Turn off MathJax
Article Contents

SHEN Han, ZHENG Chengzhong, QIU Yongbin, WANG Qinghua, HUA Keda, MIAO Qiang, FAN Yanru, JIANG Jingmin, WEI Yi, LIU Jun. Provenance variation and selection in growth, shape, and quality traits of 10-year-old Toona sinensis[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20230481
Citation: SHEN Han, ZHENG Chengzhong, QIU Yongbin, WANG Qinghua, HUA Keda, MIAO Qiang, FAN Yanru, JIANG Jingmin, WEI Yi, LIU Jun. Provenance variation and selection in growth, shape, and quality traits of 10-year-old Toona sinensis[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20230481

OnlineFirst articles are published online before they appear in a regular issue of the journal. Please find and download the full texts via CNKI.

Provenance variation and selection in growth, shape, and quality traits of 10-year-old Toona sinensis

doi: 10.11833/j.issn.2095-0756.20230481
  • Received Date: 2023-09-21
  • Accepted Date: 2024-03-12
  • Rev Recd Date: 2024-03-01
  •   Objective  The purpose of this study is to examine the provenance variations in growth, shape and quality traits of 10-year-old Toona sinensis, to reveal the variation of different traits in geographical provenance, and to carry out provenance division and selection.   Method  Using the 10-year-old T. sinensis provenance test in Kaihua County, Zhejiang Province as material, the tree height, diameter at breast height (DBH), height under the branch, crown width, volume, trunk completeness, and crown completeness were measured, and various ecological and environmental factors were obtained. Variance, principal component, correlation, and cluster analysis were applied to calculate the general heritability, comprehensive selection index, and genetic gain to elucidate the geographical variation patterns of growth, shape, and quality traits and their relationship with ecological factors of different origin.   Result  There were significant provenance differences (P<0.01) in tree height, DBH, trunk completeness, and volume. The DBH, tree height, crown width, height under branches, and volume of the provenances displayed typical zonal variation patterns. There was a highly significant positive correlation (P<0.01) between DBH and crown width, height under branches and volume. DBH was positively correlated (P<0.05) with the annual mean temperature, the average daily minimum temperature in the coldest month, and the average daily mean temperature in the driest season. According to the clustering results of all provenances, T. sinensis could be divided into two provenance zones: south and north. Three excellent provenances were selected, namely Yuanmou, Enshi and Taihe.   Conclusion  There are significant differences among the provenances of 10-year-old T. sinensis, with a gradual decrease in the variation of tree height, DBH, and volume from south to north. DBH is the main genetic improvement trait during selection, which can provide a reliable basis for the selection of high-quality T. sinensis varieties for timber use. [Ch, 3 fig. 6 tab. 25 ref.]
  • [1] YAN Shu, WEI Ruping, WANG Runhui, HUANG Rong, ZHENG Huiquan.  Variation and selection of half-sib families of Falcataria falcata during seedling stage . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20230371
    [2] WEI Ruping, YAN Shu, ZHENG Huiquan, WANG Runhui, HU Dehuo.  Growth variation of Michelia chapensis provenance in different ages and its early selection . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20220357
    [3] YAN Yanbing, PAN Huixin.  Genetic variation and selection of seedling traits in hybrid progeny of Populus deltoides . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20200803
    [4] XIANG Yuyong, SUN Xing, YIN Peifeng.  Effects of host plants and temperatures on digestive enzyme activities in Heterolocha jinyinhuaphaga larvae . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2020.02.016
    [5] YIN Huanhuan, LIU Qinghua, ZHOU Zhichun, WAN Xueqin, YU Qixin, FENG Zhongping.  Genetic variation of wood basic density and fiber morphology and selection of Pinus massoniana . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20190720
