-
景观格局反映景观要素在空间结构上的特征,可以从不同尺度讨论要素间的相互作用与生态效应[1],是景观异质性的外在表征。目前,国内外学者对于景观格局的研究主要分为2个方面,即景观格局的空间质异性与时间异质性研究[2]。景观异质性在空间上的表达往往是复杂而连续的,因此以遥感(RS)和地理信息系统(GIS)等方法结合景观格局指数进行讨论,有助于实现格局演变的可视化。在景观生态学中,认为土地即景观[1]。据以往研究来看,土地利用变化可以反映景观格局演变过程,将土地利用同生态环境与自然资源系统相结合进行探讨,成为国内外研究的热点问题[3-4]。伴随3S技术的快速发展,土地利用的空间分异研究取得了长足的进展,土地利用结构分析已应用到城市及山区用地空间扩展[5]、景观组分在地形梯度上的分异[6]、湿地格局分异[7]等诸多方面。神农架林区位于中国地势二、三阶梯过渡地带,是中国重要的气候敏感区和生态环境脆弱地带[8]。20世纪六七十年代间,由于不合理开发导致区域生态环境遭严重破坏,林区政府开始探索绿色可持续发展模式[9]。本研究将基于多源数据,对神农架林区土地利用结构的组成及其时空演变特征与驱动力进行探讨,以探究20世纪90年代以来森林保护工程的成效,同时为林区的生态系统健康评价研究提供参考。
-
神农架林区地处鄂西北山区,是中国唯一以“林区”命名的行政区划,总面积约3 215.80 km2。林区地处31°15′~31°57′N,109°56′~110°58′E,西南部以近东西向的山脉为主,其中最高峰神农顶高3 105.4 m,是华中地区最高点[10]。神农架林区是中国东西植物区系的交汇地带和南北植物区系的过渡地带,其亚热带森林生态系统是全球中纬度地区唯一保存完好的地区,拥有世界上最为丰富的生物多样性[11],是具有全球意义的基因库,被称为“绿色奇迹”,林区内包括森林、灌丛、草甸和湿地等各类生态系统,具有调节气候、涵养水源、保持水土等重要生态环境服务价值[12]。近年来,以旅游业为主体的第三产业发展迅速,2018年全区旅游收入达57.29亿元,林区内建设用地规模大幅扩张,生态风险有所升高。
-
以1996、2007、2018年Landsat遥感影像为数据基础,影像空间分辨率为30 m,选取每个年份植被状态良好的2景影像,影像的云量均低于2%;相关规划资料详见表1。
表 1 数据资料来源统计
Table 1. Data source statistics
数据类型 数据名称 来源 遥感影像 1996年125/38、126/38 Landsat 5 TM遥感影像 美国地质勘探局网站(http://glovis.usgs.gov/) 2007年125/38、126/38 Landsat 8 OLI遥感影像 2018年125/38、126/38 Landsat 8 OLI遥感影像 相关规划资料 《神农架林区土地利用总体规划(2006−2020年)》 中国神农架林区人民政府 《神农架林区国民经济和社会发展统计公报》 《神农架林区统计年鉴》 中国神农架林区统计局 《神农架国家公园体制试点建设白皮书》 中国神农架国家公园管理局 在ENVI 5.3.1软件中对遥感影像进行预处理,通过对遥感影像的目视判读和对研究区域的实地调查,采用最大似然法对遥感影像进行监督分类。根据研究目的,结合国家标准GB/T 21010−2017《土地利用现状分类》,将神农架林区土地划分为林地、草地、建设用地、耕地和水域等五大类。利用Erdas Imagine 2015软件计算解译精度,结果显示3个年份Kappa系数都达85%以上,符合研究需要。
-
土地利用转移矩阵用于描述不同土地利用类型之间的转移情况,能反映研究时间段内土地利用类型转移的数量与方向[13-15]。其通用公式为
$$ {{A}}_{ij} = \left[ {\begin{array}{*{20}{c}} {A_{11}}&{A_{12}}& \cdots &{A_{1n}}\\ {A_{21}}&{A_{22}}& \cdots &{A_{2n}}\\ \vdots & \vdots & \vdots & \vdots \\ {A_{n1}}&{A_{n2}}& \cdots &{A_{nn}} \end{array}} \right]\text{。} $$ (1) 式(1)中:Aij为土地面积;n为土地利用类型数;i、j为转移前后的土地利用类型。
-
景观格局分布的重心模型用于研究景观格局在空间上的分布情况,而多年份数据的叠加则可以反映景观格局重心在不同时刻的迁移变化,是过程研究中重要的表征指标[16-17]。
重心坐标计算公式为:
$$ X_t = \frac{{\displaystyle\sum\limits _{i = 1}^{n}D_{ti}X_i }}{{\displaystyle\sum\limits _{i = 1}^{n}D_{ti}} }\text{;} $$ (2) $$ Y_{t} = \frac{{\displaystyle\sum\limits _{i = 1}^{n}D_{ti}Y_i }}{{\displaystyle\sum\limits _{i = 1}^{n}D_{ti}} }\text{;} $$ (3) 重心距离迁移公式为:
$$ D = \sqrt {{{\left( {X_{t2} - X_{t1}} \right)}^2} + {{\left( {Y_{t2} - Y_{t1}} \right)}^2}} \text{。} $$ (4) 式(2)~(4)中:Xt、Yt为研究区域内某一景观类型在时间t的重心坐标;Dti为t时刻研究区域内第i个斑块的面积;Xi和Yi表示研究区域的坐标;D为某一景观类型的重心在t1和t2时间段内移动的距离。
-
景观格局指数是描述景观变化的一种定量研究方法,是景观格局结构组成与空间配置信息的集中反映[18-20]。选取8个对于景观结构变化较为敏感的指数:斑块数(NP)、最大斑块指数(LPI)、散布与并列指数(IJI)、聚合度指数(AI)、分离度指数(SPLIT)、景观分割指数(DIVISION)、内聚力指数(COHESION)与香农多样性指数(SHDI),采用移动窗口法[21-22],在Fragstats软件中每次移动1个栅格,以900 m大小的移动窗口,计算得到研究区域各指数的空间分布,分析神农架林区景观格局破碎化及多样性特征。
