-
植物中的Shaker家族是迄今为止研究最深入的钾转运家族之一,被认为在植物钾离子(K+)吸收以及转运方面起到至关重要的作用[1-2]。最早报道的拟南芥Arabidopsis thaliana内向整流K+通道AKT1属于Shaker家族,它具有双亲和钾吸收特性,主要在拟南芥根部表皮细胞和皮层细胞中表达,在拟南芥吸收K+过程中起到关键作用。随后已陆续从其他植物中克隆得到该基因,均表现出明显的组织特异性表达,如OsAKTl主要在水稻Oryza sativa根中表皮和维管组织中表达[3];ZMK1主要在玉米Zea mays胚芽鞘皮层中表达[4];SeAKT1在盐角草Salicornia europaea成苗的根和冠中均有表达,但在根中表达量略高[5];GkKT2在三叶期棉花Gossypium hirsutum根、茎、叶和顶芽等各部位均有表达,但在叶中表达量较大[6]等。Shaker通道家族也包括外整流K+通道,但目前针对它的研究较少。SKOR与AKT1在跨膜区具有很高的同源性,但C端比AKT1多约200个氨基酸及6个锚蛋白重复基序(ankyrin repeat motif,AR)[7-8]。据报道[9]:胞内K+浓度可以调节SKOR活性,而对K+的感受性就是依赖C端结构域部分感应细胞内外电压差而实现的,AKT1对于细胞内的K+却没有响应。GAYMARD等[10]首次从拟南芥中克隆到编码外整流K+通道的基因SKOR,并发现它在根中柱组织特异表达,且能被脱落酸(ABA)抑制,其介导根细胞中的K+向木质部外流的转运。在玉米根皮层及中柱细胞中也检测到了外整流K+通道,并确定其介导K+从中柱细胞外排到木质部汁液中,外整流K+通道基因的这一功能在大麦Hordeum vulgare中也得到了验证[11-12]。另外,Shaker钾离子通道的孔结构域和蛋白质氨基酸序列上的组氨基酸残基高度保守,这决定了其通道活性在很大程度上受细胞内外酸碱度调节,比如,KAT1活性在细胞膜内外低pH值的情况下被激活[13],SKOR的活性受酸碱度影响较大[14-16]。小白菜Brassica chinensis花粉质膜外整流K+通道受细胞内外pH值的影响,从而影响花粉萌发和花粉管的伸长[17]。黑果枸杞Lycium ruthenicum为茄科Solanaceae枸杞属Lycium多年生野生盐生类灌木,主要生长在中国西北青海、新疆、甘肃等地的荒漠地区,不但具有极强的耐旱、耐盐碱性,还具有重要的经济价值和药用价值,在生态建设和经济发展中有巨大的应用前景,也是研究多年生植物抗逆机制的优良植物材料。已有研究结果表明[18]:与宁夏枸杞Lycium barbarum相比,黑果枸杞具有更强的耐盐能力。在盐分胁迫下,黑果枸杞各器官中钠离子(Na+)和氯离子(Cl-)相对含量均增加,叶片中积累最多,K+/Na+比均下降,在根中比值比地上部分高。但与宁夏枸杞相比,黑果枸杞各器官中的K+含量下降相对较少,积累的Na+和Cl-含量也相对较少,甚至在450 mmol·L-1氯化钠高盐胁迫下,各器官中K+/ Na+比下降的幅度仍小于宁夏枸杞,其中叶片组织中K+/ Na+比值显著高于同浓度胁迫下的宁夏枸杞,但与拟南芥等传统植物相比,黑果枸杞耐盐碱基因尤其是钾吸收相关基因的鉴定未见报道。为进一步深入研究黑果枸杞的耐盐机制,本研究采用反转录聚合酶链式反应(reverse transcription PCR,RT-PCR)方法克隆了黑果枸杞SKOR基因并分析其序列特征,研究了不同pH值的高盐环境对SKOR基因表达丰度的影响,为以后研究外整流K+通道SKOR在黑果枸杞体内能否维系高K+/Na+比,进而在提高植株耐盐性中发挥重要作用而奠定基础。
-
黑果枸杞种子采自青海省大格勒乡,在北京林业大学林木育种国家工程实验室温室内进行播种培养。具体方法:挑选籽粒饱满的黑果枸杞种子播种在以m(花卉土):m(蛭石):m(珍珠岩)=3:2:1混合后的穴盘中,每天定时喷施无菌水至发芽后,配制Hoagland营养液进行浇灌。温室温度为(23 ± 2)℃, 光照16 h·d-1,空气相对湿度控制在70%左右。以生长4周的黑果枸杞幼苗为实验材料。
-
取4周龄黑果枸杞幼苗的根系,加入液氮研磨至粉末状。根据改进的十六烷基三甲基溴化铵(CTAB)法提取RNA,用琼脂糖凝胶电泳和紫外分光光度计法鉴定其完整性和质量。
-
利用拟南芥等其他植物的SKOR核苷酸序列在实验室前期建立的本地黑果枸杞转录组数据库中进行Blast分析,得到1条长度为2 500 bp左右的拟SKOR基因。根据转录组数据库中的片段利用Primer 5.0软件设计引物P1(5′-ATGCACATTAATAATGGAGGAG-3′)和P2(5′-AGTTGATTCATTGTTCAAGTACAA-3′),由上海生工生物工程技术服务公司合成引物后,用于该黑果枸杞拟SKOR基因序列全长的扩增。
-
采用RT-PCR法进行基因克隆,PCR扩增反应体系:2× PCR Mix 10 μL,上游引物和下游引物各1 μL,cDNA 1 μL,双蒸水7 μL。反应程序为:95 ℃预变性5 min;95 ℃变性30 s,55 ℃退火30 s,72 ℃延伸90 s,40个循环;最后72 ℃延伸10 min,10 ℃保存。PCR产物用体积分数为1.0%的琼脂糖凝胶电泳检测后,按照琼脂糖凝胶DNA回收试剂盒操作说明书进行目的片段的回收和纯化。
-
