mechanism of adventitious root occurrence in woody species . Journal of Zhejiang A&F University, 2022, 39(4): 902-912. doi: 10.11833/j.issn.2095-0756.20210652
    [5] LI Chengcheng, WU Qichao, MA Yan, LI Yuhao, ZANG Dekui.  Physiological responses and evalution of cold resistance of six Osmanthus fragrans cultivars under low temperature stress . Journal of Zhejiang A&F University, 2021, 38(4): 828-836. doi: 10.11833/j.issn.2095-0756.20200606
    [6] SHI Aoao, ZHENG Yi, ZHANG Kun, DENG Zhihua, JIAO Cimei, SUN Shixian.  Remediation potential of Vetiveria zizanioides on the water polluted with prometryn . Journal of Zhejiang A&F University, 2021, 38(6): 1245-1252. doi: 10.11833/j.issn.2095-0756.20200595
    [7] LIU Bo, CHEN Ji, MA Jiawei, FANG Xianzhi, ZHAO Keli, LIU Dan, YE Zhengqian.  Effects of AC electric field and soil moisture on phytoremediation of cadmium contaminated soil by mixed planting of Salix discolor and Sedum alfredii . Journal of Zhejiang A&F University, 2021, 38(6): 1238-1244. doi: 10.11833/j.issn.2095-0756.20200725
    [8] XU Weijie, GUO Jia, ZHAO Min, WANG Renyuan, HOU Shuzhen, YANG Yun, ZHONG Bin, GUO Hua, LIU Chen, SHEN Ying, LIU Dan.  Research progress of soil plant root exudates in heavy metal contaminated soil . Journal of Zhejiang A&F University, 2017, 34(6): 1137-1148. doi: 10.11833/j.issn.2095-0756.2017.06.023
    [9] ZHONG Bin, CHEN Junren, PENG Danli, LIU Chen, GUO Hua, WU Jiasen, YE Zhengqian, LIU Dan.  Research progress of heavy metal phytoremediation technology of fast-growing forest trees in soil . Journal of Zhejiang A&F University, 2016, 33(5): 899-909. doi: 10.11833/j.issn.2095-0756.2016.05.024
    [10] SUN Sunan, WANG Xiaode, XU Teng, ZHANG Cheng, WANG Kaili, DENG Linxi.  Ecological physiology of Taxodium distichum leaves color changes in autumn and winter . Journal of Zhejiang A&F University, 2014, 31(2): 302-307. doi: 10.11833/j.issn.2095-0756.2014.02.021
    [11] HU Yangyong, MA Jiawei, YE Zhengqian, LIU Dan, ZHAO Keli.  Research progress on using Sedum alfredii for remediation of heavy metal-contaminated soil . Journal of Zhejiang A&F University, 2014, 31(1): 136-144. doi: 10.11833/j.issn.2095-0756.2014.01.021
    [12] CHEN Wen, ZHAO Ying, YE Zhengqian, WANG Meiqin, WANG Jing, WANG Guoming.  Growth and physiological characteristics of five island tree species with drought stress . Journal of Zhejiang A&F University, 2013, 30(4): 490-498. doi: 10.11833/j.issn.2095-0756.2013.04.005
    [13] ZENG Dejing, WANG Cheng, LIU Jun, YIN Lijuan.  Morphological characteristics and physiological indexes of Clerodendrum trichotomum with waterlogging . Journal of Zhejiang A&F University, 2013, 30(2): 172-178. doi: 10.11833/j.issn.2095-0756.2013.02.003
    [14] WANG Lei, TANG Geng-guo, LIU Tong.  Physiological,biochemical,and ultra-structures of mesophyll cell changes in a senescing corolla of Lycoris longituba . Journal of Zhejiang A&F University, 2009, 26(4): 498-502.
    [15] ZHANG Wen-ting, XIE Fu-chun, WANG Hua-tian, YU Wen-sheng, CHI Bing-qing, DU Jun, SONG Li, JIANG Cheng-ping.  Physiological response of three garden plants to drought stress . Journal of Zhejiang A&F University, 2009, 26(2): 182-187.
    [16] CHEN Ke, WANG Xiao-de.  Physiological indices of three liana species(Mucuna sempervirens, Hedera nepalensis var. sinensis and Euonymus fortunei) with drought resistance . Journal of Zhejiang A&F University, 2008, 25(3): 314-318.
    [17] WANG Wei, HUANG Sheng-li, DING Guo-jian, HUANG You-jun, HUANG Jian-qin, ZHENG Bing-song.  Morphological and physiological changes accompanying the induction of salt tolerance in Neolitsea sericea seedlings . Journal of Zhejiang A&F University, 2007, 24(2): 168-172.
    [18] RUANZhi-ping, LIAO Qi-liao, DING Yin-long.  Comparative study of physiological indices of four palm species during winter in Xiamen . Journal of Zhejiang A&F University, 2007, 24(1): 115-118.
    [19] NIE Fa-hui, WU Cai-bin, WU Shuang-tao.  Characteristics of Phytolacca acinosa accumulating Cd . Journal of Zhejiang A&F University, 2006, 23(4): 400-405.
    [20] Wu Zuying, Sun Hongyou, Jiang Liuqi, Tang Mingrong, Ni Rongxin..  Selection of Soybean Varieties Suitable for Interplant in the Young Growth of Chinese Fir. . Journal of Zhejiang A&F University, 1995, 12(1): 13-23.
  • [1]
    LIU Yuelai, XU Junli, YIN Keluan. Participatory construction of community public space in high-density cities: a case study of community gardens [J]. Landscape Architecture, 2019, 26(6): 13 − 17.
    [2]
    QIAN Jing. The comparison of allotment garden in Europe and community garden in the United States [J]. Modern Urban Research, 2011, 26(1): 86 − 92.
    [3]
    CHEN Rongrong, JIN Hexian, YAN Yue. Evolution process, hotspots and trends of community gardens in recent 20 years [J]. Landscape Architecture, 2021, 28(11): 114 − 119.
    [4]
    BELON E, BOISSON M, DEPORTES I Z, et al. An inventory of trace elements inputs to French agricultural soils [J]. Science of the Total Environment, 2012, 439: 87 − 95.
    [5]
    LAIDLAW M A S, ALANKARAGE D H, REICHMAN S M, et al. Assessment of soil metal concentrations in residential and community vegetable gardens in Melbourne, Australia [J]. Chemosphere, 2018, 199: 303 − 311.
    [6]
    DAO Ligan, MORRISON L, ZHANG Hongxuan, et al. Influences of traffic on Pb, Cu and Zn concentrations in roadside soils of an urban park in Dublin, Ireland [J]. Environmental Geochemistry and Health, 2013, 36(3): 333 − 343.
    [7]