-
从图1和表2可以看出:林地是研究区域最主要的用地类型,占林区总面积的90%以上,22 a间,林地面积累计增加39.34 km2,森林覆盖度呈现增长趋势;草地与耕地面积总体上呈现减少趋势;建设用地面积持续增加,近10 a间增速比较明显,2018年研究区域内建设用地面积与1996年相比增加43.55 km2,这与该地区城镇化建设和旅游的大力发展有关;水域面积累计增加6.75 km2。
图 1 1996、2007、2018年神农架林区土地覆被类型分类示意图
Figure 1. Land cover types in Shennongjia Forestry District basin in 1996, 2007, 2018
表 2 1996、2007、2018年神农架林区土地利用结构表
Table 2. Land use structure in Shennongjia Forestry District basin in 1996, 2007, 2018
年份 林地 草地 建设用地 耕地 水域 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 1996 3 006.80 92.95 94.86 2.93 3.49 0.11 129.82 4.01 2.39 0.07 2007 2 994.11 92.78 83.72 2.59 8.06 0.25 141.25 4.38 10.21 0.32 2018 3 046.14 94.09 59.08 1.82 47.05 1.45 75.96 2.35 9.13 0.28 -
由表3可知:1996−2007年,林地转移为其他类型景观的面积变化量最大,主要转移为耕地和草地,转出面积分别为49.29和23.47 km2,而转移为林地最多的景观类型也是耕地和草地,由此可知林地与耕地、草地间相互转移关系密切,90%以上的新增建设用地由林地和耕地转化而来。
表 3 1996−2007年、2007−2018年、1996−2018年神农架林区土地利用转移矩阵
Table 3. Land use transfer matrix in Shennongjia Forestry District of 1996−2007, 2007−2018 and 1996−2018
年份 土地利用类型 2007 林地/km2 草地/km2 建设用地/km2 耕地/km2 水域/km2 1996 林地 2 925.30 23.47 2.83 49.29 5.91 草地 33.50 54.88 0.28 6.17 0.04 建设用地 0.07 0.06 2.04 0.59 0.72 耕地 35.06 5.32 2.85 85.11 1.48 水域 0.18 0.01 0.06 0.09 2.05 年份 土地利用类型 2018 林地/km2 草地/km2 建设用地/km2 耕地/km2 水域/km2 2007 林地 2 949.67 9.40 15.31 17.38 2.36 草地 36.92 42.99 0.93 2.40 0.47 建设用地 0.88 0.06 5.74 1.15 0.23 耕地 56.61 6.60 22.16 54.78 1.09 水域 2.05 0.01 2.91 0.26 4.98 年份 土地利用类型 2018 林地/km2 草地/km2 建设用地/km2 耕地/km2 水域/km2 1996 林地 2 935.21 14.35 25.45 26.35 5.43 草地 48.10 41.39 1.60 3.33 0.45 建设用地 0.16 0.03 2.74 0.26 0.30 耕地 62.47 3.31 16.88 45.94 1.22 水域 0.20 0.01 0.38 0.06 1.73 2007−2018年,林地仍然是转移面积最大的景观类型,主要转移为耕地和建设用地,转移面积分别为17.38和15.31 km2,表明神农架林区在城镇化建设及旅游业发展过程中,仍存在以占用林地作为代价进行开发建设的现象;林地与耕地、草地间仍保持着密切的相互转移关系,而林地的转出面积减少37.05 km2,转入面积增加27.66 km2,林地的总面积增加趋势显著。
-
通过ArcGIS计算,得到1996、2007和2018年神农架林区各个用地类型景观格局分布重心转移的距离、速度和方向(表4)。1996−2018年,研究区域内水域和建设用地重心迁移明显,水域重心在研究时段内持续向西南方向迁移,累计迁移11 745.64 m,其中,1996−2007年迁移速度较快,为829.11 m·a−1,主要是由于大九湖湿地恢复与水库修建导致的;建设用地重心向西南方向迁移10 752.54 m,说明神农架林区的建设向西南发展,尤其是2016年进入国家公园发展的新时代,其范围划定也与建设用地重心的迁移方向相印证;林地具有向东扩张趋势,其重心在研究时间内向东南方向移动5 594.52 m。
表 4 景观类型转移方向与距离
Table 4. Landscape type transfer direction and distance
景观类型 1996−2007 2007−2018 1996−2018 距离/m 速度/(m·a−1) 方向 距离/m 速度/(m·a−1) 方向 距离/m 速度/(m·a−1) 方向 林地 5 674.80 515.89 东南 2 895.32 263.21 东北 5 594.52 254.30 东南 草地 3 088.72 280.79 东南 7 127.86 647.99 西南 5 286.79 240.31 西南 建设用地 9 120.18 829.11 西南 2 926.19 266.02 西北 10 752.54 488.75 西南 耕地 6 124.45 556.77 西南 5 135.85 466.90 东北 1 441.94 65.54 东北 水域 891.62 81.06 西南 2 331.64 211.97 西南 11 745.64 533.89 西南 -