将回收的PCR产物连接到PMD18-T载体上,转化Top10大肠埃希菌Escherichia coli感受态细胞,在含50 mg·L-1氨苄青霉素的LB固体平板培养基上进行蓝白斑阳性克隆筛选,筛选出的阳性克隆经PCR鉴定后,送至上海生工生物工程技术服务公司测序。所测序列的比对分析在DNAMAN 6.0生物软件上进行,在美国生物技术信息中心(NCBI)网站(www.ncbi.nlm.nih.gov/BLAST)上进行Blast搜索。利用NCBI ORFfinder工具确定基因的开放阅读框。蛋白质亲/疏水性预测用ExPASy网站的在线软件ProtScale分析,以Hphob.Kyte& Doolittle为默认值。进化树分析先使用Clustal X 2.1软件对来自番茄Solanum lycopersicum,马铃薯Solanum tuberosum,胡杨Populus euphratica等物种的SKOR成员进行序列比对,然后使用MEGA 5.1 Beta 3软件用邻接法构建。
-
对4周龄的黑果枸杞苗分别用300 mmol· L-1氯化钠与450 mmol·L-1碳酸氢钠(pH 9.0)处理6 h,利用天根生化科技有限公司Real Master Mix(SYBR Green)PCR试剂盒,采用实时荧光定量PCR(real-time quantitative PCR,qRT-PCR)法,检测LrSKOR基因的相对表达量。扩增目标LrSKOR基因引物设计为LrSKOR-F: 5′-ATGCACATTAATAATGGAGGAG-3′和LrSKOR-R: 5′-AGTTGATTCATTGTTCAAGTACAA-3′;以黑果枸杞延伸因子1α基因EF1α[19]作为内参基因,其引物为EF1αF: 5′-GAAGGGTGTCCCTCAGATCA-3′和EF1α R: 5′-CCGTCC ATGTCGTCTCTTTT-3′,对反转录所得的cDNA按照1,1/10,1/100,1/1 000,1/10 000进行稀释,绘制相对标准曲线。实时荧光定量设置反应程序为:94 ℃ 2 min,94 ℃ 20 s,55 ℃ 30 s,72 ℃ 30 s,设置36个循环,各轮循环第3步进行荧光采集,最后95 ℃变性1 min,退火至55 ℃。根据荧光值,绘制熔点曲线。内参基因的表达与LrSKOR基因按照同样的反应程序同时测试。独立提取3次待测样品的RNA作为生物学重复,设置技术性重复3次·样品-1。
-
取生长4周的黑果枸杞幼苗根部作为实验材料,提取总RNA,凝胶电泳检测结果显示28 S RNA条带亮度约为18 S RNA的2倍,表明所提取的黑果枸杞总RNA完整性较好。进一步用紫外分光光度计检测得出D(260)/D(280)为2.1,说明所提取的RNA纯度较好,可用于进一步实验。
按照反转录试剂盒操作说明,以总RNA反转录得到第1链cDNA后,以该cDNA为模板,以拟SKOR基因的引物P1和P2进行PCR扩增。扩增产物经凝胶电泳检测发现亮带,且上下无杂带,与预期片段大小一致,推测可能是目的基因。将连接有纯化目的片段的PMD18-T克隆载体转化大肠埃希菌Top10后,从转化的平板上随机挑取6个白色菌斑振摇过夜培养,进行PCR扩增,得到的扩增条带大小与RT-PCR结果一致,表明这些克隆为阳性克隆。
-
将PCR产物进行测序,Genebank登录号为KY563342。测序所得到的SKOR基因序列全长为2 448 bp,包括1个完整的开放阅读框,其编码的SKOR蛋白包含815个氨基酸残基。在NCBI数据库进行Blast序列比对分析结果显示,该基因序列与拟南芥(NM_111153.3),葡萄Vitis vinifera(AJ490336),蓖麻Ricinus communis(XM _002533405)和胡杨(EU382997.1)等植物外整流K+通道基因的核苷酸序列的同源性均在65%以上,其中与葡萄推测的外整流K+通道基因的核苷酸序列的同源性达到70.36%;通过和茄科植物马铃薯(XM_006352418.2),番茄(XM_004250158.3),甜辣椒Capsicum annuum(XM_016696732.1)等比对同源性很高,其中与马铃薯全长同源性最高,达到90.31%,表明本研究已克隆到外整流K+通道基因全长,将其命名为LrSKOR。用ExPASy网站分析该蛋白的理化性质,得到其相对分子量约为9.33×104,理论等电点为6.32,其中数量最丰富的氨基酸依次是亮氨酸(Leu),异亮氨酸(Ile)和丝氨酸(Ser),分别占11.2%,8.6%和7.2%,色氨酸(Trp)含量最少,只占1.2%。
-
利用NCBI网站Conserved Domain工具对LrSKOR氨基酸结构域进行预测。结果表明:LrSKOR蛋白序列在258~315位存在1个与离子通道Ion_trans_2相似的保守结构域,Ion_trans_2是Ion_trans_2超家族的一个成员。在561~716和741~810氨基酸序列位点还分别存在1个与K+运输有关的离子通道的锚蛋白区(ANK)和KHA(钾离子通道的四聚化结构域),KHA在植物中一般位于C末端区。
运用ExPASy网站的在线分析软件ProtScale,以Hphob. Kyte & Doolittle为默认值对LrSKOR编码的蛋白质进行亲/疏水性预测,得到LrSKOR的亲/疏水信号图。疏水性分析结果表明:LrSKOR编码蛋白多肽链的第113号位点的缬氨酸(Val)疏水性最强,具有最高的分值3.167;第321号的精氨酸(Arg)亲水性最强,具有最低的分值-2.956。从整个肽链上氨基酸分布来看,亲水性氨基酸均匀分布在整个肽链中,且多于疏水性氨基酸,认为该蛋白是亲水性蛋白(图 1)。
