Volume 41 Issue 5
Sep.  2024
Turn off MathJax
Article Contents

DONG Linghui, MAO Fengcheng, ZHOU Yufeng, GU Lei, ZHOU Tianhuan, LI Zhengcai, ZHOU Guomo. Carbon footprint assessment and emission reduction path analysis offive major bamboo shoot export products[J]. Journal of Zhejiang A&F University, 2024, 41(5): 887-897. doi: 10.11833/j.issn.2095-0756.20240277
Citation: DONG Linghui, MAO Fengcheng, ZHOU Yufeng, GU Lei, ZHOU Tianhuan, LI Zhengcai, ZHOU Guomo. Carbon footprint assessment and emission reduction path analysis offive major bamboo shoot export products[J]. Journal of Zhejiang A&F University, 2024, 41(5): 887-897. doi: 10.11833/j.issn.2095-0756.20240277

Carbon footprint assessment and emission reduction path analysis offive major bamboo shoot export products

doi: 10.11833/j.issn.2095-0756.20240277
  • Received Date: 2024-04-03
  • Accepted Date: 2024-08-02
  • Rev Recd Date: 2024-07-27
  • Available Online: 2024-09-25
  • Publish Date: 2024-09-25
  •   Objective  This study aims to assess the carbon footprint of bamboo shoot products and explore their emission reduction potential, so as to promote low-carbon and high-quality development of the industry.   Method  Based on the field survey data from 2022 to 2023 in Lin’an District of Hangzhou City and Anji County of Huzhou City, Zhejiang Province, this study assessed the carbon footprint of five different types of bamboo shoot export products (seasoned bamboo shoots, hand-peeled bamboo shoots, dried bamboo shoots, boiled bamboo shoots, and fresh bamboo shoots) during the planting, production and distribution stages, identified carbon emission hotspots, designed emission reduction pathways, and calculated emission reduction based on scenario assumptions. The implied carbon emission and carbon emission intensity of bamboo shoot export products in China were estimated according to the export situation of bamboo shoot products in China from 2015 to 2023.  Result  (1) The carbon footprint of the five bamboo shoot products from large to small was as follows: seasoned bamboo shoot (1.387 4 kg·kg−1), hand-peeled bamboo shoot (1.010 7 kg·kg−1), dried bamboo shoot (0.927 4 kg·kg−1), boiled bamboo shoot (0.324 9 kg·kg−1), and fresh bamboo shoot (0.174 8 kg·kg−1). The carbon footprint composition analysis showed that the carbon emission hotspots of the five bamboo shoot products were mainly agricultural inputs, fresh shoot transportation, fresh shoot processing and additive inputs. (2) From 2015 to 2023, the average annual implied carbon emission of bamboo shoot exports in China was 1.848 2×105 t, with an average carbon emission intensity of 0.966 9 tons per 10 000 yuan. (3) The emission reduction scenario design based on carbon emission hotspots showed that the average decrease in carbon footprint of the five bamboo shoot products in 2023 was 20.15%.   Conclusion  There are significant differences in the carbon footprint of different types of bamboo shoot products. The implied carbon emissions of bamboo shoot products exported from 2015 to 2023 show a fluctuating downward trend. The comprehensive implied carbon emission intensity shows a fluctuating upward trend. The carbon emission hotspots of bamboo shoot products vary, and there is potential for further reduction in carbon footprint through emission reduction measures. [Ch, 2 fig. 7 tab. 36 ref.]
  • [1] TIAN Xiaoqingfan, XIAO Xiangqian, QIU Yufeng, BU Aiai, LEI Gang, CHEN Youchao, CAI Chunju, TANG Ronggui, CAI Yanjiang.  Responses of CO2 emissions and labile organic carbon to earthworm activities in Phyllostachys edulis forest soil . Journal of Zhejiang A&F University, 2024, 41(3): 486-495. doi: 10.11833/j.issn.2095-0756.20230369
    [2] LI Wenhan, LIU Feiyang, ZHANG Meng, GU Lei, ZHOU Guomo.  Spatiotemporal evolution law and driving factors of carbon emissions in planting industry in Zhejiang Province . Journal of Zhejiang A&F University, 2024, 41(5): 898-908. doi: 10.11833/j.issn.2095-0756.20240156
    [3] HUANG Wei, ZHANG Hongying, XIAO Xiangze, LIN Lang, WANG Cheng.  Challenges and countermeasures in implementing carbon labeling for agricultural products . Journal of Zhejiang A&F University, 2024, 41(5): 909-918. doi: 10.11833/j.issn.2095-0756.20240373
    [4] KONG Delei, JIANG Peikun.  Approaches and policy recommendations for reducing emissions and increasing carbon sinks in crop industry under the background of carbon peak and carbon neutrality . Journal of Zhejiang A&F University, 2023, 40(6): 1357-1365. doi: 10.11833/j.issn.2095-0756.20220742
    [5] QU Tianhua, LI Yongfu, ZHANG Shaobo, LI Linlin, LI Yongchun, LIU Juan.  Effects of biochar application on soil nitrogen transformation and N2O emissions: a review . Journal of Zhejiang A&F University, 2021, 38(5): 926-936. doi: 10.11833/j.issn.2095-0756.20200549
    [6] GAO Yu, WANG Baihui, ZOU Yu, WANG Shuli, XIANG Lang, FU Yanqiu, HU Dongnan, GUO Xiaomin, ZHANG Ling.  Effects of water-retaining agent on soil nitrous oxide emission in Camellia oleifera forest under nitrogen and phosphorus addition . Journal of Zhejiang A&F University, 2021, 38(5): 937-944. doi: 10.11833/j.issn.2095-0756.20210411