从同年份的同类型景观比较结果(表5)来看:林地斑块个数最少,最大斑块指数与内聚力指数均较高,景观分割指数小于0.2,说明林地斑块的完整性较好,景观破碎化程度低,林地为研究区域的景观基质,而建设用地和水域等类型则以斑块或廊道的形式镶嵌其中。
表 5 神农架林区1996−2018年景观格局指数变化
Table 5. Change of landscape pattern index from 1996 to 2018
年份 景观类型 NP LPI IJI COHESION DIVISION SPLIT AI 1996 林地 372 92.75 52.14 99.99 0.14 1.16 98.67 草地 2 228 0.27 26.27 96.23 1.00 37 674.58 85.72 建设用地 274 0.02 64.51 86.60 1.00 11 459 303.82 72.60 耕地 4 618 0.13 25.90 92.27 1.00 134 702.27 78.60 水域 188 0.03 63.54 90.10 1.00 9 165 348.78 72.24 2007 林地 404 89.47 59.14 99.99 0.20 1.25 98.63 草地 2 470 0.35 34.02 96.06 1.00 35 191.27 85.05 建设用地 610 0.04 79.72 85.51 1.00 4 732 108.88 71.91 耕地 4 732 0.13 40.07 93.86 1.00 85 981.12 77.94 水域 1 013 0.05 70.28 88.06 1.00 2 654 644.95 64.97 2018 林地 292 93.98 85.89 99.99 0.12 1.13 98.84 草地 1 923 0.14 29.42 94.54 1.00 112 169.27 83.75 建设用地 3 168 0.11 66.81 88.65 1.00 522 690.55 70.45 耕地 4 192 0.04 52.17 87.89 1.00 719 999.04 72.54 水域 989 0.04 70.51 88.75 1.00 2 563 736.66 67.51 从不同年份的同类型景观比较结果(表5)来看:林地的景观破碎化程度先增后减,草地、耕地与水域的景观破碎化程度与分散程度在研究时段内呈增加趋势;人类活动使建设用地不断增加并向外扩张,使其破碎化程度在总体上呈上升趋势,但随着城镇化的推进,建设用地景观类型内部也出现了一定程度的整合。
由图2可见:从整体上看,神农架林区景观的破碎度有所降低,趋于整合;从局部来看,东北部区域与中南部区域的破碎化程度加剧,建设用地等人工斑块的扩张导致部分区域景观破碎度升高,而景观多样性也随之呈现扩散趋势;而林区多年来封山育林、人工造林、退耕还林等保护工作的开展,使得部分重点保护区域内林地面积持续增加,在地表覆被类型中占据主导地位,因此这些区域内景观多样性会呈现一定的降低趋势。
-
通过对神农架林区1996−2018年经济发展数据(图3)与景观格局演变特征的分析对比,可知在开发历史较久,受经济增长与人类活动干扰较大的地区,景观格局演变较为显著,如东北部的松柏镇是神农架林区政府的驻地所在,而中南部的木鱼镇是神农架自然保护区管理局的驻地,也是神农架旅游接待服务中心,这些区域的景观破碎化程度呈现出较为明显的升高趋势。近年来旅游业更是逐步成为神农架林区的支柱性产业,2018年林区的旅游总收入接近57.3亿元,约为地区生产总值的2倍。与此同时林区大力开展的旅游配套设施建设及房地产项目开发,使得人工斑块数量显著增加。22 a间林区建设用地面积骤增43.56 km2,所占比例由0.11%提升至1.45%。因此,经济因素对神农架林区景观格局的演变具有重要影响。
-
由图4可见:神农架林区人口数量出现先增后减的趋势;神农坛、天生桥、官门山、大九湖在内的几大主要景区游客接待量逐年上涨,于2018年突破1 587.5万人次。为提高游客接待能力而进行的景区开发,使得区域景观类型发生显著变化,1996−2018年,林地累计向建设用地转移25.45 km2,局部空间与生态环境所承受的压力随之增大。林区于2014年开展“美丽乡村”建设,以村庄布局“减量、聚居”为总体要求,注重农村土地资源综合整治,因此耕地及建设用地中的住宅用地分布有所整合,但旅游服务用地的增加仍然造成了景观破碎化程度的升高。
-
土地利用结构及变化深受区域政策影响[23]。20世纪60−80年代,采取毁林开荒的开发方式追求经济效益,神农架林区的生态环境遭到严重破坏,森林覆盖率骤降至63.5%。神农架林区于2000年全面启动天然林资源保护工程和退耕还林还草工程[24],研究时段内耕地向林地、草地转移面积超过65 km2;2003年确立“保护第一,科学规划,合理开发,永续利用”的发展方针,促进生态环境逐步改善,森林覆盖率达90%以上;2011年发布《神农架旅游总体规划》,加快推进神农顶、官门山和天生桥景区配套设施建设,区域内建设用地面积显著增长,同时也与建设用地重心向西南迁移相印证;2016年7月,神农架被正式列入世界自然遗产名录,同年11月,神农架国家公园管理局正式成立,标志着神农架的保护与管理工作步入国家公园新时代[9]。1996−2018年,林区内水域面积累计增加6.75 km2,其中湿地的生态恢复成果得益于大九湖国家湿地公园的建立,湿地科学监测与保护工作在政策的引导下逐渐步入正轨[25-26]。
-
相比于社会经济因素,自然因子的作用在短时间内并非十分显著,但从长远时间看,气候等因子的变化将对区域景观格局产生重大影响。1996−2018年,神农架林区的林地面积显著增加,林地主要由耕地和草地转化而来,除去政策的引导作用,主要依靠自然更新因素完成转化。近年来,神农架林区年降水量及年平均气温均呈较为微弱的增加趋势[27],小气候条件优越,加之林区内土壤有机质含量丰富,为耕地向林地的演替提供了有利条件。
-