用DNAMAN 6.0软件对LrSKOR的氨基酸全长序列与多种植物SKOR的氨基酸序列进行多序列比对。结果表明:黑果枸杞LrSKOR与茄科植物甜辣椒、马铃薯、番茄等的外整流K+通道的亲缘关系非常近,氨基酸同源性高达90%以上,分别为90.05%,90.70%和90.47%;与拟南芥AtSKOR,苜蓿Medicago truncatula的MtSKOR,玉米的ZmZORK等的亲缘关系相对较远,同源性为62.36%~69.12%(图 2)。
图 2 LrSKOR与其他植物SKOR开放阅读框氨基酸的多序列比对
Figure 2. Amino sequence alignment of LrSKOR with other plants SKOR
为了分析黑果枸杞与其他植物中的SKOR系统发育进化关系,利用MEGA 5.1 Beta 3软件对黑果枸杞LrSKOR与茄科及其他物种的蛋白氨基酸序列构建了进化树。由图 3进化树可知:黑果枸杞与茄科植物如番茄、马铃薯、甜辣椒等聚在一起,表明它们之间亲缘关系较近,而与胡杨、蓖麻、玉米等分类在不同分支上,表示它们之间进化关系相对较远。
-
由于LrSKOR基因可能参与调节黑果枸杞根部的离子选择性吸收,本研究提取黑果枸杞根部总RNA,用荧光定量PCR法研究了该基因在高盐和盐碱不同胁迫下的诱导表达情况,以EF1α在根中的表达量定为“1”。按照相对定量公式2-△△Ct作图(图 4)。可以看出,LrSKOR基因在对照、高盐胁迫以及盐碱胁迫下均有表达。高盐和盐碱胁迫下的表达量明显高于对照,在盐碱胁迫下的表达丰度最高,是高盐处理的6.81倍,是对照的23.79倍。这表明LrSKOR基因参与高盐及盐碱环境胁迫响应,并且与环境pH值之间可能存在较为紧密的关系。
-
植物体内丰富的K+主要由植物根部从土壤中吸收而获得。研究表明[19]:根部吸收K+后经木质部装载,在蒸腾拉力作用下,随木质部流入地上部完成K+在地上部分的积累,外整流K+通道在此运输过程中发挥重要作用。目前,有关模式植物拟南芥的外整流K+通道蛋白的研究最为集中,而其他植物的外整流K+通道蛋白的研究还较少。GAYMARD等[10]从拟南芥中分离得到K+外整流通道蛋白基因AtSKOR,通过非洲爪蟾Xenopus laevis卵母细胞异源表达和突变体atskor试验证明,AtSKOR介导K+从木质部薄壁细胞向木质部的装载。沙冬青Ammopiptanthus mongolicus保卫细胞外整流K+通道AmGORK也被克隆,其活性与拟南芥SKOR一样对细胞外pH值很敏感,在2个pH单元的酸化程度下活性被降低了70%[20]。另有研究认为,盐分胁迫下的外整流K+通道蛋白SKOR可能是唯一对木质部汁液中钾分泌起作用的Shaker K+通道,它的活性可由木质部薄壁细胞中Na+不断积累引起的薄壁细胞质膜去极化而被激活,进而将K+装载到木质部运往地上部芽[21-22]。木本植物霸王Zygophyllum xanthoxylum的ZxSKOR研究表明[23]:ZxSKOR主要在根和茎中表达,且其表达水平随叶片中K+的浓度增加而显著提高,并认为盐分胁迫下,根和茎中的ZxSKOR相互协调很好地起到对K+的长距离运输的作用。因此,SKOR在植物地上部分K+积累方面的作用不容忽视,但关于它是如何参与K+向木质部的运输还没有明确的证据。WANG等[24]在小花碱茅Puccinellia tenuiflora中的研究证明,其地上部分K+的含量不受外界盐分浓度及处理时间的影响,这是小花碱茅维持植株地上部高K+/ Na+比的重要原因之一。目前,已克隆得到小花碱茅的外整流K+通道PtSKOR基因片段[25],这将为进一步研究小花碱茅耐盐机理奠定基础。关于黑果枸杞耐盐生理生态机制的研究结果表明,Na+和K+主要分布在黑果枸杞地上部分,但根中K+/Na+比值比叶片中高,与其他积盐盐生植物盐爪爪Kalidium foliatum和白刺Nitraria tangutorum相比,黑果枸杞的K+/Na+比值高于这两者,从而表现出相对较强的耐盐能力[26],由此看出,K+的积累和运输在表现黑果枸杞耐盐性方面扮演及其重要的角色,但目前关于黑果枸杞K+积累与运输的分子机制尚不清楚。
黑果枸杞作为沙漠中可以建群的多年生灌木,具有很强的抗盐碱能力,加上繁殖力强的特点,有望成为耐盐碱研究的模式植物。近年来,黑果枸杞耐盐碱研究日益受到关注,本研究以前期测的转录组数据为基础,从黑果枸杞根系中成功克隆得到SKOR基因。研究已知,SKOR属于钾转运蛋白中的Shaker家族,典型的植物Shaker通道蛋白从N末端至C末端包括一个大约由60个氨基酸组成的细胞质N末端区、由6个跨膜区构成的疏水核和一个很长序列的细胞质C末端区。其中,C末端区含有调节结构域,包括一个推测的环核苷酸结合区(CNBD)、一个存在于大部分Shaker通道中的锚蛋白区和一个靠近C末端的富含疏水酸性残基区(KHA)[27]。本研究对该基因编码的蛋白保守结构域预测,发现其分别存在一个锚蛋白区和KHA四聚化保守结构域,说明该基因编码的蛋白属于与K+运输有关的Shaker家族蛋白。Shaker通道的一个重要特点是能形成异源四聚体结构,KHA是钾离子通道蛋白的四聚化结构域,可能参与了这个过程,从而使该蛋白起到调节细胞中的K+转运活性的功能;锚蛋白结合位点可使该蛋白质特异地定位在质膜上,并潜在地影响蛋白与蛋白之间的相互作用。