    ROUILLON M, HARVEY P J, KRISTENSEN L J, et al. VegeSafe: a community science program measuring soil-metal contamination, evaluating risk and providing advice for safe gardening [J]. Environmental Pollution, 2016, 222: 557 − 566.
    [8]
    JEAN-SORO L, GUERN L C, BECHET B, et al. Origin of trace elements in an urban garden in Nantes, France [J]. Journal of Soils and Sediments, 2015, 15(8): 1802 − 1812.
    [9]
    MITCHELL R G, SPLIETHOFF H M, RIBAUDO L N, et al. Lead (Pb) and other metals in New York City community garden soils; factors influencing contaminant distributions [J]. Environmental Pollution, 2014, 187: 162 − 169.
    [10]
    YANG Jianzhou, WANG Zhenliang, GAO Jianweng, et al. Accumulation and herisk of heavy metals in cereals, vegetables, and fruits of intensive plantations in Hainan Province [J]. Environmental Science, 2021, 42(10): 4916 − 4924.
    [11]
    KIM H S, KIM Y J, SEO Y R. An overview of carcinogenic heavy metal: molecular toxicity mechanism and prevention [J]. Journal of Cancer Prevention, 2015, 20(4): 232 − 240.
    [12]
    RAI P K, LEE S S, ZHANG M, et al. Heavy metals in food crops: Health risks, fate, mechanisms, and management [J]. Environment international, 2019, 125: 365 − 385.
    [13]
    CAO Ruiqi, FANG Songlin, CAO Pangong. Research on garden plant restoration of heavy metal contaminated soil [J]. Northern Horticulture, 2019(16): 145 − 152.
    [14]
    SHI Jian, LONG Xinxian, XU Zuorong, et al. Remediation by tissue culture seedlings of Sedum alfredii Hance in Zn-, Cd- and combination-contaminated soils [J]. Journal of Beijing Normal University (Natural Science), 2022, 58(1): 70 − 76.
    [15]
    LI Hesheng. Experiment Principle and Technology of Plant Physiology and Biochemistry [M]. Beijing: Higher Education Press, 2000.
    [16]
    RAURET G, LÓPEZ-SÁNCHEZ J F, SAHUQUILLO A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials [J]. Journal of Environmental Monitoring, 1999, 1(1): 57 − 61.
    [17]
    LIU Chen, GUO Jia, ZHAO Min, et al. Effects of moso bamboo and Sedum plumbizincicola intercropping on transport and accumulation of Cu, Cd and Zn in soil-plant system [J]. Journal of Zhejiang University (Agriculture &Life Science), 2017, 43(5): 615 − 622.
    [18]
    TAN Yan, HU Falong, CHAI Qiang, et al. Optimizing water use between intercropped pea and maize through strip row ratio expansion and N fertilizer reduction in arid areas [J/OL]. Field Crops Research, 2021, 260: 108001[2022-04-20]. doi: 10.1016/j.fcr.2020.108001.
    [19]
    YOU Meng, ZOU Rong, WANG Li, et al. Effects of intercropping different accumulators with wheat on Cd absorption and transport under Cd stress [J]. Soil and Fertilizer Sciences in China, 2022(4): 201 − 208.
    [20]
    XU Yuanyuan, LU Mingying, JIANG Weixin, et al. Al stress with lipid peroxidation and antioxidant enzyme activities in eucalyptus roots and leaves [J]. Journal of Zhejiang A&F University, 2016, 33(6): 1009 − 1016.
    [21]
    WANG Xiaowei, HUANG Guoqin, XU Jiancheng, et al. Effects of copper stresses and intercropping on antioxidant enzyme activities and malondialdehyde contents in maize [J]. Journal of Agro-Environment Science, 2014, 33(10): 1890 − 1896.
    [22]
    SHEN Xuyue, ZHANG Lang, CHEN Rongrong, et al. Effect of NaCl stress on the morphology and related physiological indexes of Magnolia biondii seedlings [J]. Journal of Zhejiang A&F University, 2021, 38(2): 289 − 295.
    [23]
    ZHANG Jiayang. The effect of Pb and Cd on physiological and biochemical indexes of Monstera deliciosa Liebm. in the short-term conditions [J]. Journal of Soil and Water Conservation, 2016, 30(2): 340 − 345.
    [24]
    WANG Jixiu, LI Yuan, ZU Yanqun, et al. Effects of Arabis alpina L. var. parviflora Franch and Zea mays L. in an intercropping system on plant physiology to lead stress [J]. Environmental Science &Technology, 2017, 40(7): 54 − 59.
    [25]
    JIANG Chengai, WU Qitang, WU Shunhui, et al. Effect of co-cropping Sedum alfredii with different plants on metal uptake [J]. China Environmental Science, 2009, 29(9): 985 − 990.
    [26]
    MENG Nan, WANG Meng, LI Shanshan, et al. Effects of intercropping ten herbaceous plants on lead uptake by and accumulation in water spinach [J]. Earth Science Frontiers, 2019, 26(6): 103 − 111.
    [27]
    QIU Xiaoxuan, FANG Shouling, CHEN Kongchang, et al. Effects of Brassica juncea intercropped with different plants on the content of Cadmium in Brassica juncea and soil [J]. Fujian Agricultural Science and Technology, 2022, 53(3): 63 − 69.
    [28]
    ZHAO Zhongqiu, ZHU Yongguan, CAI Yunlong. Transport and transformation of cadmium in soil-plant systems and the influence factors [J]. Ecology and Environment, 2005, 14(2): 282 − 286.
    [29]
    CUI Xiaoying, QIN Junhao, LI Huashou. Effect of different water management modes on rice (Oryza sativa L. ) growth and heavy metal transport characteristics [J]. Journal of Agro-Environment Science, 2017, 36(11): 2177 − 2184.
    [30]
    GUO Yanhai, GAO Guolong, WANG Qing, et al. Heavy metal speciation distribution and bioavailability assessment in soils surrounding a municipal solid waste incineration plant in the typical plain area in China [J]. Research of Environmental Sciences, 2019, 32(9): 1613 − 1620.
    [31]
    HU Zihang, ZHAO Xia, DONG Xiaoyun, et al. Effect of sludge and garden waste composting rates on heavy metal content and microbial activity in plantation soil [J]. Journal of Zhejiang A&F University, 2021, 38(1): 31 − 37.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  / Tables(3)