1996−2018年,神农架林区森林覆盖度总体上呈增长趋势,这与前人研究的结果一致[28]。刘家琰等[29]利用SPOT-VEGETATION数据对林区1998−2013年植被覆盖度格局变化进行分析,发现植被覆盖度呈较好增长趋势,整体变化率为1.45%。水域景观面积显著增加,破碎度升高,湿地生态恢复稳中向好,这主要得益于湿地生态保护政策的有效实施,人为因素在过程中起到了决定性作用[24],在保护优先的政策指导下,林区逐步走上良性循环的绿色发展道路。同时,也有学者对自然因素进行探究,张子一等[30]讨论了个别年份受极端气候与虫害等自然因素,导致常绿植物受灾使其覆盖度有所下降。
城镇化的持续推进与旅游产业的迅速发展,造成了人工斑块对林地、草地等自然景观类型的侵占,景区内旅游基础设施的兴建,对生态环境造成严重的干扰,增大生态压力。建设用地的扩张促使区域内景观破碎度与多样性的增加,生态空间与社会经济空间融合程度不断加深。
由于旅游业的发展需求,连通林区内外的交通建设逐年推进。截至2018年林区内公路里程数达2 048.5 km,其中各大景区范围内公路网建设较为密集,造成林区景观局部破碎化[31],导致原本连续的生态廊道网络出现生态间隙[32],阻碍生态流的正常流动,降低了生物迁移的安全性。神农架机场位于林区中西部的红坪镇,于2014年正式通航,机场的落成使得区域内建设用地与耕地面积骤增,分割并部分取代了原有大面积草地斑块,强烈的人工干扰可能会降低区域生态系统的稳定性。
-
1996−2018年,神农架林区土地利用结构变化显著,森林覆盖度总体上呈现增长趋势,湿地生态恢复稳中向好。随着神农架林区对于生态发展政策方针的不断调整与优化,森林保护工程成效日益显现,同时也在逐渐改变生态系统的结构和功能。
景观破碎度在整个研究区域内呈现降低趋势,表明神农架林区景观总体上趋于整合,但局部破碎化程度加剧,林区东北部与中南部区域地表覆被逐渐由原本较为整合的林地景观转变为多种用地类型共存,林区建设用地的持续扩张,社会经济空间与生态空间相互融合。人为因素是引起景观格局变化的主导因素,近年来神农架大力开发的旅游产业造成了人工斑块对自然景观的侵占,其他用地类型向建设用地转化的趋势较明显,将对生态系统安全产生威胁。
Spatial and temporal evolution and driving forces of the landscape pattern in Shennongjia Forestry District
-
摘要:
目的 20世纪90年代以来神农架林区森林保护工程陆续实施,使得神农架林区景观格局发生显著变化。需要分析这些变化及其驱动机制,以探究保护工作成效,同时为林区未来生态环境保护与土地合理利用对策的制定提供参考。 方法 在遥感(RS)和地理信息系统(GIS)技术支持下,以神农架林区为研究对象,选取1996、2007、2018年共3个不同时期的遥感影像为数据源,利用土地利用转移矩阵、景观格局分布重心模型与景观格局指数,定量分析了神农架林区1996−2018年景观格局的时空演变特征及驱动力。 结果 1996−2018年,林地与水域景观处于稳定向好状态,林地是研究区最主要的用地类型,占林区总面积的90%以上;草地与耕地面积总体呈减少趋势,其他土地用地类型向建设用地转化的趋势较明显。神农架林区总体上景观破碎度有所降低,而东北部区域与中南部区域的破碎化程度加剧,景观多样性也随之呈现扩散趋势。经济、人口、政治等是引起景观格局变化的主导因素。 结论 神农架林区退耕还林等生态保护与恢复工程初见成效,景观格局总体趋于整合,局部破碎化加重而景观多样性有所增加,社会经济空间与生态空间相互融合;近年来神农架大力开发的旅游产业造成了人工斑块对自然景观的侵占,对林区生态安全产生威胁。图4表5参32 Abstract:Objective With a quantitative analysis conducted of the changes in the landscape pattern in Shennongjia Forestry District due to the implementation of forest protection projects since 1990s as well as their driving mechanisms, this study is aimed to explore the effectiveness of the conservation in this region and provide a reference for the future ecological environment protection and rational land use. Method Supported by remote sensing (RS) and geographic information system (GIS) technology and taking Shennongjia Forestry District as the research object, with remote sensing images from three different periods of 1996, 2007 and 2018 selected as data sources, this paper has mainly employed land use transfer matrix, landscape pattern distribution center of gravity model and landscape pattern index. Result Between 1996 and 2018, the landscape of forest land and water areas has retained a stable and favorable state while there is a general decrease in the area of grassland and cultivated land showed; There has been a more