通过对LrSKOR编码氨基酸同源性序列比对和系统发育进化分析,得出LrSKOR与拟南芥、胡杨、蓖麻等双子叶植物的外整流K+通道相比同源性较低,但与茄科植物如马铃薯、番茄等同源性达90%以上,构建进化树中聚在一起(图 2),这表明黑果枸杞与其他茄科植物SKOR蛋白进化程度相似,LrSKOR同样行使推测的参与K+向木质部运输的功能,也说明了黑果枸杞与其他茄科植物存在较近的亲缘关系。本研究还发现,LrSKOR在盐碱胁迫下的表达丰度最高,高盐胁迫下次之,对照最低。这表明,黑果枸杞LrSKOR作为外整流K+通道,其基因表达除了受盐分胁迫影响外,与土壤pH值还存在密切的联系,这与很多前人研究的推论相一致。因此,LrSKOR很可能在黑果枸杞耐盐性发挥方面具有重要作用。这也为进一步阐明盐生植物黑果枸杞K+和Na+选择性运输机制提供分子层面的依据,具有重大的研究价值及应用前景。
Cloning and expression analysis of the SKOR gene for an outward-rectifying K+ channel in Lycium ruthenicum
-
摘要: 黑果枸杞Lycium ruthenicum为多年生野生灌木,由于其珍贵的营养价值和强非生物胁迫抗性受到广泛关注。为研究黑果枸杞钾离子(K+)/钠离子(Na+)选择性运输的分子机制,从转录组数据中筛选出拟外整流K+通道基因,提取黑果枸杞根系总RNA为模板,采用反转录聚合酶链式反应(RT-PCR)方法分离出该拟似SKOR基因。序列分析显示:该基因序列长2 448 bp,编码815个氨基酸。通过比对发现:该基因与拟南芥Arabidopsis thaliana等植物中已报道的SKOR基因编码的氨基酸序列同源性在60%以上,与几种茄科Solanaceae植物的SKOR同源性高达90%以上。进一步对该基因进行表达分析,结果显示:LrSKOR被盐碱处理强烈诱导而被高盐处理微弱诱导,盐碱处理是高盐处理的6.81倍,是对照的23.79倍,说明LrSKOR的表达受到盐以及盐碱胁迫调控,并且pH值对其表达水平有显著影响。Abstract: To determine the molecular mechanism of Lycium ruthenicum, a perennial shrub species that has attracted great interest in recent years due to its nutritional value and abiotic stress resistance, with its high salt tolerance capability, a potential outward-rectifying potassium channel gene was cloned based on a transcriptome sequencing database analysis. Analyses also included real time (RT)-polymerase chain reaction (PCR), a homology comparison analysis, and a gene expression analysis. Results of the RT-PCR indicated that the length of this potential L. ruthenicum SKOR (LrSKOR) gene was 2 448 bp encoding 815 amino acids. The homology comparison analysis showed that the SKOR gene shared more than a 60% amino acid sequence similarity with reported plants, such as Arabidopsis thaliana, and had over 90% similarity with other Solanaceae plants. Gene expression analysis with RT-PCR showed that the LrSKOR gene was strongly induced by NaHCO3 stress and weakly induced by NaCl stress; its expression level with NaHCO3 stress was 6.81 times higher than NaCl stress and 23.79 times higher than the control. Thus, expression of LrSKOR, regulated by both saline and saline-alkali stress, with pH imposed a strong influence on its expression. The results could help in LrSKOR gene function prediction as well as lay a foundation for further research of high salinity stress response in L. ruthenicum.
