-
镉是一种有毒的金属元素。据《全国土壤污染状况调查公报》,镉的点位超标率达7.0%,是点位超标率最高的污染物之一。土壤中的镉可通过食物链进入人体,进而对人的身体健康造成严重的损害[1],因此亟待对镉污染土壤进行修复。
植物修复是指利用植物吸收土壤中的重金属,最终清除土壤中重金属的一种环境修复技术[2],具有经济、绿色、效果好等特点,适合大面积污染土地的修复。目前,多采用草本植物进行修复,例如鬼针草Bidens pilosa在镉质量分数为2.66 mg·kg−1的土壤生长60 d后,富集系数为4.16,对土壤中镉的去除率为4.3%~6.2%[3]。伴矿景天Sedum plumbizincicola在镉质量分数为0.55和1.85 mg·kg−1的土壤上生长至3 m时,修复效率分别为37.15%和21.82%[4]。但是草本植物存在生物量小、收割成本高、生物质后处理困难等不足,至今没有大规模的推广应用。研究表明:很多乔木可以积累重金属。张永超等[5]发现:白榆Ulmus pumila在镉质量分数为10.00 mg·kg−1的土壤中生长至7 m时,根、茎和叶的镉质量分数分别达11.2、2.42和4.74 mg·kg−1[5]。尽管乔木中重金属质量分数可能低于超积累植物,但是由于生物量大,其积累总量可能远高于超积累植物,而且重金属一旦进入乔木中,便可永久性的积累,不影响其工业用途。与超积累草本植物相比,木本植物尤其是乔木具有生物量大,不进入食物链,可以持续修复等优点,在重金属污染土壤修复中具有较大潜力[6]。然而,关于乔木吸收镉的研究大多针对器官水平,对其结构部位的研究鲜有报道。
本研究选择了在污染土壤栽植的泡桐Paulownia fortunei、楸树Catalpa bungei、悬铃木Platanus acerifolia、黑杨Populus nigra 和垂柳Salix babylonica等5种树种,分析了镉在其不同部位的分布特征,比较了不同部位的镉富集系数和镉的积累总量,旨在为合理植树造林奠定理论基础,同时也为中国镉污染土壤进行植物修复的树种选择提供依据。
-
研究区位于河南省某污染的工业用地。该地属暖温带季风气候,四季分明,气候温和,光、热、水资源丰富,年平均气温为15.5 ℃,年平均降水量为567.9 mm。拥有丰富的动植物资源及矿产资源。该地区分布有泡桐、楸树、悬铃木、黑杨和垂柳人工林纯林(于2013年前后栽植),树龄为10 a,株行距为4 m×5 m。本次采样时间为2023年7月21日。采样地泡桐、楸树、悬铃木、黑杨和垂柳土壤的镉质量分数分别为1.91、2.90、4.04、10.27和36.37 mg·kg−1。
-
随机选择污染土壤上栽植的泡桐、楸树、悬铃木、黑杨和垂柳各5株,用围尺测得胸径。采集的植物样品分为叶片、叶柄、枝皮、枝材、茎皮、茎材、根皮和根材8个部分,分别装入塑封袋。茎皮和茎材的采样高度与胸径高度一致,茎皮取样大小为4 cm×4 cm。枝皮、枝材和叶的采样高度为距地面3~5 m处的树冠。从树木东、南、西、北各个方向采集0~20 cm土壤样品,混合后装入样品袋。
-
用自来水冲洗掉附着于植物样品表面的泥土及其他污染物,然后用去离子水冲洗3遍,晾干。将样品放入烘箱105 ℃杀青30 min后,75 ℃ 下烘干至恒量。植物样品剪碎后,先用样品粉碎机初步粉碎,再用球磨机进一步磨碎,过0.149 mm筛,用来测定植物样品中镉质量分数(由于垂柳叶柄较小,难以获取,因此不作测定);土壤样品自然风干,拣出砖头、碎石、杂草等,用木棒碾碎过0.149 mm 筛,用于土壤镉质量分数测定。
土壤样品采用盐酸-硝酸-氢氟酸-高氯酸全消解法进行消解,使土壤样品中的镉全部进入试液,用石墨炉(WFX-200)测定土壤中的镉质量分数。植物样品用硝酸-过氧化氢(m硝酸∶m过氧化氢 = 10∶1)消解,经消解后植物样品用电感耦合等离子体发射光谱仪(Avio 200) 测定镉质量分数。
-
植物对镉的富集系数(F)计算公式如下:F = Ctarget/Csoil。其中:Ctarget为目标部位镉质量分数;Csoil为土壤镉质量分数。
-
植物对镉的分配计算公式如下:R = mpart/mtoatal。其中:R为相对含量;mpart为植物某部位的镉积累量; mtotal为植物中镉的积累总量。
-