Article views(406) PDF downloads(67) Cited by()

Related
Proportional views

Effects of intercropping patterns on physiological characteristics and Pb uptake of edible plants in community gardens

doi: 10.11833/j.issn.2095-0756.20220365

Abstract:   Objective  The objective is to study the physiological characteristics of plants in Pb contaminated soil and uptake characteristics of Pb in community gardens intercropped with Sedum alfredi, in order to screen out the best planting mode to reduce the uptake of Pb by edible plants.  Method  S. alfredii, Apium graveolens, Brassica chinensis, Capsicum annuum and Raphanus sativus were used as research materials. A pot experiment was carried out in Pingshan Nursery of Lin’an District of Hangzhou City, Zhejiang Province. The effects of intercropping S. alfredii on physiological and biochemical indexes of edible plants, uptake and transfer characteristics of Pb, the pH of rhizosphere soil and distribution characteristics of Pb were analyzed.  Result  (1) Intercropping significantly improved the biomass of S. alfredii, A. graveolens and C. annuum, and reduced the biomass of B. chinensis and R. sativus (P<0.05). (2) The content of MDA in leaves of S. alfredii and edible plants showed a consistent pattern, and intercropping was lower than monoculture. In the intercropping system, CAT activities in leaves of A. graveolens, C. annuum and R. sativus significantly increased by 33.92%, 41.94% and 53.80%, compared with the monoculture system (P<0.05). (3) Intercropping S. alfredii significantly reduced Pb accumulation in edible parts of A. graveolens, C. annuum and R. sativus, which decreased by 24.37%, 162.50% and 39.82%, respectively (P< 0.05), compared with monoculture. (4) Intercropping decreased the pH of rhizosphere soil and changed the distribution of Pb in soil. Intercropping S. alfredii decreased the form proportion of weak acid extracted and oxidized Pb in the rhizosphere soil of edible plants, but increased the form proportion of reducible Pb in soil.   Conclusion  The intercropping mode can promote the enrichment and migration of Pb in S. alfredii and reduce the toxic effect of Pb on edible plants. Intercropping S. alfredii significantly reduces Pb content in edible parts of A. graveolens and C. annuum, reaching the safe edible standard. The Pb content in edible parts of R. sativus tends to decrease, which is an ideal combination mode for intercropping restoration. [Ch, 6 fig. 3 tab. 31 ref.]