-
Key words:
- forest tree breeding /
- Lycium ruthenicum /
- SKOR /
- K+/Na+ ratio /
- pH /
- salt response ability
-
森林与湿地、海洋并称为全球三大生态系统,被誉为“地球之肺”“绿色水库”和“物种基因库”[1]。森林生态系统是陆地生态系统中面积最大、组成结构最复杂、生物种类最丰富、适应性最强、稳定性最大、功能最完善、与人类生存发展关系最密切的一种自然生态系统,对改善和维护生态环境起着决定性的作用[2-3]。森林不仅能够为人类提供清新的空气、清洁的水源和舒适宜人的气候环境等生态产品,还能够提供保持水土、涵养水源、防风固沙、调节气候、生物多样性保育等生态服务[4]。CONSTANZA等[5]对全球生态系统服务价值进行较为全面的评估,算出全球陆地生态系统服务功能平均每年的价值高达33万亿美元,相当于当年全世界国民生产总值的1.8倍,不仅在国际上引起了广泛关注,而且掀起了对生态系统服务价值研究的热潮。联合国千年生态系统评估组(millennium ecosystem assessment,MA)开展了全球尺度和33个地区的生态系统与人类福利的研究,对生态系统的内涵、分类、评价基本理论和方法均进行了深入的阐述,极大推进了生态系统服务在世界范围内的理论方法及应用方面的研究[6]。侯元兆等[7]在国外生态服务价值评估的基础上,第1次估算出中国森林资源的价值约13.7万亿元,开创了国内森林生态系统生态服务价值评估的先河。有学者分别从不同尺度对中国、浙江省、泰顺县的森林生态系统服务价值进行评估[8-10]。也有学者分别对草原、湿地、森林等不同类型的生态系统进行价值评估[11-14]。本研究依据LY/T 1721−2008《森林生态系统服务功能评估规范》[15],对乌岩岭国家级自然保护区森林生态系统服务的物质量及价值量进行评估,有助于增进人们对森林环境的保护意识以及对自然保护区的重视程度。
1. 研究区概况
乌岩岭国家级自然保护区(27°20′52″~27°48′39″N,119°37′08″~119°50′00″E)地处浙江省泰顺县西北部,总面积约18 861.5 hm2,其中林业用地17 605.1 hm2,占土地总面积的93.3%。乌岩岭在全球陆生生物圈的地带生物群落分类中属于热带、暖温带交错区,由于地理位置处于28°N附近的敏感区,且靠近太平洋,加上保护区西北面高山阻隔,温度偏高。乌岩岭有775属种子植物,其中,包括中国种子植物属的15个分布区类型。乌岩岭国家级自然保护区是中国—日本森林植物亚区华东区与华南区过渡地带,无论是地形、地势、气候等非生物因素和动植物种群都呈现明显过渡性。乌岩岭国家级自然保护区被誉为物种基因库,森林覆盖率为92.8%,其中阔叶林蓄积量达28 万m3以上,所占比例为45%,是华东地区保存最完善的大面积原生性中亚热带常绿阔叶林[16]。
2. 研究方法
2.1 数据来源
数据来源有乌岩岭国家级自然保护区典型森林样地调查数据(2017年)、乌岩岭国家级自然保护区森林资源二类清查数据(2017年)、泰顺县气象局监测数据和中华人民共和国林业行业标准LY/T 1721−2008《森林生态系统服务功能评估规范》。不同类型林分净生产力和土壤年固碳量采用华东地区森林生态系统定位站的观测数据[17]。
2.2 评估内容与指标体系
依据LY/T 1721−2008《森林生态系统服务功能评估规范》,同时结合乌岩岭国家级自然保护区森林生态系统的实际情况,本次评估选取固碳释氧、涵养水源、积累营养物质、保育土壤、净化大气环境、生物多样性保护等6项服务15项指标(表1),并从物质量和价值量2个方面对乌岩岭国家级自然保护区森林生态系统服务进行评估。
表 1 乌岩岭国家级自然保护区森林生态系统服务评估指标体系Table 1 Evaluation index system of forest ecosystem service in Wuyanling National Nature Reserve服务类别 评估指标 涵养水源 调节水量、净化水质 保育土壤 固土、保肥 固碳释氧 固碳、释氧 积累营养物质 林木营养积累(氮、磷、钾) 净化大气环境 负离子量、二氧化硫量、氟化物量、氮氧化物量、滞尘量 生物多样性保护 物种保育 2.3 评估方法
参照LY/T 1721−2008《森林生态系统服务功能评估规范》,对以上指标进行评估。乌岩岭国家级自然保护区森林生态系统服务的物质量结合表2计算得出,价值量结合表3计算得出。林分类型分为针叶林(杉木Cunninghamia lanceolata林、马尾松Pinus massoniana林、柳杉Cryptomeria fortunei林),常绿阔叶林,针阔混交林,经济林(主要为茶树Camellia sinensis、猕猴桃Actinidia chinensis林),竹林。
表 2 乌岩岭国家级自然保护区森林生态系统服务物质量的参数数据Table 2 Material quality parameter data of forest ecosystem services in Wuyanling National Nature Reserve涵养水源 保育土壤 积累营养物质 林分类型 地表径
流量/
mm林分蒸
散量/
mm土壤侵
蚀模数/
(t·hm−2·a−1)土壤
容重/
(t·m−3)土壤
氮/%土壤
磷/%土壤
钾/%土壤
有机
质/%氮/% 磷/% 钾/% 针叶林 马尾松林 5.70 916.08 0.11 1.396 0.090 0.084 1.293 2.156 0.325 0.160 0.680 杉杉木林 5.70 1 072.92 0.16 1.200 0.096 0.082 1.333 2.516 0.324 0.165 0.700 柳杉林 5.70 1 072.92 0.11 0.956 0.081 0.087 1.342 3.270 0.324 0.165 0.700 常绿阔叶林 2.60 667.63 0.14 0.901 0.149 0.088 1.333 3.391 0.237 0.972 1.390 针阔混交林 2.60 966.05 0.13 1.372 0.090 0.075 1.233 3.059 0.280 0.566 1.0325 经济林 6.30 914.69 0.13 1.407 0.154 0.119 1.073 3.139 0.180 0.072 0.390 竹林 6.30 902.20 0.11 1.242 0.138 0.109 1.109 3.256 0.031 0.012 0.562 净化大气环境 生物多样性保护 林分类型 负离子量/
(个·cm−3)平均树
高/m吸收二氧
化硫量/
(kg·hm−2·a−1)吸收氟
化物量/
(kg·hm−2·a−1)吸收氮氧
化物量/
(kg·hm−2·a−1)滞尘量/
(kg·hm−2·a−1)香农-威纳