采用异速生长方程估算各树种不同部位及整体生物量[7−10]。叶部、枝部、茎部和根部由于分成2个部分检测其镉质量分数,因此对两者取平均算得叶部、枝部、茎部和根部的平均镉质量分数,再估算出各树种不同部位及整体镉积累量。
-
采用SPSS 23进行数据处理及单因素方差分析,采用Origin 2022作图。
-
比较不同树种叶部的镉质量分数发现(图1A):垂柳叶片的镉质量分数最高,达10.52 mg·kg−1;其次是黑杨,达7.59 mg·kg−1;泡桐叶片的镉质量分数最低,为0.66 mg·kg−1。黑杨叶柄的镉最高,达7.45 mg·kg−1;其次是楸树,达2.04 mg·kg−1;泡桐叶柄的镉质量分数最低,为0.23 mg·kg−1。对比叶片和叶柄的镉质量分数发现:泡桐叶片镉质量分数显著大于叶柄(P<0.05),其他树木叶片和叶柄之间无显著差异。比较不同树木叶部的富集系数发现(图1B):黑杨叶片富集系数最高,达1.00;其次是楸树,达0.71;垂柳叶片的富集系数最小,为0.29。黑杨叶柄的富集系数最高,达0.98;其次是楸树,达0.50;泡桐叶柄的富集系数最小,为0.13。对比叶片和叶柄的富集系数发现:泡桐、楸树和黑杨叶片的富集系数均大于叶柄,悬铃木叶柄的富集系数大于叶片。泡桐叶片富集系数显著高于叶柄(P<0.05),悬铃木、黑杨的叶片与叶柄富集系数差异不显著。
-
比较5种树种枝部的镉质量分数发现(图2A):垂柳枝皮的镉质量分数最高,达16.08 mg·kg−1;其次是黑杨,达10.51 mg·kg−1;泡桐枝皮的镉质量分数最低,为1.24 mg·kg−1。垂柳枝材的镉质量分数最高,达2.55 mg·kg−1;泡桐枝材的镉质量分数最低,为0.19 mg·kg−1。对比枝皮和枝材的镉质量分数发现:所有树种枝皮的镉质量分数显著高于枝材的镉质量分数(P<0.05)。比较不同树种枝部的富集系数发现(图2B):黑杨枝皮的富集系数最高,达1.38;其次是楸树,达1.24;垂柳枝皮的富集系数最低,为0.44。黑杨枝材的富集系数最高,达0.32,其次是楸树、泡桐和悬铃木,分别为0.11、0.11和0.09;垂柳枝材的富集系数最低,为0.07。对比枝皮和枝材的富集系数发现:所有树种枝皮的富集系数显著高于枝材(P<0.05)。
-
比较5种树种茎部的镉质量分数发现(图3A):垂柳茎皮的镉质量分数最高,达35.30 mg·kg−1;其次是黑杨,达5.73 mg·kg−1;泡桐茎皮的镉质量分数最低,为0.12 mg·kg−1。垂柳茎材的镉质量分数最高,达2.08 mg·kg−1;其次是黑杨,达1.43 mg·kg−1;泡桐茎材的镉质量分数最低,为0.12 mg·kg−1。对比茎皮和茎材的镉质量分数发现:楸树、黑杨和垂柳茎皮的镉质量分数显著高于茎材的镉质量分数(P<0.05),泡桐和悬铃木茎皮与茎材的镉质量分数差异不显著。比较不同树种茎部的富集系数发现(图3B):垂柳茎皮的富集系数最高,达0.97;其次是楸树,达0.82;悬铃木茎皮的富集系数最低,为0.12。黑杨茎材的富集系数最高,达0.19,其次是楸树、泡桐和悬铃木,分别达0.10、0.07和0.06;垂柳茎材的富集系数最低,为0.05。对比茎皮与茎材的富集系数发现:除悬铃木外,所有树种茎皮的富集系数显著高于茎材(P<0.05)。
-
比较5种树种根部的镉质量分数发现(图4A):垂柳根皮的镉质量分数最高,达23.21 mg·kg−1;其次是黑杨,达12.01 mg·kg−1;泡桐根皮的镉质量分数最低,为0.60 mg·kg−1。垂柳根材的镉质量分数最高,达9.76 mg·kg−1;其次是黑杨,达4.50 mg·kg−1,悬铃木根材的镉质量分数最低,为0.39 mg·kg−1。对比根皮和根材的镉质量分数发现:楸树、悬铃木、黑杨和垂柳根皮的镉质量分数显著高于根材的镉质量分数(P<0.05),泡桐根皮与根材的镉质量分数差异不显著。比较不同树种根部的富集系数发现(图4B):黑杨根皮的富集系数最高,达1.58;其次是垂柳,达0.64;泡桐根皮的富集系数最低,为0.34。黑杨根材的富集系数最高,达0.59,其次是垂柳和泡桐,分别达0.27、0.25;悬铃木根材的富集系数最低,为0.10。对比根皮与根材的富集系数发现:除泡桐外,所有树种根皮的富集系数均显著高于根材的富集系数(P<0.05)。
-