    [7] ZHANG Qingxiao, CHEN Jun, ZHU Xiangtao, WANG Nan, BAI Shangbin.  On the short-term response of soil greenhouse gas emissions in Cunninghamia lanceolata forest to the expansion and eradication of Phyllostachys edulis . Journal of Zhejiang A&F University, 2021, 38(4): 703-711. doi: 10.11833/j.issn.2095-0756.20200542
    [8] ZHU Meiyu, LONG Fei, QI Huibo, ZHANG Zhe.  Spatial measurement and classification of forest carbon sink demand based on industry emission reduction . Journal of Zhejiang A&F University, 2021, 38(2): 377-386. doi: 10.11833/j.issn.2095-0756.20200386
    [9] XU Qihu, LIN Liping, XUE Chunquan, LUO Yong, LEI Yuancai.  Component specific carbon content and storage of Cinnamomum camphora in Guangdong Province . Journal of Zhejiang A&F University, 2019, 36(1): 70-79. doi: 10.11833/j.issn.2095-0756.2019.01.010
    [10] PENG Weiliang, GU Lei, HU Chenpei, ZHOU Pengfei, HONG Minghui, LI Cuiqin.  A research on consumers’ willingness to pay for low-carbon floor to the scenario simulation of carbon labeling floor . Journal of Zhejiang A&F University, 2015, 32(5): 655-660. doi: 10.11833/j.issn.2095-0756.2015.05.001
    [11] WANG Zhiqiang, ZHOU Jun, SHEN Yueqin.  Evolutionary game analysis of enterprises'emission reduction based on voluntary agreement . Journal of Zhejiang A&F University, 2014, 31(5): 785-790. doi: 10.11833/j.issn.2095-0756.2014.05.020
    [12] BAI Yanfeng, ZHANG Shougong, JIANG Chunqian.  International comparison of carbon flows of harvested wood products . Journal of Zhejiang A&F University, 2014, 31(1): 72-77. doi: 10.11833/j.issn.2095-0756.2014.01.011
    [13] ZHOU Pengfei, GU Lei, PENG Weiliang, ZHOU Yufeng, LI Cuiqin, LIU Hongzheng.  A carbon footprint assessment and composition analysis of flattened bamboo chopping board . Journal of Zhejiang A&F University, 2014, 31(6): 860-867. doi: 10.11833/j.issn.2095-0756.2014.06.006
    [14] CHEN Yonggen, PENG Yonghong, SONG Zheyue, SHAN Shengdao.  Biogas slurry application with greenhouse gas emissions in agricultural soils . Journal of Zhejiang A&F University, 2013, 30(1): 32-37. doi: 10.11833/j.issn.2095-0756.2013.01.005
    [15] BAI Yanfeng, JIANG Chunqian, ZHANG Shougong, LEI Jingpin.  Carbon accounting approaches for wood products and potential applications . Journal of Zhejiang A&F University, 2013, 30(3): 423-427. doi: 10.11833/j.issn.2095-0756.2013.03.020
    [16] PENG Yong-hong, CHEN Yong-gen, SONG Zhao-liang, SHAN Sheng-dao, SONG Zhe-yue.  Nitrous oxide emission from an aquic soil after pig slurry application . Journal of Zhejiang A&F University, 2012, 29(6): 954-959. doi: 10.11833/j.issn.2095-0756.2012.06.022
    [17] ZHU Zhen, YAN Yan, QIU Bao-yin, HUANG Min.  An empirical analysis of the impacts of industry economic development on carbon emission . Journal of Zhejiang A&F University, 2012, 29(4): 606-610. doi: 10.11833/j.issn.2095-0756.2012.04.019
    [18] WENG Zhi-xiong, SHEN Yue-qin, Lü Qiu-ju, ZHAO Sheng-jun, MA Yin-fang.  Analysis on the public carbon footprint of Zhejiang Province . Journal of Zhejiang A&F University, 2012, 29(2): 265-271. doi: 10.11833/j.issn.2095-0756.2012.02.017
    [19] BAI Yan-feng, JIANG Chun-qian, LU De, ZHU Zhen.  Carbon stock change of harvested wood products in China . Journal of Zhejiang A&F University, 2007, 24(5): 587-592.
    [20] Shen Yueqin, Cheng Yunhang, Xu Xiuying, Cai Xiping, Zhang Binsen.  Analysis prediction of market supply and demand for bamboo shoot products . Journal of Zhejiang A&F University, 1998, 15(4): 333-339.
  • [1]
    DING Yihui, REN Guoyu, SHI Guangyu, et al. National assessment report on climate change (Ⅰ): climate change in China and its future trends [J]. Advances in Climate Change Research, 2006, 2(1): 3 − 8, 50.
    [2]
    WANG Shanshan, WANG Weifeng, YANG Hongqiang. Comparison of product carbon footprint protocols: case study on medium-density fiberboard in China [J/OL]. International Journal of Environmental Research and Public Health, 2018, 15 (10): 2060[2024-03-03]. doi: 10.3390/ijerph15102060.
    [3]
    YANG Kailiang. Development status and strategies of Chinese bamboo industry [J]. Nonwood Forest Research, 2012, 30(2): 140 − 143.
    [4]
    DOU Yin, YU Xuejun, FUMIYO I. The current situation and countermeasures of bamboo resource development and utilization of China [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2011, 32(5): 65 − 70.
    [5]
    PANDEY D, AGRAWAL M, PANDEY J S. Carbon footprint: current methods of estimation [J]. Environmental Monitoring and Assessment, 2011, 178: 135 − 160.
    [6]
    DONG Xuewang. A critical review on carbon footprint [J]. Journal of Zhejiang Gongshang University, 2013(2): 67 − 75.
    [7]
    CHEN Xiaohui, XU Xiuzhu, LU Zhenya, et al. Carbon footprint of a typical pomelo production region in China based on farm survey data [J/OL]. Journal of Cleaner Production, 2020, 277 : 124041[2024-03-03]. doi: 10.1016/j.jclepro.2020.124041.
    [8]
    KASHYAP D, AGARWAL T. Carbon footprint and water footprint of rice and wheat production in Punjab, India [J/OL]. Agricultural Systems, 2021, 186 : 102959[2024-03-03]. doi: 10.1016/j.agsy.2020.102959.
    [9]
    SHA Jianying, QI Peng. Evaluation of carbon footprint of Tianshui Huaniu apple special agricultural products and analysis of carbon labeling system [J]. China Fruits, 2021(10): 12 − 17.
    [10]