多样性指数针叶林 马尾松林 6 678 13.75 117.60 4.65 6.0 33 200 2.29 杉木林 4 880 13.36 117.60 4.65 6.0 33 200 0.83 柳杉林 7 335 16.83 117.60 4.65 6.0 33 200 1.62 常绿阔叶林 24 175 14.02 88.65 2.58 6.0 21 655 3.03 针阔混交林 9 825 11.50 152.13 2.58 6.0 21 655 2.03 经济林 877 1.20 152.13 2.58 6.0 21 655 0.45 竹林 11 753 14.06 152.13 2.58 6.0 21 655 0.84 说明:年平均降水量采用保护区2010−2016年生态站监测数据,为2 405.36 mm·a−1;无林地水土流失土壤年侵蚀模数参照中国科 学院观测点泥沙流失量,为17.66 t·hm−2·a−1[18]。土壤氮、土壤磷、土壤钾、土壤有机质、氮、磷、钾均为质量分数 表 3 乌岩岭国家级自然保护区森林生态系统服务价值量的参数数据Table 3 Value parameter data of forest ecosystem services in Wuyanling National Nature Reserve单位库容
造价/(元·t−1)水质净化费用/
(元·t−1)运输和挖取单位
体积的土方花费/
(元·m−3)磷酸二铵化肥
价格/(元·t−1)氯化钾化肥
价格/(元·t−1)有机质价格/
(元·t−1)固碳费用/
(元·t−1)6.11 2.09 12.60 2 400.00 2 200.00 320.00 1 200.00 氧气制造
费用/(元·t−1)负离子制造
费用/(10−18元·个−1)二氧化硫排
污费/(元·kg−1)氟化物排
污费/(元·kg−1)氮氧化物排
污费/(元·kg−1)滞尘排污费/
(元·kg−1)1 000.00 9.46 1.85 0.69 0.97 0.23 3. 评估结果与分析
3.1 乌岩岭国家级自然保护区森林生态系统服务的物质量
由表4可知:2017年乌岩岭国家级自然保护区森林生态系统净化大气环境服务的物质量最大,其次为涵养水源的物质量,为3.99×108 m3。
表 4 乌岩岭国家级自然保护区森林生态系统服务的物质量Table 4 Material quality of ecosystem services in Wuyanling National Nature Reserve林分类型 固碳量/
(t·a−1)释氧量/
(t·a−1)固碳释氧量/
(t·a−1)调/净水量/
(m3·a−1)积累营养物质量/
(t·a−1)固土量/
(t·a−1)针叶林 马尾松林 5.96×103 1.19×104 1.78×104 4.75×107 1.16×104 5.62×104 杉木林 2.20×104 4.82×104 7.02×104 7.57×107 4.82×104 9.99×104 柳杉林 9.78×102 2.25×103 3.23×103 2.77×106 2.25×103 3.67×103 常绿阔叶林 3.91×104 9.19×104 1.31×105 1.97×108 2.01×105 1.99×105 针阔混交林 9.84×102 1.97×103 2.95×103 5.71×106 3.10×103 6.97×103 经济林 4.58×101 1.04×102 1.50×102 2.55×105 6.07×101 3.02×102 竹林 2.50×104 6.08×104 8.58×104 7.00×107 3.23×104 8.21×104 均值 1.34×104 3.10×104 4.45×104 5.70×107 4.26×104 6.40×104 合计 9.41×104 2.17×105 3.11×105 3.99×108 2.98×105 4.48×105 林分类型 保肥量/
(t·a−1)负离子量/
(个·a−1)二氧化硫/
(kg·a−1)氟化物/
(kg·a−1)氮氧化物量/
(kg·a−1)滞尘量/
(kg·a−1)针叶林 马尾松林 2.04×105 1.55×1023 3.77×105 1.49×104 1.92×104 1.06×108 杉木林 4.02×105 1.96×1023 6.71×105 2.65×104 3.43×104 1.90×108 柳杉林 1.75×104 1.36×1022 2.46×104 9.72×102 1.25×103 6.94×106 常绿阔叶林 9.88×105 2.02×1024 1.01×106 2.93×104 6.82×104 2.46×108 针阔混交林 3.10×104 2.36×1022 6.04×104 1.03×103 2.38×103 8.60×106 经济林 1.34×103 9.51×1018 2.62×103 8.00×101 1.03×102 3.72×105 竹林 3.78×105 4.06×1023 7.11×105 1.21×104 2.81×104 1.01×108 均值 2.89×105 4.03×1023 4.08×105 1.21×104 2.19×104 9.42×107 合计 2.02×106 2.82×1024 2.85×106 8.49×104 1.53×105 6.59×108 3.2 乌岩岭国家级自然保护区森林生态系统服务的价值量
由表5可知:2017年乌岩岭国家级自然保护区森林生态系统服务的总价值为100.24×108元·a−1,单位面积生态服务价值为3.92×105元·hm−2·a−1。马尾松林、常绿阔叶林、针阔混交林、杉木林、柳杉林、经济林、竹林生态服务价值分别为1.00×109、5.33×109、1.34×108、1.93×109、7.59×107、5.32×106和1.55×109元·a−1。马尾松林、常绿阔叶林、针阔混交林、杉木林、柳杉林、经济林、竹林的单位面积生态服务价值分别为3.21×105、4.69×105、3.36×105、3.38×105、3.63×105、3.10×105、3.31×105、3.51×105和3.92×105元·hm−2·a−1。
表 5 乌岩岭国家级自然保护区森林生态系统服务的价值量Table 5 Value quality of ecosystem services in Wuyanling National Nature Reserve生态系统服务价值量/(元·a−1) 单位面积
生态服务
价值/
(元·hm−2·a−1)林分类型 固碳释
氧价值生物多样性
保护价值涵养水
源价值积累营养
物质价值保育土
壤价值净化大
气价值生态服务
总价值针叶林 马尾松林 1.90×107 3.20×107 3.90×108 8.15×107 4.50×108 2.76×107 1.00×109 3.21×105 杉木林 7.46×107 1.71×107 6.21×108 3.36×108 8.34×108 4.65×107 1.93×109 3.38×105 柳杉林 3.43×106 1.05×106 2.28×107 1.57×107 3.12×107 1.76×106 7.59×107 3.63×105 常绿阔叶林 1.39×108 2.27×108 1.62×109 1.43×109 1.85×109 7.72×107 5.33×109 4.69×105 针阔混交林 3.15×106 3.97×106 4.68×107 2.20×107 5.54×107 2.30×106 1.34×108 3.36×105 经济林 1.59×105 5.16×104 2.09×106 4.17×105 2.51×106 9.07×104 5.32×106 3.10×105 竹林 9.08×107 1.40×107 5.74×108 1.51×108 6.88×108 2.83×107 1.55×109 3.31×105 均值 4.71×107 4.22×107 4.68×108 2.90×108 5.59×108 2.63×107 1.43×109 3.51×105 合计 3.30×108 2.96×108 3.27×109 2.03×109 3.91×109 1.84×108 1.00×1010 3.92×105 保护区森林生态系统服务价值所占比例分别为保育土壤39.00%、涵养水源32.65%、积累营养物质20.27%、固碳释氧3.29%、生物多样性保护2.95%、净化大气环境1.83%。可见,保育土壤、涵养水源和积累营养物质是乌岩岭森林生态系统主要的服务价值,三者比例之和高达91.92%,占据绝对优势。