YAN Yue, JIN Hexian, WANG Ying, CHEN Chaoyi, FAN Yingjia, LIU Dan. Effects of intercropping patterns on physiological characteristics and Pb uptake of edible plants in community gardens[J]. Journal of Zhejiang A&F University, 2023, 40(2): 338-347. doi: 10.11833/j.issn.2095-0756.20220365
Citation: YAN Yue, JIN Hexian, WANG Ying, CHEN Chaoyi, FAN Yingjia, LIU Dan. Effects of intercropping patterns on physiological characteristics and Pb uptake of edible plants in community gardens[J]. Journal of Zhejiang A&F University, 2023, 40(2): 338-347. doi: 10.11833/j.issn.2095-0756.20220365
  • 社区花园(community gardens)是指居民在社区碎片绿地内共同建造维护、种植花果蔬菜等的场地[1],是都市农业在社区应用中的主要形式之一,因其具有生态、社会和经济效益而广受人们欢迎[2]。在社区花园内以种植果蔬为目的的园艺活动能促进居民之间的交流与互动,满足人们在农耕习俗等中国传统文化中产生的对自然和田园生活的需求与向往[3]。作为能够提供公众参与园艺活动和种植食用植物的场所,土壤环境质量和植物的生长状况对社区花园健康建设具有重大的影响。重金属是土壤环境的主要污染物之一。受长期施肥[4]、生活垃圾[5]和交通运输[6]等人为活动的影响,社区花园土壤中重金属铅无处不在,对健康园艺实践产生一定的阻碍。近年来,国外学者对社区花园土壤中重金属铅污染进行了检测和评估[7],发现社区花园土壤中的重金属会在可食植物中积累,对人体产生健康风险[8]。MITCHELL等[9]对纽约市社区花园中的564个土壤样本进行重金属分析发现:土壤中铅含量超出标准值。国内社区花园研究处于起步阶段,对社区花园土壤重金属污染研究较少。杨剑洲等[10]在对与社区花园功能相似的种植园农作物调查时发现:土壤中的铅可在蔬果中积累,超标率达2.67%。土壤作为社区花园植物生长最基本的载体,一方面铅的累积势必会影响植物各项生理指标,造成社区花园内可食植物产量、质量的降低以及土壤性质的恶化[11];另一方面铅会在可食植物中积累进入食物链危害人类健康,增加患病概率[12],其可能引发的潜在危害已成为城市社区花园土壤污染亟待解决的问题之一。

    目前,以植物修复为代表的生物修复被认为是最经济、安全且可持续的土壤重金属修复方法[13]。超富集植物是植物修复技术的核心。东南景天Sedum alfredii因其环境适应性强,生长速度较快成为重金属铅污染下的理想植物修复材料[14]。近年来,利用超富集植物去除土壤重金属的研究取得许多成果,但大多局限于工业区、矿区或农田等场地,极少关注城市社区花园土壤重金属污染修复问题,且间作对铅污染下植物生理特性变化及重金属吸收研究较少,修复策略还不具备较强的针对性和实践性。本研究通过盆栽试验,探究社区花园土壤铅污染下的4种可食植物(上海青Brassica chinensis、樱桃萝卜Raphanus sativus、辣椒Capsicum annuum、青芹Apium graveolens)在单作及与东南景天间作2种种植模式下的生理特性以及对重金属铅的吸收特征,以期筛选出降低可食植物对铅吸收的最佳种植模式,打造集生态可持续性和景观多元为一体的社区花园,促进社区生态与景观协同发展。

    • 本研究供试土壤采自绍兴市上虞区小担山苗圃区,取样深度为0~20 cm。供试土壤自然风干后,小部分土壤过10目筛,测定土壤基本理化性质和重金属铅质量分数。经测定,土壤pH 6.22,速效钾为7.40 mg·kg−1,有机质为2.13 g·kg−1,碱解氮为118.50 mg·kg−1,有效磷为2.43 mg·kg−1,铅为258.64 mg·kg−1。参照GB 15618—2018《土壤环境质量 农用地土壤污染风险管控标准》土壤铅筛选值,苗圃区铅质量分数超过约2.8倍,并且高于《浙江省土壤地球化学背景值》中规定铅元素环境背景值8.5倍。其余土壤过5 mm筛,清除植物残体和石块,磨碎,用于盆栽试验。