    ZHOU Pengfei, GU Lei, PENG Weiliang, et al. A carbon footprint assessment and composition analysis of flattened bamboo chopping board [J]. Journal of Zhejiang A&F University, 2014, 31(6): 860 − 867.
    [11]
    CHEN Sha, YANG Xiaoguang, LI Yipei, et al. Life-cycle GHG emissions of paper in China [J]. Journal of Beijing University of Technology, 2014, 40(6): 944 − 949.
    [12]
    LUO Wenbin, DENG Mingjun, XIANG Guocheng. Study on the space-time evolution and reduction potential of carbon emission in Chinese cotton planting fertilization [J] Economic Geography, 2015, 35 (9): 149 − 156.
    [13]
    WANG Shanshan, YANG Hongqiang. Study on carbon emission reduction path of China’s wood-based panel industry based on international carbon footprint standards [J]. China Population, Resources and Environment, 2019, 29(4): 27 − 37.
    [14]
    LI Meiqun, AI Wensheng, YANG Ming, et al. Research on processing technology of hand peeling bamboo shoots of Phyllostachys precox [J]. Food Research and Development, 2015, 36(4): 84 − 88.
    [15]
    YAO He, TAN Xinghe. Research progress of bamboo shoots processing methods [J]. China Brewing, 2017, 36(11): 24 − 27.
    [16]
    HUANG Weisu, LU Baiyi. Advances in deep-processing technology of bamboo shoots [J]. Scientia Silvae Sinicae, 2008, 44(8): 118 − 123.
    [17]
    JIANG Peikun, XU Qiufang, YANG Fang. Relationship between water soluble organic carbon and heavy metal elements in the soil under Phyllostachy praecox stands [J]. Journal of Zhejiang Forestry College, 2003, 20 (1): 10 − 13.
    [18]
    SHE Yuanguo, JIANG Xiongbo, XIAO Chuangwei, et al. Mulching cultivation techniques in Phyllostachys praecox [J]. Nonwood Forest Research, 2013, 31(4): 198 − 202.
    [19]
    LI Yanmei, FU Jiafeng. Structural decomposition analysis on carbon emissions growth embodied in exports in China [J]. China Population, Resources and Environment, 2010, 20(8): 53 − 57.
    [20]
    HU Huayu, SHE Qunzhi. Does digital transformation of manufacturing reduce the embodied carbon intensity on exports [J]. Journal of International Trade, 2022(7): 36 − 52.
    [21]
    HUANG Lingyun, XIE Huiqiang, LIU Dongdong. Study on impacts of technological progress paths on embodied carbon emission intensity of Chinese manufacturing exports [J]. China Population, Resources and Environment, 2017, 27(10): 94 − 102
    [22]
    XU Xiaoming, LAN Ying. Spatial and temporal patterns of carbon footprints of grain crops in China [J]. Journal of Cleaner Production, 2017, 146: 218 − 227.
    [23]
    WANG Yuqiao, PU Chao, ZHAO Xin, et al. Historical dynamics and future trends of carbon footprint of wheat and maize in China [J]. Resources Science, 2018, 40 (9): 1800 − 1811.
    [24]
    CHEN Shun, LU Fei, WANG Xiaoke. Estimation of greenhouse gas emission coefficient of nitrogen, phosphorus and potassium fertilizer manufacturing in China [J]. Acta Ecologica Sinica, 2015, 35(19): 6371 − 6383.
    [25]
    DAI Linxiu, XU Qiang, PENG Xiang, et al. Carbon footprint evaluation and emission reduction strategy analysis of rice-fish co-cropping model [J]. Resources and Environment in the Yangtze Basin, 2023, 32(9): 1971 − 1980.
    [26]
    LÜ Chen, ZHANG Zhe, CHEN Xumei, et al. Road traffic CO2 emission factors by province in China [J]. China Environmental Science, 2021, 41(7): 3122 − 3130.
    [27]
    LIANG Junbo, CHEN Rui. Research and application of port carbon emission accounting system [J] Port & Waterway Engineering, 2024 (7): 51 − 55.
    [28]
    IPCC. Climate Change 2013: The Physical Science Basis: Working Group Ⅰ Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [R]. New York: Cambridge University Press, 2014.
    [29]
    GENG Aixin, PAN Wenqi, YANG Hongqiang. Assessment of emission reduction benefits of replacing coal with forest biomass energy in China [J]. Resources Science, 2020, 42(3): 536 − 547.
    [30]
    FU Yabo, LIU Xinran, XU Wencai, et al. Research on the carbon emissions of glass brewage packaging vessel [J]. Advanced Materials Research, 2012, 380: 191 − 194.
    [31]
    POOVARODOM N, PONNAK C, MANATPHROM N. Comparative carbon footprint of packaging systems for tuna products [J]. Packaging Technology and Science, 2012, 25(5): 249 − 257.
    [32]
    ZHOU Yang, GAN Lujun, HAN Fangfang. Carbon footprint calculation of express delivery based on life cycle assessment [J]. Logistics Technology, 2021, 40(6): 104 − 109, 142.
    [33]
    PATTHANAISSARANUKOOL W, POLPRASERT C. Reducing carbon emissions from soybean cultivation to oil production in Thailand [J]. Journal of Cleaner Production, 2016, 131: 170 − 178.
    [34]
    SOODE E, LAMPERT P, WEBER-BLASCHKE G, et al. Carbon footprints of the horticultural products strawberries, asparagus, roses and orchids in Germany [J]. Journal of Cleaner Production, 2015, 87: 168 − 179.
    [35]
    YAN Zhihui, ZHEN Huaiguo, WANG Ailing, et al. Analysis on the effect of the reduction of pesticide and fertilizer in Chinese agriculture during “the 13th Five-Year Plan” Period [J]. Journal of Agricultural Science and Technology, 2022, 24(11): 159 − 170.
    [36]
    FU Ning, ZHAO Xiongyan, JIANG Zhihui, et al. Research progress of green package [J]. Plastics Science and Technology, 2016, 44(2): 88 − 92.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)  / Tables(7)