保护区不同森林类型生态系统服务价值从大到小依次为常绿阔叶林、杉木林、竹林、马尾松林、针阔混交林、柳杉林、经济林,其对应的生态系统服务价值所占比例分别为53.20%、19.24%、15.43%、9.98%、1.33%、0.76%、0.05%。可见,常绿阔叶林对乌岩岭森林生态系统服务价值贡献在50%以上,占绝对地位。
4. 讨论
乌岩岭国家级自然保护区不同森林类型的生态服务价值与单位面积服务价值的排序并不一致,这说明生态系统服务价值除受各林分面积大小的影响外,还受林分的结构、活力、生态力的影响[19-21]。常绿阔叶林的单位面积生态服务价值远远高于其他林分,因此可在森林总面积保持不变的情况下,通过把针叶林改造成阔叶林等林相改造技术,提高林分质量,优化生态系统的结构,进而增加生态系统服务的产出和价值[22-24]。
乌岩岭国家级自然保护区提供的主要生态服务是保育土壤、涵养水源,这与付梦娣等[10]对泰顺县生态服务的研究一致,但乌岩岭国家级自然保护区的单位面积生态服务价值(3.92×105元·hm−2·a−1)是泰顺县单位面积生态服务价值(1.90×105元·hm−2·a−1)的2倍多。可见,乌岩岭国家级自然保护区对维护泰顺县生态安全具有重要作用。
乌岩岭国家级自然保护区净化大气环境服务价值达1.84×108元,这其中还不包括可吸入颗粒物(PM10),细颗粒物(PM2.5)等服务价值。可见,保护区在养生保健、预防疾病等方面具有巨大的潜力,十分适合建设成为森林康养基地[25]。借助乌岩岭的生态优势,整合森林康养资源,丰富生态旅游产品的内涵,提高康养的层次和满意度,从而实现保护区的可持续发展,开辟绿水青山转化为金山银山的另一种途径。
自然保护区生态补偿资金的分配与生态系统服务长期脱钩,是造成保护区与周边村民矛盾的重要因素。生态补偿的本质就是对生态系统服务的外溢效益进行补偿[26]。评估生态系统的服务价值可作为生态补偿标准的依据[27]。
-
-
[1] XU Jiang, LI Haodong, CHEN Liqing, et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis [J]. Cell, 2006, 125(7): 1347-1360. [2] LUAN Sheng. The CBL-CIPK network in plant calcium signaling [J]. Trends Plant Sci, 2009, 14(1):37-42. [3] 龙雨. 水稻钾离子通道OsAKT1生理功能及其调控机制的电生理学研究[D]. 北京: 中国农业大学, 2014. LONG Yu. Electrophsiological Analysis of Function Molecular Regulatory Mechanism for Rice Potassium Channel OsAKT1 [D]. Beijing: China Agricultural University, 2014. [4] 闵水珠.植物钾离子通道的分子生物学研究进展[J].浙江农业学报, 2005, 17(3):163-169. MING Shuizhu. The progress on the molecular biology of the K+ channels in plants [J]. Acta Agric Zhejiang, 2005, 17(3): 163-169. doi:10.3969/j.issn.1004-1524.2005.03.014. [5] 商玲. 盐角草钾离子通道蛋白基因SeAKT1的克隆与表达[D]. 大连: 大连理工大学, 2013. SHANG Ling. Cloning and Expression of A K+ Channel Gene SeAKT1 from Salicornia europaea [D]. Dalian: Dalian University of Technology, 2013. [6] 徐娟. 棉花钾离子通道基因GhAKT1和转运体基因GhKT2的克隆及功能分析[D]. 北京: 中国农业大学, 2014. XU Juan. Cloning and Functional Characterizition of Potassium Channel Gene GhAKT1 and Potassium Transporter Gene GhKT2 from Cotton (Gossypium hirsutum L. ) [D]. Beijing: China Agricultural University, 2014. [7] MÄSER P, THOMINE S, SCHROEDER J I, et al. Phylogenetic relationships within cation transporter families of Arabidopsis [J]. Plant Physiol, 2001, 126(4):1646-1667. [8] ZIMMERMANN S, SENTENAC H. Plant ion channels:from molecular structures to physiological functions [J]. Curr Opin Plant Biol, 1999, 2(6):477-482. [9] LIU Kun, LI Legong, LUAN Sheng. Intracellular K+ sensing of SKOR, a shaker-type K+ channel from Arabidopsis[J]. Plant J Cell Mol Biol, 2006, 46(2):260-268. [10] GAYMARD F, PILOT G, LACOMBE B, et al. Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap [J]. Cell, 1998, 94(5):647-655. [11] ROBERTS S K, TESTER M. Inward and outward K+-selective currents in the plasma membrane of protoplasts from maize root cortex and stele [J]. Plant J, 1995, 8(6):811-825. [12] ROBERTS S K, TESTER M. Permeation of Ca2+ and monovalent cations through an outwardly rectifying channel in maize root stelar cells [J]. J Exp Bot, 1997, 48(309):839-846. [13] HOTH S, HEDRICH R. Distinct molecular bases for pH sensitivity of the guard cell K+ channels KST1 and KAT1[J]. J Biol Chem, 1999, 274(17):11599-11603. [14] LACOMBE B, PILOT G, GAYMARD F, et al. pH control of the plant outwardly-rectifying potassium channel SKOR [J]. FEBS Lett, 2000, 466(2/3):351-354. [15] GEIGER D, BECKER D, VOSLOH D, et al. Heteromeric AtKC1· AKT1 channels in Arabidopsis roots facilitate growth under K+-limiting conditions [J]. J Biol Chem, 2009, 284(32):21288-21295. [16] HOTH S, DREYER I, HEDRICH R. Mutational analysis of functional domains within plant K+ uptake channels[J]. J Exp Bot, 1997, 48:415-420. [17] FAN Liumin, WANG Yongfei, WU Weihua. Outward K+ channels in Brassica chinensis pollen protoplasts are regulated by external and internal pH [J]. Protoplasma, 2003, 220(3/4):143-152. [18] 王龙强, 米永伟, 蔺海明.盐胁迫对枸杞属两种植物幼苗离子吸收和分配的影响[J].草业学报, 2011, 20(4):129-136. WANG Longqiang, MI Yongwei, LIN Haiming. Effect of salt stress on ion absorption and distribution of two Lycium seedlings [J]. Acta Pratac Sin, 2011, 20(4): 129-136. [19] ZENG Shaohua, LIU Yongliang, WU Min, et al. Identification and validation of reference genes for quantitative real-time PCR normalization and its applications in Lycium [J]. PLoS One, 2014, 9(5): e97039. doi: 10.1371/journal.pone.0097039. [20] LI Junlin, ZHANG Huanhao, LEI Han, et al. Functional identification of a GORK potassium channel from the ancient desert shrub Ammopiptanthus mongolicus (Maxim.) Cheng f. [J]. Plant Cell Rep, 2016, 35(4):803-815. [21] ROBERTS S K, TESTER M. Permeation of Ca2+ and monovalent cations through an outwardly rectifying channel in maize root stelar cells [J]. J Exp Bot, 1997, 48(4):839-846. [22] WEGNER L H, de BOER A H. Properties of two outward-rectifying channels in root xylem parenchyma cells suggest a role in K+ homeostasis and long-distance signaling [J]. Plant Physiol, 1997, 115(4):1707-1719. [23] HU Jing, MA Qing, KUMAR T, et al. ZxSKOR is important for salinity and drought tolerance of Zygophyllum xanthoxylum by maintaining K+ homeostasis [J]. Plant Growth Regul, 2016, 80(2):195-205. [24] WANG Chunmin, ZHANG Jinlin, LIU Xuesong, et al. Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+ [J]. Plant Cell Environ, 2009, 32(5):486-496. [25] 王茜, 王沛, 王锁民.盐生植物小花碱茅外整流K+通道SKOR基因片段的克隆及序列分析[J].草业科学, 2012, 29(8):1218-1223. WANG Qian, WANG Pei, WANG Suomin. Cloning and sequence analysis of outward-rectifying potassium channel SKOR gene fragment from halophyte Puccinellia tenuiflora [J]. Pratac Sci, 2012, 29(8): 1218-1223. [26] 王龙强. 盐生药用植物黑果枸杞耐盐生理生态机制研究[D]. 兰州: 甘肃农业大学, 2011. WANG Longqiang. The Physio-ecological Mechanism of Salt Tolerance of Medicinal Halophyte Lycium ruthenieum[D]. Lanzhou: Gansu Agricultural University, 2011. [27] 刘贯山, 王元英, 孙玉合, 等.高等植物钾转运蛋白[J].生物技术通报, 2006(5): 13-18. LIU Guanshan, WANG Yuanying, SUN Yuhe, et al. Proteins for transport of potassium in higher plants [J]. Biotechnol Bull, 2006(5): 13-18. 期刊类型引用(0)
其他类型引用(24)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2018.01.014