    • 超富集植物东南景天采自浙江省杭州市临安区平山温室。选取长势良好且大小一致的东南景天,截取5 cm枝条,移至温室在营养土中培育2周至长出根系,选长势良好的苗备用。选择辣椒、上海青、樱桃萝卜、青芹为可食植物。以上4种可食植物为本地居民常见种植,且在人们的日常饮食中不可或缺。

    • 盆栽试验于2021年9月11日在浙江省临安区浙江农林大学平山苗圃(30°25′N,119°72′E)进行。培养盆上、下口径分别为29.5、17.5 cm,高19.7 cm。每盆放置6 kg污染土并浇水,稳定7 d后播种,同时挑选长势相同、生长健壮的东南景天幼苗移栽。待可食植物长出3~4片真叶后进行间苗定植,株距为10 cm。每盆按十字划分,以呈对角方式种植4株,且间作使同种植物保持在对角线上。植物单作为对照组,间作东南景天为处理组,共设2种种植模式,每组处理3次重复,共计27盆(表1),随机分布,培养120 d。试验期间定期浇水,土壤水分维持在田间持水量的70%,光照条件为自然光,观察其生长状况。

      种植模式处理代号种植模式处理代号
      单作 青芹 Q 间作 东南景天-上海青(东南景天) S-D1
      单作 上海青 S 间作 东南景天-上海青(上海青) S-D2
      单作 辣椒 L 间作 东南景天-辣椒(东南景天) L-D1
      单作 樱桃萝卜 B 间作 东南景天-辣椒(辣椒) L-D2
      单作 东南景天 D 间作 东南景天-樱桃萝卜(东南景天) B-D1
      间作 东南景天-青芹(东南景天) Q-D1 间作 东南景天-樱桃萝卜(樱桃萝卜) B-D2
      间作 东南景天-青芹(青芹) Q-D2
        说明:间作模式各处理括号中列出的是该模式下的采样植物

      Table 1.  Pot experiment design

    • 可食植物和东南景天同期收获取样,用尺子测量每株植物的株高和根长,并将植物分解成根、茎、叶3个部分。将根系浸泡于20 mmol·L−1乙二胺四乙酸二钠(EDTANa2)中20 min,以去除根系表面吸附的重金属,随后用去离子水反复冲洗3次,吸干植物表面水分后分成根、茎、叶、果4个部分,装入牛皮纸信封袋内,分别取样测定鲜质量;再于105 ℃下杀青0.5 h,随后在70 ℃下烘干至恒量,测定干质量并粉碎,分别过100目备用于重金属指标测定。取盆栽中土壤混合样约1 kg左右,清除植物碎片带回实验室自然风干,将干燥的土样经研磨后分别过10和100目尼龙筛,置于样品袋中备用。

    • 采用硫代巴比妥酸法测定丙二醛(MDA)浓度[15],采用紫外分光光度法测定过氧化氢酶(CAT)活性。采用HNO3-HClO4混合酸法消解植物样品中的铅,在消煮植物样品过程中采取平行样和GSB标准植物样进行分析质量控制,同时做空白实验;采用HNO3-HF-HClO4三酸法消解,测定土壤铅全量,在消煮过程中采用平行样和GSS标准土样进行质量控制,同时做空白实验。采用pH计在1.0∶2.5土水质量比下测定土壤pH。采用BCR三步萃取法[16] 分析土壤铅形态,分别提取弱酸提取态铅、可还原态铅、可氧化态铅和残渣态铅。每组试验均重复3次,采用石墨炉原子吸收光谱法(GFAAS,PerkinemerAA800,美国)检测样品上层清液中铅质量分数。

    • 采用Excel 2010和SPSS V22.0统计软件进行数据统计与方差分析,Duncan新复极差法进行差异显著性分析(P<0.05),用GraphPad Prism 9作图。富集系数(FBC)=植物器官中铅质量分数/土壤中铅质量分数;转移系数(FT)=植物地上部铅质量分数/植物地下部铅质量分数。

    • 图1所示:与单作相比,间作模式均显著增加东南景天地上部生物量(P<0.05),根部生物量均有不同程度增加,但无显著差异(图1A)。东南景天与樱桃萝卜间作相较于其他3种模式中地上部和根部生物量增幅最大,分别达120.97%、184.78%。与可食植物单作相比,间作促进青芹、辣椒地上部和根部生物量的积累(图1B),分别增加了34.47%、52.49%和63.58%、59.86%;其中间作模式下青芹总生物量增幅最大,辣椒增幅最小。上海青地上部生物量显著降低42.05% (P<0.05),根部生物量降低32.05%,但无显著差异;樱桃萝卜地上部生物量降幅达65.10%,根部生物量由16.94 g·株−1降低到11.77 g·株−1,存在显著差异(P<0.05)。