    [6] ZHANG Yong, HU Haibo, WANG Zeng, HUANG Yujie, LÜ Aihua, ZHANG Jinchi, LIU Shenglong.  Varieties of active soil organic carbon of four forest types with varying incubation temperatures in Fengyang Mountain . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2018.02.007
    [7] NGUYEN Thi Huong Giang, ZHANG Qisheng.  Temperature inside mats of high-frequency, hot pressed, glued and laminated bamboo . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2015.02.001
    [8] HAO Mingzhuo, LI Qun, PENG Fangren, SHEN Lulu, LIANG Youwang, HAN Minghui, WANG Kunrong.  Different stump heights with Toona sinensis bud vegetable yield and commodity characteristics with field coppice management . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2013.02.006
    [9] HAO Ming-zhuo, CHEN De-gen, PENG Fang-ren, LIANG You-wang, LI Qun, ZHAO Jun, YUAN Jue, WANG Kun-rong, ZHU Wei-hong.  Comparison of eight Toona sinensis provenances for seed properties,sprouting vegetable yield,and sprout nutritional components . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2012.02.005
    [10] ZHANG Xiao-fei, LI Huo-gen, YOU Lu-xiang, CAO Jian.  Variation and genetic stability of two-year-old Liriodendron seedling growth for 39 mating combinations . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2011.01.016
    [11] HUANG Xin-jin.  Selection and variation of Cryptomeria fortunei provenances in Fujian Province . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2010.06.013
    [12] ZHANG Fei, FANG Wei-min, CHEN Fa-di, ZHAO Hong-bo, JIA Wen-ke.  Genetic variability patterns and correlation analysis for cut-chrysanthemum with emphasis on inflorescence traits . Journal of Zhejiang A&F University,
    [13] LI Xiao-ping, ZHOUDing-guo.  Influence of temperature on physical and chemical properties of rice straw . Journal of Zhejiang A&F University,
    [14] SU Ming-shen, YE Zheng-wen, WU Yu-liang, LI Sheng-yuan, QIAN Jin, ZHANG Jun-qiang.  Effect of temperature on breaking dormancy of peach cultivars . Journal of Zhejiang A&F University,
    [15] ZHU Gui-he.  Forcing cultural measures of Toona sinensis in dwarf culture . Journal of Zhejiang A&F University,
    [16] TONG Zai-kang, ZHENG Yong-ping, LUO Shi-yuan, YANG Hui-ping, SHI Hong-zheng.  Variations and heredity of paper pulpwood properties of new Aigeiros clones of southern type . Journal of Zhejiang A&F University,
    [17] BI Li-jun.  Extracting flavonoid compounds from Toona sinensis leaves . Journal of Zhejiang A&F University,
    [18] LIN Tong-long.  Chinese fir :genetic variation and combination selection in DBH growth and wood volume weight for filial generation . Journal of Zhejiang A&F University,
    [19] Sun Hong you, Feng Bingcai, Dong Feiyue, Yan Shifeng, Jiang Liuqi.  Effective Accumulated Temperature of Toona sinensis Germination and Its Cropping Techniques in Plastic Green Houses. . Journal of Zhejiang A&F University,
    [20] Sun Hongyou, Yuan Wenhai, Ren Xiaorong, Xu Weinan, .  Primary Sutdies on Variations of Peroxidase-isoenzymes of Chinese Mahogany . Journal of Zhejiang A&F University,
  • [1]
    ZHOU Xiangyu. Study on Toona in China [D]. Nanjing: Nanjing Forestry University, 2005.
    [2]
    PENG Fangren, LIANG Youwang. Biological characteristics and development and utilization prospects of Toona sinensis [J]. China Forestry Science and Technology, 2005, 19(3): 3 − 6.
    [3]
    CHEN Ximu, LIAGN Baohan, LI Bingtao. A preliminary taxonomic study on Meliaceae in Guangdong [J]. Journal of Wuhan Botanical Research, 1986, 4(2): 167 − 194.
    [4]
    LU Changxun, ZHANG Dechun, WANG Debin. Origin and taxonomic position of Chinese Toon [Toona sinensis (A. Juss. ) Roem. ] [J]. Bulletin of Botanical Research, 2001, 21(2): 195 − 199.
    [5]
    WANG Xiying, WANG Haihong, QIAO Yongjin. Key techniques of high quality and high yield cultivation of Toona sinensis [J]. Protection Forest Science and Technology, 2008(5): 133 − 134.
    [6]
    MROGINSKI E, REY H Y, MROGINSKI L A. In vitro plantlet regeneration from Australian Red Cedar (Toona ciliata, Meliaceae) [J]. New Forests, 2003, 25(3): 177 − 184.
    [7]