Article views(280) PDF downloads(40) Cited by()

Related
Proportional views

Carbon footprint assessment and emission reduction path analysis offive major bamboo shoot export products

doi: 10.11833/j.issn.2095-0756.20240277

Abstract:   Objective  This study aims to assess the carbon footprint of bamboo shoot products and explore their emission reduction potential, so as to promote low-carbon and high-quality development of the industry.   Method  Based on the field survey data from 2022 to 2023 in Lin’an District of Hangzhou City and Anji County of Huzhou City, Zhejiang Province, this study assessed the carbon footprint of five different types of bamboo shoot export products (seasoned bamboo shoots, hand-peeled bamboo shoots, dried bamboo shoots, boiled bamboo shoots, and fresh bamboo shoots) during the planting, production and distribution stages, identified carbon emission hotspots, designed emission reduction pathways, and calculated emission reduction based on scenario assumptions. The implied carbon emission and carbon emission intensity of bamboo shoot export products in China were estimated according to the export situation of bamboo shoot products in China from 2015 to 2023.  Result  (1) The carbon footprint of the five bamboo shoot products from large to small was as follows: seasoned bamboo shoot (1.387 4 kg·kg−1), hand-peeled bamboo shoot (1.010 7 kg·kg−1), dried bamboo shoot (0.927 4 kg·kg−1), boiled bamboo shoot (0.324 9 kg·kg−1), and fresh bamboo shoot (0.174 8 kg·kg−1). The carbon footprint composition analysis showed that the carbon emission hotspots of the five bamboo shoot products were mainly agricultural inputs, fresh shoot transportation, fresh shoot processing and additive inputs. (2) From 2015 to 2023, the average annual implied carbon emission of bamboo shoot exports in China was 1.848 2×105 t, with an average carbon emission intensity of 0.966 9 tons per 10 000 yuan. (3) The emission reduction scenario design based on carbon emission hotspots showed that the average decrease in carbon footprint of the five bamboo shoot products in 2023 was 20.15%.   Conclusion  There are significant differences in the carbon footprint of different types of bamboo shoot products. The implied carbon emissions of bamboo shoot products exported from 2015 to 2023 show a fluctuating downward trend. The comprehensive implied carbon emission intensity shows a fluctuating upward trend. The carbon emission hotspots of bamboo shoot products vary, and there is potential for further reduction in carbon footprint through emission reduction measures. [Ch, 2 fig. 7 tab. 36 ref.]

DONG Linghui, MAO Fengcheng, ZHOU Yufeng, GU Lei, ZHOU Tianhuan, LI Zhengcai, ZHOU Guomo. Carbon footprint assessment and emission reduction path analysis offive major bamboo shoot export products[J]. Journal of Zhejiang A&F University, 2024, 41(5): 887-897. doi: 10.11833/j.issn.2095-0756.20240277
Citation: DONG Linghui, MAO Fengcheng, ZHOU Yufeng, GU Lei, ZHOU Tianhuan, LI Zhengcai, ZHOU Guomo. Carbon footprint assessment and emission reduction path analysis offive major bamboo shoot export products[J]. Journal of Zhejiang A&F University, 2024, 41(5): 887-897. doi: 10.11833/j.issn.2095-0756.20240277
  • 随着工业化进程的加速推进,人类活动产生的温室气体排放量增加,应对气候变化已成为全球共同关注的社会和科学问题。中国积极参与全球气候治理,1993年签署《联合国气候变化公约》,成为首批缔约方;2007年颁布《中国应对气候变化国家方案》,明确减排目标和政策措施;2020年9月正式提出“2030年前实现碳达峰、2060年前实现碳中和”的目标[1]。碳足迹分析被广泛用于量化产品在其生命周期中的温室气体排放量[2],是科学制定减排战略的前提与基础。2023年11月中国提出将加快建立产品碳足迹管理体系,碳足迹评估已成为实现碳达峰和碳中和(“双碳”)目标的重要抓手。竹笋是一种健康的森林食品,其产业是中国林业重点发展的十大富民产业之一[3]。中国作为全球竹类资源最丰富的国家,竹笋产品约占世界产量的95%,是中国16个大宗出口农产品之一[4]。随着欧美等发达国家“碳关税”等绿色贸易规则的推进和实施,碳足迹评估已成为企业产品出口的必选项目。

    目前在农林产品碳足迹评估领域,学者们主要针对碳足迹评估方法、产品碳足迹评估和减排潜力等方面展开相关研究。投入产出法[5]是一种自上而下的计算方法,适用于评估某个部门或产业的碳足迹;生命周期法采用自下而上的计算方法,适用于产品或服务的碳足迹评估[6]。在产品碳足迹评估及构成研究中,有学者对农产品如柚Citrus maxima [7]、水稻Oryza sativa[8]和苹果Malus pumila[9]进行碳足迹评估,发现减少肥料施用量是降低碳排放的关键。周鹏飞等[10]对竹砧板进行碳足迹评价,结果表明:竹砧板的碳足迹为114.552 8 kg·m−3,为低碳产品。陈莎等[11]通过对中国纸产品全生命周期评价,计算出中国2010和2015年纸产品的温室气体排放量分别为13.4和20.3 Mt,并呈逐年上升的趋势。在减排潜力方面,诸多学者基于碳足迹研究对棉花 Gossypium hirsutum种植经营模式[12]、人造板生产[13]展开减排潜力评估,分别提出科学施肥、调整能源结构等减排路径。