      Figure 1.  Plant biomass under different combination patterns

    • 图2可知:东南景天和可食植物在不同处理模式下丙二醛浓度表现出较为一致的规律,间作均低于单作。对比东南景天和可食植物在间作下丙二醛浓度的变化,发现东南景天叶片中丙二醛浓度比可食性植物下降明显,其中与上海青间作降幅最高,达156.25% (图2A)。辣椒在间作中丙二醛浓度降低最多,樱桃萝卜次之,分别较单作下降了47.62%、36.76%;上海青、青芹在间作模式中无显著性差异(图2B)。

      Figure 2.  MDA contents in leaves under different combination modes

    • 图3可知:东南景天在不同间作处理下过氧化氢酶活性均有不同程度的降幅。东南景天与上海青在间作模式中东南景天相比单作降幅为6.40%,但无显著性差异。而东南景天与樱桃萝卜、青芹、辣椒在间作模式下过氧化氢酶活性相比单作分别降低了19.63%、60.07%、29.17%,均存在显著差异(P<0.05) (图3A)。可食植物青芹、辣椒、樱桃萝卜与东南景天间作模式处理中叶片过氧化氢酶活性均存在显著差异(P<0.05),相比单作分别升高了33.92%、41.94%、53.80% (图3B)。

      Figure 3.  CAT contents in leaves under different combination modes

    • 图4所示:东南景天地上部和根部铅质量分数均为间作显著高于单作(P<0.05),且多集中于根部。与樱桃萝卜间作后,东南景天地上部铅质量分数比其他3种植物显著增加了55.00%,与青芹、辣椒间作后,东南景天体内平均铅质量分数较单作分别增加了26.00%和29.00%;与上海青间作时,东南景天铅质量分数均增加,但较单作无显著性差异(图4A)。除上海青外,青芹、辣椒、樱桃萝卜可食部位铅质量分数在间作模式下均有不同程度的降低,分别与单作相比降低24.37%、162.5%、39.82%。其中青芹、辣椒可食部位质量分数分别为0.10和0.08 mg·kg−1,达到GB 2762—2017《食品中污染物限量标准》规定的安全范围。樱桃萝卜可食部位的铅质量分数虽高于标准中的限量值,未达到安全食用范围,但在间作处理下樱桃萝卜中质量分数均低于单作处理,且随着间作时间的延长,间作东南景天有望实现樱桃萝卜的安全生产。间作使上海青体内铅质量分数整体下降,其中根部下降63.79%,但可食部位叶片中铅质量分数较单作增加31.18% (图4B)。根据GB 2762—2017《食品中污染物限量标准》,间作模式下上海青叶片中铅质量分数仍高于标准限量值0.3 mg·kg−1,不可食用。

      Figure 4.  Pb contents in plants under different combination modes

    • 表2可知:间作提高了东南景天吸收重金属的能力(P<0.05)。与青芹、辣椒、樱桃萝卜间作后东南景天地上部铅富集系数较单作分别上升了3.73%、32.98%、33.37%;与上海青间作后东南景天根部铅富集系数较单作下降24.53%。东南景天与辣椒间作后铅转运系数显著上升了29.87%(P<0.05),与青芹、樱桃萝卜间作后转运系数较单作无显著差异。

      植物处理FBCFT根—茎叶
      茎叶
      东南景天 D 0.426 76 b 0.098 39 b 0.231 b
      Q-D1 0.438 03 b 0.102 06 b 0.233 b
      S-D1 0.331 30 c 0.079 01 c 0.238 b
      L-D1 0.435 77 b 0.130 85 a 0.300 a
      B-D1 0.529 70 a 0.131 23 a 0.248 b
        说明:表中数据为平均值(n=3)。同列不同字母表示各处理间显著差异(P<0.05)。代号所表示处理见表1

      Table 2.  FBC and FT of Pb by S. alfredii in different treatments

      由于铅在不同可食植物体内转运速度不同,从而导致可食植物体内各部位铅分布出现差异。由表3可知:间作模式减弱可食植物富集铅的能力。青芹各部位在间作模式下铅富集系数较单作均有不同程度的下降,其中在可食部位(茎)中下降显著(P<0.05),降幅达31.79%。在间作模式下上海青根、茎部富集系数有所降低,与单作相比分别降低53.36%、76.86%,但叶中铅富集系数却较单作显著提高了40.10% (P<0.05)。辣椒可食部位(果)铅富集系数相比单作同样呈现显著下降(P<0.05),降幅达133.39%。间作东南景天能使樱桃萝卜可食部位铅富集系数呈显著下降(P<0.05),降幅为18.23%。青芹、辣椒在间作模式下转运系数较单作均有所下降,与单作相比分别下降了33.01%、38.96%。而上海青、樱桃萝卜与东南景天间作后,铅转运系数较单作分别增加了35.85%、6.74%。