利用异速生长方程计算出每株树的叶部、枝部、茎部、根部以及整株的生物量(表1),并进一步计算得到不同部位的积累量及积累总量(表2),黑杨和垂柳不同部位镉积累量从大到小依次表现为茎部、根部、枝部、叶部;楸树不同部位镉积累量从大到小依次表现为茎部、枝部、根部、叶部;泡桐和悬铃木不同部位镉积累量从大到小依次表现为枝部、茎部、根部、叶部。
树种 叶部生物量/kg 枝部生物量/kg 茎部生物量/kg 根部生物量/kg 整株生物量/kg 泡桐 6.22±0.77 a 28.59±4.73 a 31.54±6.16 bc 17.11±2.88 b 71.72±13.08 b 楸树 2.59±0.63 b 6.86±1.89 c 22.38±6.10 c 10.42±2.74 b 42.25±11.13 b 悬铃木 6.93±2.10 a 15.30±5.51 b 79.63±29.16 a 27.39±7.74 a 181.28±68.93 a 黑杨 2.95±0.66 b 11.32±3.91 bc 48.76±16.96 b 14.83±2.92 b 79.36±24.69 b 垂柳 1.79±0.38 b 7.03±2.14 c 31.64±10.55 bc 12.78±3.64 b 65.15±20.08 b 说明:不同字母表示不同树种间相同部位及整株的生物量差异显著 (P<0.05)。 Table 1. Biomass of different parts of the tree and the whole plant
树种 叶部 枝部 茎部 根部 积累总量/mg 平均镉质量分
数/(mg·kg−1)积累
量/mg平均镉质量分
数/(mg·kg−1)积累
量/mg平均镉质量分
数/(mg·kg−1)积累
量/mg平均镉质量分
数/(mg·kg−1)积累
量/mg泡桐 0.45 2.80±0.34 c 0.72 20.59±3.40 b 0.34 10.72±2.09 c 0.52 8.89±1.50 c 43.01±7.34 c 楸树 2.05 5.31±1.29 c 2.52 17.29±4.76 b 1.33 29.77±8.12 c 1.08 11.25±2.96 c 63.62±16.85 c 悬铃木 1.71 11.86±3.60 b 2.25 34.42±12.40 b 0.37 29.46±10.79 c 1.00 27.39±7.74 c 103.13±34.52 c 黑杨 7.52 22.19±4.99 a 6.48 73.36±25.37 a 3.58 174.57±60.71 b 8.25 122.38±24.09 b 392.51±115.15 b 垂柳 10.52 18.82±4.05 a 9.32 65.48±19.94 a 18.69 591.29±197.21 a 16.48 210.68±59.93 a 886.28±281.11 a 说明:不同字母表示不同树种间相同部位镉积累量及积累总量差异显著(P<0.05)。 Table 2. Cd accumulation in different parts and whole trees
比较镉在5种树种不同部位中镉的相对含量发现(图5):泡桐不同部位镉的相对含量从大到小依次为枝部、茎部、根部、叶部;楸树不同部位镉的相对含量从大到小依次为茎部、枝部、根部、叶部;悬铃木不同部位镉的相对含量从大到小依次为茎部、根部、枝部、叶部;黑杨不同部位镉的相对含量从大到小依次为枝部、根部、茎部、叶部;垂柳不同部位镉的相对含量从大到小依次为茎部、根部、枝部、叶部。总体上看,楸树、悬铃木、垂柳均表现为茎部镉的相对含量最高,叶部镉的相对含量最低。
-
本研究表明:不同树种对重金属的富集系数不同,黑杨叶片和叶柄的富集系数均为最大;黑杨枝皮和枝材的富集系数均最大;垂柳茎皮的富集系数最大,黑杨茎材的富集系数最大;黑杨根皮和根材的富集系数均最大。由此可见, 5种供试树种对镉的吸收特征不同。在这些树种中,黑杨和垂柳均有较高的镉积累量,这与前人研究结果类似[11−12],且黑杨和垂柳具有易成活、生长快、生态价值高等优势,因此在镉污染土壤修复中具有较大的推广应用价值。