    YANG Yuzhen, PENG Fangren, LI Hongyan. Changes of the nutritive compositions of Toona sinenesis bud in different provenances [J]. Journal of Henan Agricultural Sciences, 2007(4): 83 − 85.
    [8]
    GE Duoyun, ZOU Shengqin. Determination of amino acids and nutrient elements in Toona sinensis Roem. leaves [J]. Studies of Trace Elements and Health, 2005, 22(6): 23 − 24.
    [9]
    WANG Peihwei, TSAI M J, HSU C Y, et al. Toona sinensis Roem (Meliaceae) leaf extract alleviates hyperglycemia via altering adipose glucose transporter 4 [J]. Food and Chemical Toxicology, 2008, 46(7): 2554 − 2560.
    [10]
    SUN Hongyou, WANG Pengfei, FANG Bingfa, et al. Geographic variation and provenance selection of Chinese mahogany [J]. Journal of Zhejiang Forestry College, 1992, 9(3): 237 − 245.
    [11]
    LI Shuling, SANG Yuqiang, WANG Ping, et al. The genetic analysis on different species of Toona sinensis [J]. Journal of Henan Agricultural University, 2000, 34(4): 363 − 366.
    [12]
    LIANG Youwang, PENG Fangren, CHEN Deping. The variations of seedling growth among provenances in Toona sinensis [J]. China Forestry Science and Technology, 2007, 21(2): 38 − 41.
    [13]
    LEI Xiaohua, TU Bingkun, WANG Maoli, et al. Character evaluation and superior selection of Toona sinensis by principal component analysis [J]. Journal of Huazhong Agricultural University, 2006, 25(4): 441 − 444.
    [14]
    CUI Hongan, CHEN Tieshan, FAN Longxia, et al. Natural types of leaf structure and resistance of Toona sinensis Shaanxi Provenance [J]. Journal of Northwest Forestry University, 2008, 23(2): 39 − 41.
    [15]
    LIU Jun, CHEN Yitai, JIANG Jingmin, et al. Canonical correlation analysis between trait variation of Toona sinensis seedlings from different provenances and ecological factors in their original region [J]. Journal of Northeast Forestry University, 2010, 38(11): 27 − 29.
    [16]
    XU Chengli, ZHANG Jinglan, CHEN Donglai. Study on the affect of the crown-fullness ratio on the growth of the tree and the form of the tree-trunk [J]. Journal of Agricultural Universtiy of Hebei, 2005, 28(3): 45 − 48.
    [17]
    LIU Qinghua, JIN Guoqing, ZHANG Rui, et al. Provenance variation in growth, stem-form and wood density of masson pine at 24-year-old and the provenance division [J]. Scientia Silvae Sinicae, 2009, 45(10): 55 − 61.
    [18]
    LI Guangyou, XU Jianmin, LU Zhaohua, et al. Studies on index selections of Eucalyptus urophylla families [J]. Forest Research, 2005, 18(1): 57 − 61.
    [19]
    HU Xingfeng, WU Fan, SUN Xiaobo, et al. Joint analysis of growth and wood property of 38-year-old Pinus massoniana from 55 provenances [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46(3): 203 − 212.
    [20]
    ZHANG Yi, AO Yan, LIU Juefei, et al. Differences in growth characters of Xanthoceras sorbifolium from different distribution areas and analysis on its correlation with geographical-climatic factors [J]. Journal of Plant Resources and Environment, 2019, 28(3): 44 − 50,57.
    [21]
    WU Hanbin, DUAN Aiguan, ZHANG Jianguo. Long-term growth variation and selection of geographical provenances of Cunninghamia lanceolata (Lamb. ) Hook [J/OL]. Forests, 2019, 10: 876[2023-08-21]. doi:10.3390/f10100876.
    [22]
    SILVESTRO R, BRASSEUR S, KLISZ M, et al. Bioclimatic distance and performance of apical shoot extension: disentangling the role of growth rate and duration in ecotypic differentiation [J/OL]. Forest Ecology and Management, 2020, 477: 118483[2023-08-20]. doi: 10.1016/j. foreco.2020.118483.
    [23]
    MADSEN C L, KJARE D, RABILD A. Climatic criteria for successful introduction of Quercus species identified by use of Arboretum data [J]. Forestry:An International Journal of Forest Research, 2021, 94(4): 526 − 537.
    [24]
    YANG Chuanping, YANG Shuwen, XIA De’an, et al. Study on the provenance test of Larix gmelinii (Ⅲ) the provenance division [J]. Journal of Northeast Forest University, 1991,19(suppl 2): 77−83.
    [25]
    WANG Junhui, GU Wanchun, LI Bin, et al. Study on selection of Alnus cremastogyne provenance/family-analysis of growth adaptation and genetic stability [J]. Scientia Silvae Sinicae, 2000, 36(3): 59 − 66.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)  / Tables(6)