significant tendency in the conversion of other land types to construction land and such changes mainly attribute to human factors. Conclusion Ecological protection and restoration projects such as returning farmland to forests in Shennongjia Forestry District have been rewarded with a better integrated landscape pattern, enhanced landscape diversity in spite of aggravated local fragmentation as well as more favorable socioeconomic and ecological space. On the other hand, due attention should be paid to threats against ecological security induced by the booming local tourism with various natural landscapes replaced by artificial patches. [Ch, 4 fig. 5 tab. 32 ref.] -
Key words:
- Shennongjia Forestry District /
- land use /
- landscape pattern evolution /
- driving forces
-
植物群落的空间(地带性)特征和时间(演替动态)特征都会反映在物种多样性这一重要的群落信息上[1]。森林群落的物种组成与结构是生态系统功能和过程的基础,既能反映群落的种间关系,也可表现环境对物种的影响,同时也是衡量植物群落稳定的重要尺度和方式[2]。物种多样性是物种丰富度和分布均匀性的综合反映,体现了群落的结构类型、组织水平、发展阶段、稳定程度和生境差异[3-4],分析植物群落的结构和物种多样性,对揭示群落的更新、稳定性与演替规律具有重要的意义[5]。稳定性是群落内部各个植物种群、动物种群、微生物种群、土壤环境、气候等相互作用和生物运动的结果,是在群落演替进化过程中形成和表现的[6]。稳定性是植物群落结构与功能的综合特征,是生态系统存在的必要条件和重要功能表现[7]。物种多样性和稳定性是植物群落的2个属性,它们之间的相互关系和相互影响一直受到生态学家的关注[8]。火山喷发为研究植被演替尤其是原生演替提供了难得的条件[9]。五大连池火山处于大小兴安岭和松嫩平原的交错地带,至今历经了7次火山喷发,形成了14座火山,拥有大陆上保存完整、分布集中、形态典型、种类最齐全的新老期火山地质地貌[10]。五大连池火山区生态条件独特复杂,由熔岩裸地到演化中的不同生境内可见低等植物和高等植物(演替中的不同植被生态系列)[11]。五大连池完好的内陆单成因火山地貌,原生而完整的植被演替过程,且地处植被交错区(大小兴安岭植被交错带),是研究火山干扰和植被演替与生物多样性系统发育等的理想场所[12]。近年来,对火山森林群落的物种多样性有大量研究。如牟长城等[13]研究了长白山林区森林/沼泽交错群落的植物多样性,郝占庆等[14-17]研究了长白山北坡植物群落物种多样性,姜萍等[18]研究了长白山南坡森林群落组成-结构以及树种多样性。然而,对五大连池火山森林群落的多样性和稳定性研究尚未有报道。本研究以五大连池4座老期火山为研究对象,从森林群落多样性指数、年龄结构和优势树种的存活曲线入手,分析森林群落多样性与稳定性,为五大连池火山森林植被的演替、恢复与可持续发展提供科学依据。
1. 研究地区与研究方法
1.1 研究区概况
五大连池火山群(48°30′~48°50′N,126°00′~126°45′E)中心区由新期火山活动形成的巨大熔岩流——石龙、2座年轻火山和巨大的熔岩形成的石龙台地和火山堰湖群构成,四周由老期火山活动形成的玄武岩台地构成,台地上环布12座老期火山和众多熔岩流,是中国第1个以火山自然环境及生态系统为保护对象的自然保护区[19]。
本研究选取东焦得布山(48°39′13ʺN,126°16ʹ30ʺE)、小孤山(48°40′45ʺN,126°22ʹ06ʺE)、尾山(48°47′23ʺN,126°15ʹ26ʺE)和南格拉球山(48°44′13ʺN,126°00ʹ46ʺE)4座老期火山。研究区属温带大陆性季风气候,年平均气温−0.5 ℃,年平均降水量476.3 mm,年均无霜期121 d。研究区主要森林植被类型为温带落叶阔叶混交林,主要包括蒙古栎Quercus mongolica林和落叶阔叶林等。乔木优势树种南坡为蒙古栎和黑桦Betula davurica,北坡为紫椴Tilia amurensis和色木槭Acer mono等。研究区分布有暗棕壤性火山灰土和黑土性火山灰土[20]。
1.2 研究方法
1.2.1 样地设置与植被调查
于2018年7中旬至8月中旬植物生长旺盛期,采用样地调查法,在老期火山东焦得布山(高海拔525 m、中海拔475 m、低海拔425 m),小孤山(高海拔450 m、中海拔425 m、低海拔400 m),尾山(高海拔510 m、中海拔470 m、低海拔430 m)和南格拉球山(高海拔580 m、中海拔520 m、低海拔460 m)的南坡和北坡,每坡设置低、中、高3个海拔样地。乔木层共取24个样方,每个样方面积20 m×20 m,分别记录乔木种类、个体数、胸径、树高和群落的总郁闭度及所有乔木层树种的幼苗更新情况,用生长锥钻取胸径≥2.5 cm的乔木;灌木层分别设置4个2 m×2 m的小样方,共96个样方,记录灌木的密度、盖度、高度;草本层分别设置5个1 m×1 m的小样方,共120个样方,记录草本的密度、盖度、高度。
1.2.2 样地资料处理