    在国外“碳关税”等绿色贸易规则和国内“双碳”战略背景下,准确评估中国五大主要出口竹笋产品的碳足迹、隐含碳排放和减排潜力具有重要意义。雷竹笋通常被用于鲜食和加工成竹笋产品[14] ,是产量较大的典型竹笋品种。由于近几年高产笋用竹的栽培、管理和加工工艺日趋类同[15],因此,本研究选择5种典型的雷竹笋产品开展相关碳足迹的研究,能较好地代表出口竹笋产品碳足迹的现状。本研究以5种主要出口雷竹Phyllostachys violascens笋产品为研究对象,全程溯源竹笋种植、生产和分销阶段生命周期的碳足迹;根据海关出口数据估算2015—2023年隐含碳排放和碳排放强度,并基于碳排放热点协同设计减排路径,量化减排效果,旨在推动竹笋产业低碳高质量发展。

    • 竹笋是竹鞭或秆基上的芽萌发分化而成的膨大的芽和幼嫩的茎[16]。竹笋产品类型主要包括鲜笋和竹笋加工产品。竹笋加工产品是指将鲜笋通过一定的工艺后加工成可直接食用的产品。根据目前海关分类目录,竹笋产品共分为鲜竹笋或冷藏竹笋(简称鲜食笋)、其他方法制作或保藏的未冷冻竹笋(简称水煮笋)、盐水竹笋、笋干丝、竹笋罐头5类。对应海关5类出口竹笋产品及相关生产工艺,本研究分别选取雷竹笋的鲜食笋、水煮笋、盐水手剥笋(简称手剥笋)、笋干丝和调味笋罐头(简称调味笋)开展典型竹笋产品的碳足迹研究。

    • 浙江省杭州市临安区与湖州市安吉县是雷竹笋主产区,竹林面积分别为5.65和6.73 万hm2,是浙江省乃至全国高效栽培技术推广最早、面积最大的地区[17]。选择两地开展竹笋产品碳足迹的评估具有典型性和代表性。竹笋种植经营数据来源于临安区某竹笋专业合作社2022年2月至2023年3月的实地调查和农事台账。竹笋产品生产环节数据来源于浙江某生态农业有限公司、安吉某食品有限公司、杭州某食品有限公司和安吉县天荒坪镇某股份经济合作社等4家竹笋加工企业的实地调查。竹笋产品出口数据来源于2015—2023年的中国海关数据。

    • 采用英国标准协会《商品和服务在生命周期内的温室气体排放评价规范》(PAS 2050: 2011)为评估标准。考虑到出口竹笋产品在消费和处置过程中碳排放的不确定性,选择包含种植、生产及分销阶段的生命周期系统边界(图1)。为了便于比较5种竹笋产品的碳足迹,功能单位确定为kg·kg−1[表示不同温室气体的影响转化为等效的二氧化碳(CO2)排放量]。

      Figure 1.  Boundary of carbon footprint assessment system for bamboo shoot products

      竹笋产品碳足迹评估系统边界包括种植、生产和分销等3个阶段的温室气体排放。①种植阶段,包括农资投入、农资运输、农资施用和农业机械使用等。种植阶段碳排放核算方法:竹笋种植目前主要分为覆盖经营和非覆盖经营。覆盖是指在秋末冬初将砻糠等增温保温材料覆盖在土壤表面,达到早出笋、提高经济效益的目的[18]。覆盖经营中,主要涉及覆盖、水肥一体灌溉、化学杀虫、人工除草等措施;非覆盖主要依据自然生长原则,采用适度的人工干预,如杀虫、除草等措施。本研究不考虑竹林碳汇对竹笋种植经营碳排放的抵消作用。种植阶段碳排放量计算公式如下:

      式(1)中:C1为种植阶段碳排放量(kg·kg−1);Pi为第i类农资投入量或农业机械能源消耗量(kg或kW·h);Ei为第i类农资或能源的碳排放因子[kg·kg−1或kg·(kW·h)−1];Mj为第j类农资或能源的运输质量(t);Dj为运输距离(km);Ejj类农资或能源运输方式的碳排放因子(kg·km−1·t−1);N为施用化肥中所含的氮量(kg);α为施用含氮肥引起的氮化亚氮(N2O)排放因子(kg·kg−1),44/28为氮(N2)转换为氧化亚氮的系数,$G_{{\mathrm{N}}_2{\mathrm{O}}} $为100 a尺度下相对于二氧化碳的氧化亚氮增温潜势。②生产阶段,包括鲜笋运输、鲜笋加工、附加物投入和附加物运输等。种植阶段碳排放量核算方法:

      式(2)中:C2为生产阶段碳排放量(kg·kg−1);Mi为第i类原材料的运输质量(t);Di为第i类原材料的运输距离(km);Ei为第i类运输方式的碳排放因子(kg·km−1·t−1);Pj为第j类原材料投入量或能源消耗量(kg或kW·h),Ej为第j类原材料或能源的碳排放因子[kg·kg−1或kg·(kW·h)−1]。③分销阶段包括产品分销(至港口)。分销阶段碳排放量核算计算公式如下:

      式(3)中:C3为分销阶段碳排放量(kg·kg−1);Mi为第i类竹笋产品的运输质量(kg);Di为第i类竹笋产品的运输距离(km);Ei为竹笋产品运输方式的碳排放因子(kg·km−1·t−1)。

      综合系统评估边界内各阶段排放,竹笋产品碳足迹计算公式如下:

      式(4)中:CE为竹笋产品碳足迹(kg·kg−1)。

    • 出口隐含碳排放是出口产品在生产国的整个生命周期中直接和间接排放的二氧化碳[19]。竹笋产品出口隐含碳排放计算公式为:

      式(5)中:C为竹笋产品出口隐含碳排放量(kg);$ {C}_{\mathrm{E}i} $为第i种竹笋产品碳足迹 (kg·kg−1);Qi为第i种竹笋产品代表海关分类的出口量(kg)。

    • 出口隐含碳排放强度反映了出口贸易的碳排放成本。降低出口隐含碳排放强度是协调出口贸易和碳减排的有效措施[20]。竹笋产品的出口隐含碳排放与出口额决定了其碳排放强度的变化趋势。计算公式如下[21]

      式(6)中: ICi为第i年竹笋产品出口隐含碳排放强度(t·万元−1);Ci表示第i年竹笋产品出口隐含碳排放总量(t); PEXi表示第i年竹笋产品的出口总贸易额(万元)。

    • 基于覆盖与非覆盖2种经营模式的实地调查,在种植阶段单位质量鲜竹笋的碳排放量表现出明显的差异。表1显示:覆盖经营下的鲜笋碳足迹为0.300 4 kg·kg−1,非覆盖经营的碳足迹为0.002 8 kg·kg−1。在2种竹笋种植经营模式中,农资投入碳排放的占比均处于最高水平,其次是农资运输碳排放。

      产品阶段 排放源 排放因子/
      (kg·kg−1)或[kg·(kW·h)−1]或(kg·km−1·t−1)
      不同经营方式碳排放量/(kg·kg−1)
      覆盖经营 非覆盖经营
      种植阶段 农资投入 复合肥[22] 2.470 0 0.221 6 0.002 8
      农药[23] 16.610 0
      氮肥[24] 7.480 0
      有机肥[25] 0.089 0
      农资运输 中型货车[26] 0.042 0 0.045 7 0.000 0
      农业机械使用 电力[27] 0.581 0 0.004 3 0.000 0
      农资施用 N2O间接排放[28] 0.002 3 0.028 8 0.000 0
      合计 0.300 4 0.002 8

      Table 1.  Results of carbon emission accounting at planting stage

    • 本研究计算了鲜食笋和4种典型竹笋加工产品在生产与分销阶段的碳排放量。计算结果如表2所示:受到能源消耗、运输和包装材料等的影响,5种竹笋产品的生产与分销阶段碳排放存在差异,其中调味笋的碳排放量最大,为1.384 9 kg·kg−1,鲜食笋的碳排放量最小,为0.023 1 kg·kg−1

      产品阶段 排放源 排放因子/(kg·kg−1)或
      (kW·h)−1或(t·m)−1
      鲜笋和各种竹笋加工产品碳排放量/(kg·kg−1)
      鲜食笋 水煮笋 手剥笋 笋干丝 调味笋
      生产阶段 鲜笋运输 轻型货车 0.083 0 0.000 0 0.003 3 0.014 1 0.159 9 0.006 0
      鲜笋加工 电力 0.581 0 0.000 0 0.239 8 0.660 5 0.621 1 0.245 9
      生物质燃料[29] 0.196 5
      附加物投入 玻璃瓶[30] 0.933 8 0.011 6 0.063 5 0.313 5 0.094 3 1.114 3
      蒸煮袋[31] 8.810 0
      塑料编织袋[32] 2.510 0
      香油[33] 1.770 0
      附加物运输 微型货车 0.120 0 0.000 0 0.000 0 0.000 3 0.010 8 0.001 4
      小计 0.011 6 0.306 6 0.988 4 0.886 1 1.367 6
      分销阶段 产品分销 中型货车 0.042 0 0.011 5 0.011 4 0.011 5 0.012 1 0.017 3
      合计 0.023 1 0.318 0 0.999 9 0.898 2 1.384 9

      Table 2.  Carbon emission accounting results in production and distribution stages

      在生产阶段,鲜食笋因为不需要进行后续加工,仅有附加物的运输和投入排放,碳排放最小;笋干丝、手剥笋和调味笋的碳排放量相近,处于较高的水平;水煮笋的碳排放量较低。从排放源看,鲜笋加工是水煮笋、手剥笋和笋干丝碳排放最多的环节;附加物投入是调味笋和鲜食笋碳排放最多的环节。在产品分销阶段,各种竹笋产品的碳排放比较接近。

    • 根据实地调查和农事台账记录,覆盖经营模式下的竹林在每年11月开始覆盖,12月至翌年1和2月采收。基于海关月度出口数据,每年12、1与2月覆盖经营的鲜食笋出口量占该类竹笋产品全年出口量的50.2%,因此,鲜食笋种植阶段的碳排放量以覆盖和非覆盖2种模式下的碳排放均值计算;根据企业生产实际,4种出口竹笋产品均采用非覆盖经营模式下的碳排放量计算。计算结果如表3所示。5种竹笋产品的碳足迹由大到小依次为调味笋(1.387 4 kg·kg−1)、手剥笋(1.010 8 kg·kg−1)、笋干丝(0.927 4 kg·kg−1)、水煮笋(0.324 9 kg·kg−1)、鲜食笋(0.174 8 kg·kg−1)。鲜食笋的碳足迹最小,种植阶段碳排放占比最大,生产阶段与分销阶段碳排放相近,因此鲜食笋的减排措施应优先考虑从竹笋种植开始。在4种竹笋加工产品中,碳排放主要集中在生产阶段,该阶段平均碳排放占比达96.57%,种植阶段碳排放与分销阶段碳排放占比较小。