Article views(27) PDF downloads(5) Cited by()

Related
Proportional views

Provenance variation and selection in growth, shape, and quality traits of 10-year-old Toona sinensis

doi: 10.11833/j.issn.2095-0756.20230481

Abstract:   Objective  The purpose of this study is to examine the provenance variations in growth, shape and quality traits of 10-year-old Toona sinensis, to reveal the variation of different traits in geographical provenance, and to carry out provenance division and selection.   Method  Using the 10-year-old T. sinensis provenance test in Kaihua County, Zhejiang Province as material, the tree height, diameter at breast height (DBH), height under the branch, crown width, volume, trunk completeness, and crown completeness were measured, and various ecological and environmental factors were obtained. Variance, principal component, correlation, and cluster analysis were applied to calculate the general heritability, comprehensive selection index, and genetic gain to elucidate the geographical variation patterns of growth, shape, and quality traits and their relationship with ecological factors of different origin.   Result  There were significant provenance differences (P<0.01) in tree height, DBH, trunk completeness, and volume. The DBH, tree height, crown width, height under branches, and volume of the provenances displayed typical zonal variation patterns. There was a highly significant positive correlation (P<0.01) between DBH and crown width, height under branches and volume. DBH was positively correlated (P<0.05) with the annual mean temperature, the average daily minimum temperature in the coldest month, and the average daily mean temperature in the driest season. According to the clustering results of all provenances, T. sinensis could be divided into two provenance zones: south and north. Three excellent provenances were selected, namely Yuanmou, Enshi and Taihe.   Conclusion  There are significant differences among the provenances of 10-year-old T. sinensis, with a gradual decrease in the variation of tree height, DBH, and volume from south to north. DBH is the main genetic improvement trait during selection, which can provide a reliable basis for the selection of high-quality T. sinensis varieties for timber use. [Ch, 3 fig. 6 tab. 25 ref.]

SHEN Han, ZHENG Chengzhong, QIU Yongbin, WANG Qinghua, HUA Keda, MIAO Qiang, FAN Yanru, JIANG Jingmin, WEI Yi, LIU Jun. Provenance variation and selection in growth, shape, and quality traits of 10-year-old Toona sinensis[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20230481
Citation: SHEN Han, ZHENG Chengzhong, QIU Yongbin, WANG Qinghua, HUA Keda, MIAO Qiang, FAN Yanru, JIANG Jingmin, WEI Yi, LIU Jun. Provenance variation and selection in growth, shape, and quality traits of 10-year-old Toona sinensis[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20230481
  • 香椿属Toona是楝科Meliaceae中一个较为重要的属,该属树种材质优良、纹理直、具光泽,为上等家具及室内装饰用材,被称为“中国桃花心木”,备受人们青睐[1]。其中香椿T. sinensis是中国特有的珍贵速生用材树种,落叶乔木,树冠庞大,树干通直,生长迅速,一般10 a左右即可成材,其木材细密富有弹性,纹理通直美观、色泽红润,耐腐。同时,香椿嫩叶具有浓郁的香气,在中国具有悠久的栽培历史[2],早在明代徐光启就将其作为救饥植物载入《农政全书》,是国人喜食的山珍野菜。香椿经济价值较高,具有极大的开发利用潜力。

    目前,对香椿的研究集中在分类[34]、栽培繁育技术[56]、营养价值应用[78]、药用[9]和遗传改良[1014]等方面。香椿作为珍贵优质阔叶用材树种,育种研究起步较晚。20世纪80年代,孙鸿有等[10]开展了香椿种源试验,综合选育出浙江丽水、湖南邵阳等6个优良种源。随后河南[11]、江苏[12]、湖北[13]和陕西[14]等省陆续开展了香椿遗传改良的研究,在推动香椿人工林发展中起到了重要作用。香椿分布区较广,蕴藏着丰富的遗传变异。前期通过全面收集香椿分布区24个种源种子,开展了苗期测定,筛选出苗期表现比较优异的7个种源[15]