将野外采取的年轮样芯,带回实验室固定在木槽内自然风干,待木芯完全风干后,用乳白胶固定在木槽上。固定后的芯样用砂粒由粗到细的砂纸打磨抛光,直到年轮清晰可见。用LINTAB年轮分析仪测年[21]。
1.2.3 多样性指数测度方法
采用Margalef、Simpson、Shannon-Wiener和Pielou等指数比较4座火山森林群落的丰富度、多样性和均匀度,多样性指数计算参考文献[3]。采用方差分析法(ANOVA)对各植物群落物种多样性指数进行差异性检验。多样性指数值均为平均值±标准误。植物种类的重要值可体现植物在群落中的相对重要性:乔木层重要值(IV1)=(相对密度+相对优势度+相对高度)/3;灌木和草本层重要值(IV2)=(相对高度+相对盖度+相对密度)/3。
1.2.4 稳定性研究方法
森林群落的年龄结构是群落变化发展的内在依据,因此,通过对森林群落年龄结构分析,可以测度群落的稳定性和动态[22]。优势种或建群种的种群稳定对群落稳定有决定作用[23]。选取群落乔木层年龄结构、乔木层重要值最高种群的年龄结构判定森林群落的稳定性。本研究中龄级划分采用胸径≥2.5 cm(利用年轮样芯测定年龄)的乔木划分,龄级划分标准以20 a为1个龄级,Ⅰ龄级为0~20 a、Ⅱ龄级为20~40 a,Ⅲ龄级为40~60 a,其他龄级以此类推[24]。统计分析后绘制群落的年龄结构图和种群的年龄结构图,以此判断群落的稳定性。
2. 结果与分析
2.1 森林群落结构特征
从表1可见:乔木树种北坡最多的山体为10种,南坡最多的山体为6种,群落树种组成简单。研究区南北坡向上森林群落在结构数量上都有差异,北坡各山体间乔木层和草本层的物种数目相差较大,而南坡各山体间森林群落各层次在结构数量上差异不明显(东焦得布山草本层除外)。
表 1 五大连池火山森林群落的环境特征和数量特征Table 1 Characteristics of the quantitative and environment of forest communities in Wudalianchi Volcanoes研究区 喷发时间/万a 海拔/m 坡向 乔木层 灌木层 草本层 盖度/% 种数 盖度/% 种数 盖度/% 种数 东焦得布山 17~19 531.9 北 60±13 10±1 50±16 12±1 20±4 24±3 南 70±13 6±1 15±6 6±1 30±3 37±2 小孤山 28~34 453.5 北 70±7 5±1 25±2 9±1 5±2 11±1 南 80±2 5±1 10±4 5±1 15±5 23±1 尾山 40~50 516.6 北 75±4 8±1 45±12 7±1 25±12 28±7 南 80±0 4±1 20±6 5±0 20±3 17±3 南格拉球山 70~80 596.9 北 65±0 10±1 40±12 7±1 20±3 14±3 南 60±6 3±1 10±3 4±1 30±9 23±1 说明:盖度和种数为群落内各样方的平均值±标准差 2.2 森林群落物种多样性特征
2.2.1 北坡森林群落物种多样性特征
从图1可见:4座火山北坡森林群落的各层次物种多样性指数有差异。Margalef指数和Shannon-Wiener指数从大到小依次为乔木层、草本层、灌木层,乔木层最大值分别为东焦得布山和尾山,最小值都为小孤山;灌木层最大值都为东焦得布山,最小值分别为南格拉球山和尾山;草本层最大值都为尾山,最小值都为南格拉球山。Simpson指数和Pielou指数从大到小依次为乔木层、灌木层、草本层,乔木层最大值都为尾山,最小值分别为小孤山和东焦得布山;灌木层最大值都为东焦得布山,最小值都为尾山;草本层最大值分别为尾山和东焦得布山,最小值都为南格拉球山。可见,4座火山北坡森林群落物种多样性主要受乔木层的影响;乔木层尾山的多样性指数、优势度指数和均匀度指数都最高,而小孤山的丰富度指数、多样性指数和优势度指数都最低;灌木层东焦得布山4种多样性测度指标都最大,而尾山多样性指数、优势度指数和均匀度都最小;草本层尾山物种的丰富度指数、多样性指数和优势度指数都最高,而南格拉球山4种多样性测度指标都最低。方差分析表明:4座火山北坡间,Margalef在乔木层是极显著差异(P<0.01),在草本层是显著差异(P<0.05);Shannon-Wiener指数在乔木层是显著差异外(P<0.05),其余群落内各层次的各种多样性指数均无显著差异(表2)。
表 2 五大连池火山森林群落多样性指数的方差分析和变异系数Table 2 One-way ANOVA and variation coefficient of the diversity index of forest communities in Wudalianchi Volcanoes多样性指数 层次 北坡 南坡 南北坡间 平均值 F P 变异系数 平均值 F P 变异系数 F P 变异系数 Margalef指数 乔木层 1.087±0.076 8.436 0.007** 0.234 0.443±0.080 0.235 0.869 0.188 34.135 0.000** 0.505 灌木层 0.588±0.039 0.871 0.495 0.125 0.196±0.058 0.472 0.711 0.455 32.885 0.000** 0.579 草本层 0.644±0.181 4.220 0.046* 0.843 0.899±0.117 3.369 0.084 0.354 1.347 0.259 0.563 Simpson指数 乔木层 0.688±0.027 2.639 0.121 0.107 0.212±0.048 0.097 0.959 0.160 78.882 0.000** 0.573 灌木层 0.432±0.041 1.155 0.385 0.200 0.160±0.049 0.701 0.581 0.562 18.448 0.000** 0.577 草本层 0.409±0.070 3.849 0.057 0.506 0.611±0.038 2.252 0.170 0.154 6.020 0.023* 0.359 Shannon-