      生产阶段 鲜食笋 水煮笋 手剥笋 笋干丝 调味笋
      碳足迹/
      (kg·kg−1)
      占比/
      %
      碳足迹/
      (kg·kg−1)
      占比/
      %
      碳足迹/
      (kg·kg−1)
      占比/
      %
      碳足迹/
      (kg·kg−1)
      占比/
      %
      碳足迹/
      (kg·kg−1)
      占比/
      %
      种植阶段 0.151 7 86.78 0.006 9 2.13 0.010 8
      1.07 0.029 2
      3.15 0.002 5
      0.18
      生产阶段 0.011 6
      6.64 0.306 6
      94.36 0.988 5
      97.80 0.886 1
      95.54 1.367 6
      98.57
      分销阶段 0.011 5
      6.58 0.011 4 3.51 0.011 5 1.13 0.012 1 1.31 0.017 3 1.25
      合计 0.174 8 100 0.324 9 100 1.010 8 100 0.927 4 100 1.387 4 100

      Table 3.  Carbon footprint accounting results of 5 bamboo shoot products

    • 为了分析竹笋产品碳足迹构成中各排放源的贡献,将占比超过10%的定义为碳排放热点[34]表4显示:鲜食笋的排放热点为农资投入,碳排放占比为64.21%。鲜笋运输是笋干丝的排放热点之一,碳排放占比为17.24%。鲜笋加工是水煮笋、手剥笋、笋干丝和调味笋的共同排放热点,碳排放占比分别为73.80%、65.35%、66.97%和17.73%。附加物投入是水煮笋、手剥笋、笋干丝和调味笋的另一个共同排放热点,碳排放占比分别为19.55%、31.02%、10.16%和80.31%。

      产品阶段 排放源 碳排放占比/%
      鲜食笋 水煮笋 手剥笋 笋干丝 调味笋
      种植阶段 农资投入 64.21 2.13 1.07 3.15 0.18
      农资运输 13.10 0.00 0.00 0.00 0.00
      农械使用 1.23 0.00 0.00 0.00 0.00
      农资施用 8.24 0.00 0.00 0.00 0.00
      生产阶段 鲜笋运输 0.00 1.02 1.40 17.24 0.43
      鲜笋加工 0.00 73.80 65.35 66.97 17.73
      附加物投入 6.64 19.55 31.02 10.16 80.31
      附加物运输 0.00 0.01 0.03 1.16 0.10
      分销阶段 产品分销 6.58 3.51 1.13 1.31 1.25

      Table 4.  Carbon footprint composition of 5 bamboo shoot products

    • 对历年竹笋产品的出口结构和出口数量(表5)进行分析。在中国竹笋产品出口结构中,调味笋的出口量远大于其他4类竹笋产品,平均出口占比为86.69%;水煮笋平均占比达9.09%;手剥笋、笋干丝和鲜食笋平均出口占比较小,分别为1.98%、1.18%、1.06%。在产品出口结构变化趋势上,鲜食笋和水煮笋出口结构呈现下降趋势;手剥笋、笋干丝和调味笋的出口占比呈波动上升趋势。从出口数量来看,2015—2018年竹笋产品出口数量维持在16 万t,2018—2023年呈波动下降趋势。

      年份 不同竹笋产品出口量/t 出口总量/t
      鲜食笋 水煮笋 手剥笋 笋干丝 调味笋
      2015 1 964 26 555 3 316 1 804 125 441 159 080
      2016 2 201 21 535 3 034 1 777 131 352 159 900
      2017 1 959 14 577 3 061 1 796 135 061 156 454
      2018 1 804 13 449 3 011 1 658 137 426 157 347
      2019 1 534 11 038 3 013 1 866 128 673 146 123
      2020 1 301 7 463 2 579 1 846 118 632 131 822
      2021 1 454 9 361 2 594 1 624 132 139 147 172
      2022 863 10 461 2 723 1 595 120 732 136 375
      2023 1 060 8 047 2 729 1 525 109 670 123 031
      平均 1 571 13 610 2 895 1 721 126 570 146 367

      Table 5.  Export quantity of Chinese bamboo shoot products

    • 随着欧盟“碳边境调节机制”等绿色贸易规则的推进和实施,产品出口成本增加。通过核算竹笋产品的出口隐含碳排放,不仅能促进竹笋产业的低碳发展,也为中国计算产品出口碳排放提供重要的依据。本研究利用5种典型竹笋产品碳足迹的核算结果,结合历年的竹笋产品出口数据,估算历年竹笋产品出口隐含碳排放。结果如表6所示。出口规模是影响出口隐含碳排放的最主要因素,竹笋产品出口隐含碳排放在2015—2023年呈波动下降趋势。历年竹笋产品出口平均隐含碳排放为18.482 0 万t,2018年的隐含碳排放最高,为19.992 7 万t,2023年的隐含碳排放最低,为15.912 7 万t。在竹笋产品出口隐含碳排放的构成中,由于调味笋的出口占比高、产品碳足迹大,该类竹笋产品的出口隐含碳排放占比明显高于其他类型的竹笋产品。

      年份 不同竹笋产品出口隐含碳排放/t 出口隐含碳排放/t
      鲜食笋 水煮笋 手剥笋 笋干丝 调味笋
      2015 343 8 629 3 351 1 673 174 034 188 030
      2016 385 6 998 3 066 1 648 182 236 194 332
      2017 342 4 737 3 093 1 666 187 381 197 219
      2018 315 4 370 3 043 1 537 190 661 199 927
      2019 268 3 586 3 045 1 730 178 518 187 148
      2020 227 2 425 2 606 1 712 164 587 171 558
      2021 254 3 042 2 622 1 506 183 327 190 751
      2022 151 3 399 2 752 1 480 167 501 175 283
      2023 185 2 615 2 759 1 414 152 154 159 127
      平均 275 4 422 2 926 1 596 175 600 184 820

      Table 6.  Analysis of implied carbon emissions of bamboo shoots exported in China over the years

    • 2015—2023年5类竹笋产品历年出口隐含碳排放强度以及竹笋产品综合隐含碳排放强度如表7所示。表7显示:5类竹笋产品的平均出口隐含碳排放强度由大到小排序依次为调味笋、手剥笋、水煮笋、笋干丝、鲜食笋。从变化趋势看,5类竹笋产品的出口隐含碳排放强度在2015—2023年均呈现波动下降的趋势,其中下降幅度最大的是笋干丝,为27.69%,下降幅度最小的是调味笋,为4.10%。