    种源和家系选择是林木遗传改良的重要手段之一。国内外开展的主要造林树种种源试验,证明种源选择能取得良好的改良效果。国内前期虽营建了多个香椿种源试验林,但香椿育种周期长,多数试验林没有得到有效保存和维护,未对其种源试验结果进行长期跟踪评价。鉴于此,本研究利用浙江省开化县林场保存完好的10年生香椿种源试验林,研究其生长和形质性状的地理种源变异,通过聚类分析开展种源区划分,并筛选速生优质的香椿种源,为香椿的种质资源选择评价提供理论基础,也为今后的香椿良种选育工作提供参考。

    • 研究区位于浙江省开化县林场国家杉木良种基地。该区属中亚热带季风气候区,四季分明,冬夏长,春秋短。年平均气温为16.6 ℃,无霜期为254.0 d,年平均降水量为1 830.8 mm。土壤以红壤为主,质地中壤至轻黏,酸性。造林地前期为杉木Cunninghamia lanceolata林,于2011年被砍伐。2012年春季营建香椿种源试验林。试验采用随机区组设计,10株单列小区,3次重复,即每个种源30株,株行距为2.0 m×2.5 m。

    • 研究材料包括香椿种源24个(表1)。2021年12月初对试验林进行全林调查,测定树高、胸径、枝下高、冠幅等性状,并计算获得树干圆满度(用树干下部3 m高处直径与胸径之比)和树冠圆满度(冠幅与其树冠长度之比) [1617]

      种源编号种源经度(E)纬度(N)海拔/m种源编号种源经度(E)纬度(N)海拔/m
      1三门峡111.047°34.054°779 15峨眉山103.480°29.590°877
      2郴州 113.032°25.793°40220凭祥 106.755°22.105°348
      3湘西 109.601°27.948°38921晴隆 105.218°25.834°1102
      4武汉 114.298°30.584°2623潍坊 118.544°36.512°492
      5新宁 110.851°26.429°85924聊城 117.635°26.265°361
      8邯郸 114.490°36.612°9125杭州 119.960°30.048°100
      9九江 115.992°29.712°1726阜阳 115.621°33.160°34
      10南京 118.767°32.041°1427运城 112.549°37.857°885
      11新乡 113.805°35.190°7634恩施 109.479°30.295°718
      12南阳 111.481°33.297°37636乳源 113.280°23.125°120
      13伏牛山119.419°32.042°3338元谋 101.877°25.704°1 652
      14天水 105.724°34.578°1 35542安康 109.760°32.804°526

      Table 1.  Locations of the twenty-four provenances of T. sinensis

    • 从瑞士联邦森林、雪和景观研究所网站(Chelsa Climate, http://chelsa-climate. org/ downloads/)下载高分辨率气象因子。土壤数据采自 HWSD-V1.2 数据。

    • 材积计算公式如下:

      式(1)中:V为单株材积(m3) ;D为胸径(cm);H为树高(m)。统计分析以小区平均数为单位,按常规统计方法进行。计算采用DPS软件在计算机上进行,对测定的性状值以及数据转换值进行单因素方差分析。线性模型为:

      式(2)中:Xij为第i个种源某一性状的第j个观察值,µ为总体平均值,αi为种源的某一性状效应, εij为随机误差。对各性状的广义遗传力进行估算,公式为:

      式(3)中:h 2为表型遗传力,F为方差分析中的F值。优良种源评价及选择参考李广友等[18]和胡兴峰等[19]的综合选择指数方程,公式为:

      式(4):Ii为种源选择指数值,wi为某性状的经济权重,h 2为性状遗传力,Pn为某种源第n个性状的表型值。遗传增益计算公式为:

      式(5)中:ΔGi为第i个种源的遗传增益;s为选择差;h 2为性状遗传力;$ \overline{X} $为种源表型均值。

    • 主成分、相关分析等采用R语言corrplot、FactoMineR、factoextra等程序包进行。

    • 香椿种源生长和形质性状方差分析结果(表2)显示:树高、胸径、枝下高、冠幅和材积在重复间差异显著(P<0.05)或极显著(P<0.01);不同种源间树高、胸径、树干圆满度和材积差异极显著(P<0.01),这说明其地理种源间的遗传变异丰富,优良种源选择的潜力很大。10年生时种源树高平均为8.86 m,变幅为6.1~10.9 m;胸径均值为8.07 cm,变幅为5.57~10.61 cm,胸径生长量最大种源是最小种源的1.9倍。种源单株材积均值为0.026 m3,变幅为0.008~0.042 m3,其变异幅度较大,材积生长量最大种源是最小种源的5.25倍。香椿不同种源间树干圆满度差异极显著(P<0.01),而树冠圆满度在种源间差异不显著。树高、胸径、冠幅、枝下高、树干圆满度、树冠圆满度和材积等7个性状变异系数分别为9.5%、13.1%、12.3%、15.7%、2.9%、12.3%和35.9%,从变异系数也可看出:材积的变异最大,其次为枝下高和胸径。以上7个性状的广义遗传力分别为0.65、0.69、0.33、0.42、0.76、0.42和0.57,说明香椿树高、胸径、树干圆满度和材积等性状在种源水平上受较强的遗传控制。

      性状
      变异来源遗传参数
      重复种源误差均值变幅变异系数/%
      树高46.285 7**60.273 2**42.2108.8606.100~10.9009.5
      胸径72.938 1**93.919 4**57.9008.0705.570~10.61013.1
      冠幅1.389 9*5.865 27.851 2.9702.190~3.51012.3
      枝下高10.944 8**20.060 223.2003.8902.510~4.66015.7
      树干圆满度0.036 3**0.561 2**0.0280.8000.560~0.9302.9
      树冠圆满度0.080 40.540 60.6260.6200.460~0.79012.3
      材积 0.004 7**0.005 1**0.0040.0260.008~0.04235.9
        说明:*. P<0.05;**. P<0.01。遗传参数中的树高、胸径、冠幅、枝下高和材积的单位分别是m、cm、m、m和m3

      Table 2.  Variance analysis and main genetic parameters of growth and stem-form of T. sinensis

    • 从香椿不同种源树高、胸径、冠幅、枝下高、树干圆满度、树冠圆满度和材积等生长和形质性状与产地生态因子之间的相关关系(图1A)可知:香椿种源胸径与年平均气温、最冷月平均日最低气温和最干季日平均气温显著(P<0.05)正相关,与纬度、温度季节性、气温年变幅显著(P<0.05)负相关,说明香椿种源以上这些生长、形质性状呈现典型的纬度变异模式,但冠幅圆满度与纬度相关性不显著,表明其为随机的地理变异模式。香椿种源枝下高与年降水量、最干旱月降水量(bio14)、最干季月平均降水量显著(P<0.05)正相关,而与平均日气温范围和降水季节性极显著(P<0.01)负相关。香椿种源材积与最冷月平均日最低气温(bio6)显著(P<0.05)正相关。香椿种源生长、形质性状与产地土壤因子相关不显著,说明产地土壤对香椿种源生长影响较小(图1B)。

      Figure 1.  Correlation between growth and stem-form quality of different provenances and the ecological factors of the provenances

    • 香椿种源生长和形质性状表型相关和遗传相关分析发现(表3):10年生香椿种源胸径与冠幅、枝下高和材积之间的遗传相关和表型相关均呈极显著(P<0.01)或显著(P<0.05)正相关,说明在进行香椿种源胸径改良的同时,可以改良其冠幅、枝下高和材积等生长性状。

      性状树高胸径冠幅枝下高材积树干圆满度树冠圆满度
      树高10.569 80.549 70.990 7**0.755 90.214 8−0.394 5
      胸径0.614 8*10.965 8**0.988 8**0.990 9**−0.276 50.605 9
      冠幅0.491 70.750 4**10.976 9**0.970 4**−0.370 50.752 8
      枝下高0.752 5**0.651 2*0.576 010.990 8**−0.198 10.025 6
      材积0.772 0**0.951 9**0.695 9*0.712 7**1−0.091 70.367 3
      树干圆满度0.187 6−0.185 9−0.181 5−0.080 3−0.017 11−0.762 1
      树冠圆满度−0.360 30.232 50.489 00.223 10.049 5−0.460 51
        说明:左下为表型相关系数,右上为遗传相关系数;*. P<0.05;**. P<0.01。

      Table 3.  Phenotypic and genetic correlation between growth and stem-form qualities traits of T. sinensis