      植物处理FBCFT根—茎叶
      青芹   Q 0.002 24 c 0.001 69 bc 0.000 80 cd 1.164 b
      Q-D2 0.002 07 c 0.001 28 c 0.000 50 d 0.875 c
      上海青  S 0.004 07 b 0.002 19 a 0.001 33 b 0.863 c
      S-D2 0.002 65 c 0.001 24 c 0.001 86 a 1.173 b
      辣椒   L 0.002 16 c 0.001 57 bc 0.001 11 bc 0.000 96 a 1.688 a
      L-D2 0.002 34 c 0.001 66 bc 0.000 75 cd 0.000 41 b 1.215 b
      樱桃萝卜 B 0.004 79 a 0.002 02 ab 0.000 71 cd 0.570 d
      B-D2 0.004 06 b 0.001 65b c 0.000 82 bc 0.608 d
        说明:−表示无此项。数据为平均值(n=3)。同列不同字母表示各处理间具有显著差异(P<0.05)。代号所表示处理见表1

      Table 3.  FBC and FT of Pb by edible plants in different treatments

    • 图5所示:与东南景天单作相比,青芹、辣椒和樱桃萝卜3种间作模式显著降低东南景天根际土壤pH (P<0.05)。上海青-东南景天间作模式下东南景天根际土壤pH值降低,但没有达到显著水平(图5A)。与可食植物单作相比,间作模式均不同程度的降低青芹、辣椒和樱桃萝卜根际土壤pH,分别降低至5.40、5.34和5.57,差异显著(P<0.05) (图5B)。

      Figure 5.  Rhizosphere soil pH of different combinations

      图6所示:在间作模式下,东南景天根际土壤弱酸提取态、可还原态铅质量分数占总铅比例均有不同程度的提升,而可氧化态和残渣态铅的形态占比降低。与单作相比,东南景天与樱桃萝卜在间作模式下,其根际土壤弱酸提取态和可氧化态铅质量分数占总铅比例高于间作上海青和青芹;东南景天根际土壤残渣态铅的形态占比在4种间作模式之间无显著差别(图6A)。可食植物在间作模式下根际土壤可还原态铅的形态占比增大,弱酸提取态和可氧化态铅的形态占比均不同程度降低,残渣态铅则无显著变化。与单作相比,间作处理下樱桃萝卜根际土壤弱酸提取态铅质量分数降低了7.07 mg·kg−1,可氧化态铅质量分数降低了25.79 mg·kg−1;在间作模式下,上海青相较于其他3种可食植物根际土壤可还原态铅质量分数增幅最大,达24.36%,青芹次之,增幅为12.82% (图6B)。

      Figure 6.  Proportion of Pb forms in rhizosphere soils of plants of different assemblages

    • 间作模式能改变植物生物量。本研究表明:与东南景天间作后,可食植物青芹、辣椒生物量较单作显著增加了65.51%、31.64%,但上海青、樱桃萝卜生物量有所降低。说明东南景天间作上海青、樱桃萝卜后,因盆栽空间的局限造成两者根系养分竞争激烈[17],影响了上海青、樱桃萝卜的生长。青芹、辣椒生物量增加的原因可能是在间作模式下可以加快不同植物共生期间的养分转化,改善土壤的养分状况,提高植物对有效养分的吸收[18]。与单作相比,东南景天生物量显著增加,其原因可能是可食植物为东南景天遮光,缓解了高温带来的不良影响,从而提高东南景天生物量[19]

      丙二醛是膜脂质氧化的产物,是反映植物膜系统受伤害的重要指标之一[20]。本研究结果表明:间作模式下东南景天和可食植物叶片中丙二醛浓度均有不同程度的下降,其中辣椒、樱桃萝卜间作叶片中丙二醛浓度比单作显著下降了47.62%、36.76%。说明间作能缓解铅对植物的毒性。这与王晓维等[21]研究在铜胁迫下玉米Zea mays与豌豆Pisum sativum间作使玉米丙二醛含量较单作下降的结果一致。过氧化氢酶是植物细胞在长期进化过程中形成的主要抗氧化酶[22]。它能清除和减少植物体内的自由基,有效降低重金属胁迫对植物细胞的损伤,其活性间接反映了植物对重金属污染物的抗性[23]。本研究表明:间作模式下东南景天过氧化氢酶下降,其原因是间作体系促进东南景天对铅的吸收,致使东南景天自我调节和保护功能下降。王吉秀等[24]研究发现:将玉米和小花南芥Arabis alpina var. parviflora间作种植,玉米叶片过氧化氢酶含量较单作显著增加。从本研究也可以看出:铅胁迫下可食植物青芹、上海青、辣椒、樱桃萝卜叶片内丙二醛活性均表现出间作高于单作。