Wiener指数乔木层 1.342±0.074 4.687 0.036* 0.168 0.391±0.077 0.080 0.969 0.127 79.321 0.000** 0.611 灌木层 0.716±0.073 1.156 0.384 0.216 0.244±0.073 0.616 0.626 0.526 20.742 0.000** 0.609 草本层 0.750±0.160 3.306 0.078 0.605 1.193±0.110 4.108 0.056 0.264 5.020 0.036* 0.443 Pielou指数 乔木层 0.834±0.026 0.987 0.447 0.063 0.353±0.057 0.116 0.948 0.121 62.497 0.000** 0.443 灌木层 0.728±0.049 1.204 0.369 0.147 0.306±0.091 0.746 0.558 0.582 17.356 0.000** 0.527 草本层 0.615±0.087 3.958 0.053 0.418 0.809±0.026 0.446 0.727 0.044 4.234 0.052 0.280 说明:*表示差异显著(P<0.05);**表示差异极显著(P<0.01) 4座火山北坡间,群落内各层次的物种多样性指数呈不同变化。本研究用变异系数定量表示群落物种多样性指数空间变化程度的差异(表2)。草本层的各种多样性指数变化最大,乔木层的Simpson指数和Pielou指数变化最小。因此,乔木层在物种多样性指数的空间变化上比灌木层和草本层更稳定,草本层表现出最大的空间差异。
对4座火山北坡森林群落内各层次物种多样性指数进行相关分析(表3)表明:乔木层与草本层的各指数均呈正相关性,而乔木层与灌木层、灌木层与草本层之间仅丰富度指数呈正相关性,其他各指数间均呈负相关。说明4座火山北坡森林群落物种多样性主要受乔木层和草本层的影响。
表 3 五大连池火山森林群落层次间多样性指数的相关系数Table 3 Correlation coefficients of the diversity index between forest community layers in Wudalianchi Volcanoes坡向 Margalef指数 Simpson指数 Shannon-Wiener 指数 Pielou指数 乔木层-
灌木层乔木层-
草本层灌木层-
草本层乔木层-
灌木层乔木层-
草本层灌木层-
草本层乔木层-
灌木层乔木层-
草本层灌木层-
草本层乔木层-
灌木层乔木层-
草本层灌木层-
草本层北 0.493 0.312 0.117 −0.146 0.462 −0.342 −0.112 0.552 −0.404 −0.410 0.114 −0.334 南 0.162 0.298 0.222 0.049 −0.243 0.275 0.124 −0.103 0.261 0.128 −0.264 0.476 2.2.2 南坡森林群落物种多样性特征
从图2可见:4座火山南坡森林群落中的各层次物种多样性有差异。Margalef指数、Simpson指数、Shannon-Wiener指数和Pielou指数从大到小依次为草本层、乔木层、灌木层。乔木层Margalef指数、Simpson指数和Shannon-Wiener指数最大值都是东焦得布山,最小值都是南格拉球山;乔木层Pielou指数最大值为小孤山,最小值为东焦得布山。灌木层4种多样性指数最大值都为南格拉球山,最小值都为尾山;草本层Margalef指数、Simpson指数和Shannon-Wiener指数最大值都是东焦得布山,草本层Pielou指数最大值为小孤山,草本层4种多样性指数最小值都为南格拉球山。可见,4座火山南坡森林群落物种多样性主要受草本层和乔木层的影响。乔木层东焦得布山的丰富度指数、多样性指数和优势度指数都最大,而南格拉球山4种多样性指数都最小;灌木层南格拉球4种多样性指数都最大,而尾山4种指数都最小;草本层东焦得布山的丰富度指数、多样性指数和优势度指数都最大,而南格拉球山4种多样性指数都最小。
4座火山南坡间,群落内各层次的各种物种多样性指数均无显著差异(表2)。4座火山南坡间,灌木层的各种多样性指数变化最大,乔木层的Simpson指数和Shannon-Wiener指数总体上变化最小,草本层的均匀度指数变化最小。因此,乔木层和草本层在物种多样性指数的空间变化上表现出比灌木层更稳定,灌木层表现出最大的空间差异。
对4座火山南坡森林群落内各层次物种多样性指数进行相关分析(表3)表明:乔木层与灌木层、灌木层与草本层各指数均呈正相关,而乔木层与草本层之间仅丰富度指数呈正相关,其他指数均呈负相关。说明4座火山南坡森林群落物种丰富度主要受草本层的影响。
2.2.3 南北坡向间森林群落物种多样性特征比较
由表2可知:4种多样性指数都是乔木层和灌木层北坡高于南坡,草本层北坡低于南坡,说明北坡乔木层和灌木层的物种多样性指数高于南坡,而草本层低于南坡。同时,南北坡向间仅草本层的Margalef指数没有显著差异,其余物种多样性指数均呈极显著(P<0.01)或显著差异(P<0.05)。北坡乔木层和灌木层的Simpson指数和Pielou指数的变异系数都低于南坡,而北坡草本层物种多样性指数的变异系数均高于南坡。同时,南北坡向间物种多样性指数的变异系数都较大。
2.3 森林群落稳定性特征
2.3.1 北坡森林群落稳定性特征
从图3可见:4座火山北坡森林群落的年龄结构均为稳定型,群落表现稳定增长状态。小孤山Ⅱ~Ⅵ龄级(40~80 a)的乔木株数占个体总数的69.74%,且无Ⅰ龄级(0~20 a)个体,处于成熟树阶段,群落的稳定性较差,其余3座山Ⅱ~Ⅲ龄级(20~60 a)的乔木株数分别占总数的73.53%(东焦得布山)、56.56%(尾山)和75.90%(南格拉球山),处于中龄树阶段,群落的稳定性较好。
由表4可知:在北坡各山体的乔木层中,紫椴的重要值相对较高,其次为色木槭、山槐和黑桦,表明紫椴在北坡各山体的群落中重要性较大。为了更好地分析北坡群落的稳定情况,进一步对北坡乔木层中重要值最大的紫椴的年龄结构进行分析。