积累量在重金属积累的植物中相当可观。镉超积累植物龙葵 Solanum nigrum在镉质量分数为2.00 mg·kg−1的土壤中生长86 d后积累量达0.025 mg·株−1[13];镉超积累植物商陆 Phytolacca acinosa在镉质量分数为5.00 mg·kg−1的土壤中生长60 d后地上部(镉的主要储存部分)的积累量达7.58 mg·株−1[14];镉超积累植物东南景天 Sedum alfredii在镉质量分数为2.47 mg·kg−1的土壤中生长210 d后地上部的积累量达9.60 μg·株−1[15]。树木相比超积累植物拥有更长的生长周期、更大的生物量和更高的单株镉积累量,因此具有较大的镉污染修复潜力。在树木吸收镉的研究方面,前人也做过类似的研究。徐爱春[16]研究发现:旱柳 Salix matsudana在镉质量分数为20 mg·L−1的营养液中培养一段时间后,积累量达25.81 mg·株−1。周洁等[17]研究杂交柳(耳柳Salix aurita×银柳Salix argyracea)在镉质量分数为5.28 mg·kg−1的田间土壤中生长1 a后,镉的最大积累量达73.66 mg·株−1。乔木对镉污染土壤修复后再回收利用具有一定的经济效益,比如重金属的回收、植物能源及建材方面的利用[18]。此外,乔木具有多年生、持续修复、不进入食物链的优势,因此在镉污染土壤中植树是一种较为理想的修复技术。
本研究发现:所有树种的根、茎和枝的镉质量分数均表现为树皮部大于木材部,即从大到小依次为根皮、根材、茎皮、茎材、枝皮、枝材。可见,乔木具有优先把镉积累到皮部的特性,这种现象在其他研究中也有发现。例如,唐丽清等[19]研究发现:北京市台基厂大街行道树国槐 Sophora japonica的树皮中镉质量分数高于树干。RODRÍGUEZ等[20]研究表明:西班牙发电厂附近的地中海松Pinus halepensis树皮中镉质量分数高于树干。田胜尼等[21]研究指出:镉质量分数在腺柳 Salix chaenomeloides根皮部最高,达1 438.919 μg·kg−1,乔木中最低,为228.065 μg·kg−1。这可能是乔木的解毒机制导致的。镉主要通过土壤溶液进入根系,并从木质部转移到树皮。由于树皮代谢相对旺盛[22],且树皮中富含有助于与二价离子结合的萜类、软木脂、脂肪酸酶、氨基酸等物质,这些化学物质与镉离子能够结合,生成稳定的络合物,达到解毒目的。而树干中主要为纤维素、半纤维素和木质素,与镉离子能够结合的物质较少,所以只有少部分镉积累在树干中[23]。
-
对河南某处镉污染土壤上栽植的5种树种调查发现:所有树木根皮、茎皮和枝皮均显著大于其对应的根材、茎材和枝材的镉质量分数,这可能是乔木本身的解毒机制造成的。在这些树种中,黑杨和垂柳均有较高的镉积累量,其中黑杨多数部位(除茎皮外)的富集系数均大于其他树种,因此在镉污染土壤修复中具有较大的优势。此外,采用乔木进行镉污染土壤修复时,木材中镉质量分数可达到较高水平,因此在后期木材的加工使用过程中应注意其对人体的健康风险。
Cd accumulation characteristics of different greening tree species
doi: 10.11833/j.issn.2095-0756.20230630
- Received Date: 2023-12-30
- Accepted Date: 2024-03-31
- Rev Recd Date: 2024-03-26
- Available Online: 2024-07-12
- Publish Date: 2024-07-12
-
Key words:
- trees /
- cadmium /
- total amount of accumulation /
- concentration coefficient /
- soil remediation
Abstract:
Citation: | LI Yeqing, ZHENG Ye, WEI Yibo, et al. Cd accumulation characteristics of different greening tree species[J]. Journal of Zhejiang A&F University, 2024, 41(4): 752-759. DOI: 10.11833/j.issn.2095-0756.20230630 |