    • 香椿生长和形质性状主成分分析结果(表4)显示:主成分1特征值为3.822 8,贡献率为54.611%,其中树高、胸径、冠幅、枝下高和材积的特征值的绝对值相对较高,分别为0.390 8、0.474 7、0.428 0、0.427 1和0.482 2。主成分2的特征值为1.791 5,贡献率为25.593%,其中树冠圆满度和树干圆满度的特征值绝对值相对较高,分别为0.659 1和0.555 8。因此,主成分1可代表生长性状,主成分2可代表形质性状,能够综合反映香椿种源生长和形质性状的大部分信息。以特征值大于1为标准提取的前2个主成分,累计贡献率达80.204%,说明这2个主成分可以包含所有性状的80.204%信息。由表4中各生长和形质性状的载荷量可以得到主成分的线性方程,用 x1x2x3x4x5x6x7 分别表示树高、胸径、冠幅、枝下高、材积、树干圆满度和树冠圆满度,用 y1y2分别表示主成分1和主成分2,得到如下线性方程:y1=0.390 8x1+0.474 7x2+0.428 0x3+0.427 1x4+0.482 2x5−0.078 3 x6+0.133 0x7y2=0.433 5x1−0.059 2x2−0.219 3x3+0.073 7 x4+0.108 3x5+0.555 8x6−0.659 1x7

      主成分树高胸径冠幅枝下高材积树干圆满度树冠圆满度特征值贡献率/%累积贡献率/%
      主成分10.390 80.474 70.428 00.427 10.482 2−0.078 30.133 03.822 854.61154.611
      主成分20.433 5−0.059 2−0.219 30.073 70.108 30.555 8−0.659 11.791 525.59380.204
      主成分30.221 50.013 6−0.343 00.095 80.008 9−0.809 0−0.411 50.635 99.08489.287
      主成分40.181 8−0.432 6−0.138 80.755 5−0.335 20.047 70.274 20.477 36.82096.106
      主成分50.349 3−0.372 80.722 1−0.232 0−0.325 1−0.153 4−0.185 70.247 03.52999.635
      主成分60.154 7−0.630 2−0.105 5−0.194 50.686 5−0.058 50.235 10.021 00.29999.934
      主成分70.656 80.218 5−0.315 0−0.374 9−0.257 40.034 80.462 20.004 60.066100.000

      Table 4.  Principal component analysis of different traits for provenances of T. sinensis

      以主成分1和主成分2绘制了香椿所有种源主成分样点图以及性状与主成分的关系图(图2)。结合表2图2可以看出:树高、胸径、材积、枝下高和冠幅5个性状距离x轴更接近,说明主成分1的差异主要是这5个性状的贡献,其中材积的贡献最大,其次为胸径。树干圆满度和树冠圆满度2个性状与y轴接近,说明主成分2的差异主要是这2个性状的贡献。从各种源某个主成分代表性的特征值(cos2)和分布来看,元谋、恩施和太和等种源具有速生的特点,新乡、邯郸和四川等种源生长速度较慢。

      Figure 2.  Principal component analysis of different traits for provenances of T. sinensis

    • 采用树高、胸径和材积3个生长性状的种源均值,对所有种源进行聚类(图3),可以将24个种源划分为2个组,即南部种源区和北部种源区。南部种源区可划分为3个亚组:亚组SouthⅠ包括了华南和西南区域的凭祥、晴隆、元谋和乳源等,亚组SouthⅡ包括了华中和长江以南华东区域的郴州和湘西、九江和恩施等,亚组SouthⅢ包括了伏牛山以南和皖北淮河流域的阜阳和南阳等。北部种源区也可划分为3个亚组:亚组NorthⅠ包括西北区域的天水等,亚组NorthⅡ包括了秦岭山区的安康等,亚组NorthⅢ包括伏牛山区、太行山区和山东丘陵区域的三门峡和新乡、邯郸和潍坊等。

      Figure 3.  Cluster analysis heatmap for provenances of T. sinensis

    • 把主成分1和主成分2的贡献率作为权重(y1, y2),计算各种源综合评价得分。由主成分分析结果可知:前2个主成分的权重分别为54.611%和25.593%,所以,综合评价得分(W)计算公式为:W=54.611%×y1+25.593%×y2。利用该计算公式,获得香椿各种源的综合评价得分(表5)。