      间作模式中不同植物吸收重金属的能力存在显著差异。本研究发现:间作东南景天在铅积累能力增加的同时显著降低了铅在青芹、辣椒、樱桃萝卜可食部位的累积,与单作相比分别下降了24.37%、162.50%、39.82%;上海青叶片中铅富集系数较单作显著提高了40.10%,表明间作东南景天会提高上海青叶片对铅的积累量。这与蒋成爱等[25]研究超富集植物东南景天与玉米间作时,东南景天地上部铅含量比单作增加13.0%,同时显著增加玉米铅含量的结果一致。间作提高了上海青、樱桃萝卜的转运系数,其原因可能是上海青、樱桃萝卜属于转移能力较强的植物,通过根系吸收根际土壤中的铅,并将大部分铅转移和积累到植物的茎叶从而保护根部不受毒害,维持其正常的生命活动。间作模式中青芹、辣椒转运系数降低,表明间作模式具有降低茎叶对铅的吸收能力。这与孟楠等[26]研究籽粒苋Amaranthus hypochondriacus与空心菜Ipomoea aquatica间作有效降低了空心菜对铅的吸收转运的结果一致。

      植物对土壤重金属元素吸收积累的高低与植物根际环境及土壤中重金属形态存在密切联系[27]。间作主要是通过改变植物根系的分泌物、土壤pH等影响重金属的形态,间接地改变土壤中重金属的有效性,从而最终影响植物对重金属的吸收[28]。本研究发现:间作模式下东南景天和可食植物根际土壤pH显著降低。与单作相比,东南景天与青芹、辣椒和樱桃萝卜间作下其根际土壤pH显著降低,而上海青无显著差异。其原因可能是青芹、辣椒和樱桃萝卜在间作模式中与东南景天根系充分交叉,根系相互作用增强,引起东南景天根系分泌大量的有机酸,有机酸与铅离子形成螯合物,进而促进富集植物对铅的吸收和富集[29];上海青在间作模式下仅有少部分根系交叉,根系相互作用较弱,未能引起东南景天根系大量分泌有机酸。不同间作组合模式下东南景天根际土壤弱酸提取态铅质量分数占总铅比例均呈增加趋势,进一步表明间作模式会引起植株根系分泌物有机酸增加,导致根际土壤pH降低,进而促进根际土壤弱酸提取态铅质量分数增加。有研究表明:弱酸提取态铅的生物有效性最高,易于迁移和转化,可被植物直接吸收[30]。与单作相比,青芹、辣椒和樱桃萝卜根际土壤pH以及弱酸提取态铅质量分数占总铅比例在间作模式下有不同程度的降低,这可能与东南景天和可食植物根系对弱酸提取态铅的竞争吸收有关,东南景天对铅的吸收和转运能力显著高于可食植物,导致青芹、辣椒和樱桃萝卜根际土壤中弱酸提取态铅大量向东南景天根际转移,被东南景天根系吸收,进而引起了植物根际土壤弱酸提取态铅质量分数降低。东南景天与上海青间作模式由于其根系互作较弱,根际土壤弱酸提取态铅质量分数无明显变化。另外,值得注意的是东南景天和可食植物在间作模式下根际土壤可还原态铅质量分数占总铅比例均有不同程度的提高,而可氧化态铅占比却都有一定降低,这可能是铅各形态之间存在着动态平衡[31],土壤可还原态铅和可氧化态铅能进行直接或间接的相互转化,呈现此消彼长的趋势。

    • 间作模式显著增加了东南景天、青芹和辣椒的生物量,上海青生物量和樱桃萝卜根部生物量显著降低。东南景天和可食植物丙醛浓度均表现为间作低于单作;间作可食植物叶片中过氧化氢酶活性显著增加的同时,东南景天叶片内过氧化氢酶活性均有不同程度下降。间作模式显著降低青芹、辣椒、樱桃萝卜可食部位铅质量分数,而上海青叶片中铅质量分数显著提高。可食植物和东南景天根际土壤pH变化表现出一致规律,间作均低于单作。间作显著降低可食植物根系周围土壤弱酸提取态铅和可氧化态铅质量分数,增加可还原态铅质量分数,而间作体系对残渣态铅质量分数影响不显著。间作与单作比较,增加了东南景天根际土壤中弱酸提取态铅和可还原态铅质量分数,降低了残渣态铅质量分数,促进间作系统中东南景天对铅的积累作用。因此,青芹、辣椒和樱桃萝卜与东南景天间作能显著降低青芹和辣椒可食部位铅质量分数,减少可食植物铅安全风险,达到安全食用标准,也能降低樱桃萝卜可食部位铅质量分数,在间作修复中是较为理想的组合模式。

Reference (31)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return