      年份5类竹笋产品出口隐含碳排放强度/(t·万元−1)竹笋产品综合隐含碳排放强度/
      (t·万元−1)
      鲜食笋水煮笋手剥笋笋干丝调味笋
      20150.081 10.190 30.715 40.116 81.362 00.957 6
      20160.080 50.172 30.695 10.115 81.141 50.868 8
      20170.083 80.173 80.681 60.112 41.133 60.913 1
      20180.062 60.158 10.707 60.123 41.142 00.923 9
      20190.076 80.140 20.684 30.142 81.147 50.930 2
      20200.063 50.134 20.686 10.101 11.258 30.990 7
      20210.081 30.132 90.726 50.088 01.487 01.121 9
      20220.061 80.119 90.675 80.078 91.376 10.999 7
      20230.053 90.140 80.609 60.084 51.306 10.996 0
      平均0.071 70.151 40.686 90.107 11.261 60.966 9

      Table 7.  Implicit carbon emission intensity of bamboo shoot products export

      历年竹笋产品综合平均隐含碳排放强度为0.966 9 t·万元−1,受出口额和出口隐含碳排放的影响,一方面竹笋产品的出口额随着出口数量的波动下降而下降;另一方面,在竹笋产品的出口结构中,碳足迹最大的调味笋出口占比不断攀升,碳足迹较低的其他类型竹笋产品出口占比下降,导致出口隐含碳排放的下降趋势较出口数量平缓。因此从整体来看,竹笋产品出口的综合隐含碳排放强度呈波动上升趋势。

    • 综合考虑了竹笋种植阶段、生产阶段和分销阶段的碳排放。选择系统边界的不同会对碳足迹的评价结果产生影响。在评估竹笋产品碳足迹过程中,全程收集了各阶段的初级数据,一些相关碳排放因子主要选择来自国内外数据库及参考文献,可能会对研究结果产生差异。此外,在估算中国竹笋产品出口隐含碳排放与碳排放强度时,选择了5种代表性竹笋产品,但不同的竹种、种植环境和加工工艺可能会导致竹笋产品碳足迹的差异,从而对估算结果产生影响。因此,在未来的研究中,应规范竹笋产品碳排放因子数据的选择,进一步提升碳足迹评估结果的可信度和准确性;扩展不同地区、不同竹种的竹笋产品碳足迹评估研究,推动竹笋产业低碳高质量发展。

    • 通过上述排放热点的识别,确定了农资投入、鲜笋运输、鲜笋加工和附加物投入是有效的减排方向。减排情景一:农资投入是鲜食笋的排放热点。近年来,中国大力推进农药化肥减量增效工作,部分地区降幅达30%以上[35]。根据《“十四五”全国农业绿色发展规划》提出的持续推进药肥减量要求,以减少30%农资投入量作为减排路径。减排情景二:鲜笋运输是笋干丝的排放热点,主要受到运输质量、运输距离与运输方式的影响。目前,竹笋加工企业采用轻型货车进行分散运输,排放因子为0.083 0 kg·t−1·km−1;将轻型货车优化为中型货车,采用公共物流集中运输,排放因子为0.042 0 kg·t−1·km−1,从而减少鲜笋运输碳排放。减排情景三:鲜笋加工是4种竹笋加工产品共同的排放热点,主要受到电力消耗和生物质燃料投入量的影响。《中国区域电网二氧化碳排放因子研究(2023)》报告提出:“十四五”期间中国非化石能源发电占比进一步提高,各省电力排放因子平均年下降速率为4.07%。据此估算2024年电力排放因子为0.534 7 t·(MW·h)−1。减排情景四:附加物投入作为4种竹笋加工产品的共同排放热点,主要涉及到包装、调味品的投入量。采取包装轻量化的减排情景设计,蒸煮袋包装将厚度由原先的12 μm优化至7 μm;玻璃瓶包装平均壁厚由3.5 mm降低至2.0 mm[36]

    • 基于碳足迹核算与政策指导的减排情景设计,应用情景假设方法,计算涉及直接排放或间接排放的共8个排放源在减排优化前后的碳排放量变化(图2A~E)量,其中灰色区域代表减排优化前的碳排放量,黄色区域代表减排优化后的碳排放量。在减排情景优化下,5种产品的碳足迹都有不同程度的下降。下降幅度由大到小依次为调味笋(31.95%)、鲜食笋(21.69%)、笋干丝(19.25%)、水煮笋(17.16%)、手剥笋(10.71%),平均下降幅度为20.15%。

      Figure 2.  Comparison of results before and after emission reduction optimization of 5 bamboo shoot products

    • 本研究核算了5种典型雷竹笋产品种植阶段、生产阶段和分销阶段的碳足迹,并结合海关出口数据估算了2015—2023年的竹笋产品出口隐含碳排放与碳排放强度。结论如下:①5种典型雷竹笋产品的碳足迹存在显著差异,碳足迹为0.2~1.4 kg·kg−1。在碳足迹构成中,农资投入、鲜笋运输、鲜笋加工和附加物投入是竹笋产品的排放热点。②受出口规模影响,2015—2023年中国竹笋产品的出口隐含碳排放总体呈现先上升后波动下降趋势。由于竹笋产品出口结构的变化,每类竹笋产品的出口隐含碳排放强度呈波动下降趋势,竹笋产品综合隐含碳排放强度呈现波动上升趋势。③结合排放热点分析与政策指导,对5种竹笋产品开展了减排情景优化设计。优化前后,水煮笋和调味笋的碳足迹下降幅度均超过30%;笋干丝和鲜食笋的碳足迹下降幅度为20%~30%;手剥笋的碳足迹下降幅度最小,为10%~20%。

Reference (36)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return