      种源综合评价得分排名种源综合评价得分排名种源综合评价得分排名
      阜阳7.4961九江 6.7329南京 6.16617
      恩施7.2532武汉 6.72110聊城 6.16618
      凭祥6.9773运城 6.56611安康 6.08719
      南阳6.9134晴隆 6.42312天水 6.00820
      元谋6.8835杭州 6.37213三门峡5.72921
      湘西6.8446乳源 6.35514潍坊 5.41822
      新宁6.8277峨眉山6.35115邯郸 5.35023
      郴州6.7528伏牛山6.34816新乡 4.37624

      Table 5.  Comprehensive evaluation scores and ranking of provenances

      基于主成分分析和各种源综合评价得分结果,筛选出元谋、恩施和阜阳等3个优良种源,其树高、胸径、材积、冠幅、枝下高、树干圆满度和树冠圆满度获得的平均遗传增益分别为5.21%、16.50%、32.88%、3.56%、3.13%、6.65%和4.74%(表6)。

      种源树高/m胸径/cm材积/m3冠幅/m枝下高/m树干圆满度树冠圆满度
      元谋8.410.610.039 83.253.920.870.71
      恩施9.49.950.042 23.514.430.880.72
      阜阳10.99.430.042 13.104.190.850.65
      总体均值8.868.070.02602.973.890.800.62
      入选种源平均值9.5710.000.041 03.294.180.870.69
      遗传增益/%5.2116.5032.88 3.56 3.13 6.65 4.74

      Table 6.  Means and genetic gain of various traits of the top 3 provenances of T. sinensis

    • 本研究利用已达半个轮伐期的香椿地理种源试验发现:10年生香椿种源间树高、胸径、树干圆满度和材积等性状差异显著。树高、胸径、冠幅、枝下高和材积等性状均与纬度呈负相关,其中胸径与纬度显著负相关,南方种源的生产力明显高于北方种源。这个结果与香椿早期研究结果一致[10 , 15],证实了香椿地理种源生长性状基本上呈现纬度变异形式。生长、 形质性状与种源产地生态因子的相关分析表明:树高、胸径、冠幅、枝下高和树干圆满度等纬度变异主要与产地气温和降水有关,而枝下高还与土壤容重和黏土质量分数有关。这与马尾松Pinus massoniana[19]、文冠果Xanthoceras sorbifolia [20]、杉木 [21]的研究结果相似,香椿种源生长性状与产地水热条件相关。在对杉木[21]研究发现:影响种源生长的主要因素是冬季平均气温和秋冬季降水,而本研究发现香椿种源产地年平均气温、最冷月平均日最低气温和最干季日平均气温等生态因子是影响胸径生长的主要因素。SILVESTRO等[22]对云杉Picea asperata研究也发现:产地温度升高1℃,其生长速度增加0.1 cm·d−1。但这有异于MADSEN等[23]的相关研究结果:栎Quercus树的生存主要取决于产地的气温,而生长更多地依赖于产地的降水。从香椿种源生长、形质性状与产地土壤因子相关不显著来看,其生长和形质性状主要与造林地土壤相关理化因子有关。

      本研究发现:香椿种源胸径与冠幅、枝下高和材积之间呈极显著的正遗传相关,这与香椿已有的研究结果一致[10]。对香椿胸径进行选择,同时也可对冠幅、枝下高和材积等性状进行改良,但对形质性状没有明显的改良效果。所以今后对香椿进行材积改良时,胸径可以作为重要的目标性状。

      林木种源区划分能指导种子的合理调拨,提高林木的生产力[2425]。本研究根据10年生香椿的生长性状将香椿种源划分为南部和北部两大种源区,基本上以秦岭—淮河为南、北部种源区分界线。南部种源区包括了乳源、元谋、凭祥和晴隆等华南和西南区域;郴州、湘西、新宁、武汉、恩施和杭州等华中和长江以南华东区域,南阳和阜阳等伏牛山以南和皖北淮河流域。北部种源区包括了天水等西北区域;安康、峨眉山等秦巴山区;新乡、三门峡、邯郸、潍坊和运城等伏牛山区、太行山区和山东丘陵区域。本研究根据种源性状主成分分析和综合评价得分,选出了3个优良种源,均来自南部种源区。孙鸿有等[10]确定的优良种源也是来自南部种源区,由于采样地点不同,种源来源地略有差异,但本研究结果与刘军等[15]的苗期种源选择结果差异较大。

Reference (25)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return