表 4 五大连池火山森林群落乔木树种的重要值Table 4 Tree species with importance value of forest communities in Wudalianchi Volcanoes研究区 坡向 重要值 山槐 山杨 紫椴 黑桦 蒙古栎 色木槭 白桦 黄榆 春榆 裂叶榆 黄檗 东焦得布山 北 1.07 0.19 0.74 0.15 − 0.53 0.03 0.09 0.02 0.09 0.06 南 − 0.04 0.35 0.10 2.49 0.02 − − − − 0.01 小孤山 北 − 0.53 1.51 0.18 − 0.68 − − − 0.10 − 南 0.01 − 0.11 0.22 2.65 0.01 − − − − − 尾山 北 0.20 0.32 0.84 0.05 0.31 0.78 0.46 0.03 − − − 南 − − 0.01 0.01 1.67 0.31 − − − − − 南格拉球山 北 0.09 0.23 0.79 0.48 0.40 0.64 0.24 0.04 − 0.28 − 南 − − − 0.15 2.72 0.13 − − − − − 说明:山槐Maackia amurensis,山杨Populus davidiana,白桦Betula platyphylla,黄榆Ulmus macrocarpa,春榆Ulmus japonica, 裂叶榆Ulmus laciniata,黄檗Phellodendron amurense。–表示没有数值 由图4可知:4座火山的紫椴年龄结构均呈稳定型,Ⅱ~Ⅲ龄级个体数分别占总数的80.49%(东焦得布山)、56.76%(小孤山)、78.79%(尾山)和62.22%(南格拉球山),都处于中龄树阶段,群落的稳定性都较好,为稳定增长种群。群落的发展变化是以各个体的变化以及增减来实现的,年龄结构正是变化的依据,说明4座火山北坡森林群落处于稳定增长型状态。
2.3.2 南坡森林群落稳定性特征
由图5可知:4座火山南坡森林群落的年龄结构均为稳定型,群落处于稳定状态。小孤山Ⅱ~Ⅵ龄级的乔木株数占总数的85.62%,处于成熟树阶段,群落的稳定性较差,其余3座山Ⅱ~Ⅲ龄级的乔木株数分别占总数的80.18%(东焦得布山)、59.16%(尾山)和80.41%(南格拉球山),都处于中龄树阶段,群落的稳定性较好。
由表4可知:在南坡各山体的乔木层中蒙古栎的重要值较高,其次为紫椴和黑桦,表明蒙古栎在南坡各山体的群落中重要性较大。为了更好地分析南坡群落的稳定情况,进一步对南坡乔木层中重要值最大的蒙古栎的年龄结构进行分析。从图6可见:4座火山蒙古栎的年龄结构均呈稳定型,Ⅲ~Ⅵ龄级个体数分别占总株数的94.44%(东焦得布山)、86.82%(小孤山)、98.52%(尾山)和58.53%(南格拉球山),均处于成熟树阶段,群落的稳定性都较好,为稳定型种群,说明4座火山南坡森林群落处于稳定状态。
2.3.3 南北坡向间森林群落物种稳定性特征比较
由图3~6可知:4座火山Ⅱ~Ⅲ龄级(20~60 a)的乔木株数分别占总数的比例均是北坡低于南坡,且北坡的龄级明显多于南坡。同时,北坡重要值最大的树种紫椴的Ⅱ~Ⅲ龄级个体数分别占总数的比例大,而南坡4座火山重要值最大的树种蒙古栎的Ⅲ~Ⅵ龄级个体数分别占总数的比例高达94.44%(东焦得布山)、86.82%(小孤山)、98.52%(尾山)、58.53%(南格拉球山),且蒙古栎的龄级少于紫椴。综上可知,北坡森林群落的稳定性强于南坡。
3. 讨论
3.1 森林群落结构与物种多样性的关系
从群落结构的角度来研究生物群落的物种多样性是很有意义的,因为森林群落结构是群落中植物与植物之间、植物与环境之间相互关系的可见标志,也是群落其他特征的基础[25-26]。本研究各山体森林群落的乔木层和灌木层物种数北坡较南坡丰富,北坡物种多样性各指数也高于南坡,同时,森林群落结构较复杂的东焦得布山整体上物种多样性指数高。在各山体间南北坡上森林群落乔、灌、草3层物种丰富度和多样性变异都有差别。乔木层的Simpson指数变化都是最小,北坡上草本层的物种多样性各指数变化在各群落间表现出最大的差异,南坡上灌木层的物种多样性指数变化在各群落间表现出最大的差异,其原因在于物种多样性指数不仅受均匀度指数的影响,还受到物种丰富度的制约。各山体北坡森林群落间乔木层和草本层的物种数相差较大,故使群落间丰富度指数在乔木层和草本层分别是极显著差异和显著差异,Shannon-Wiener指数在乔木层是显著差异,且北坡上各森林群落内乔木层与草本层的物种多样性各指数均呈正相关。可见,北坡上乔木种类数量对草本物种有影响,而灌木层的物种数相差较小,导致物种多样性各指数没有显著差异;南坡森林群落间乔木、灌木、草本层物种数目相差不大,群落间各层次的物种多样性各指数均无显著差异,且南坡上各森林群落内乔木层与灌木层、灌木层与草本层的种物种多样性指数均呈正相关。
3.2 森林群落物种多样性与稳定性的关系
物种多样性和稳定性是植物群落的2个属性,它们之间的相互关系和相互影响已引起了国内外许多生态学者的关注[1, 8-9, 26]。均匀度是群落物种多样性研究中重要的概念[27]。以均匀度来考虑物种多样性与群落稳定性的关系时,群落的物种均匀度指数越高,群落的物种间相互差异越不显著,说明群落的稳定性越高,从演替动态的角度来看其稳定性就越高[1]。本研究森林群落物种多样性结果表明:乔木种群对群落具有支配作用,决定着群落的发展趋势,能够反映整个群落的物种多样性动态规律。因此,探知乔木层物种多样性与群落稳定性的问题,更有利于认知森林群落物种多样性与其稳定性之间的关系。高贤明等[1]在暖温带若干落叶阔叶林群落物种多样性及其与群落动态的关系研究发现:3个栎属Quercus林均匀度指数均较高,为0.56~0.76,是比较稳定的群落类型。本研究南北坡向各森林群落内乔木层的物种均匀度指数均较高,分别为0.31~0.41和0.77~0.89,是比较稳定的群落。森林群落的稳定程度和发展趋向,是受群落内外诸种生态学因素所决定。但是不管多方面的因素如何影响,影响的原因何等复杂,最终是以群落中各种群的变化来作为承受其结果的表达。因此,在群落的发展过程中,群落结构和相应种群结构变化可从年龄结构反映出来,相对稳定的森林群落应有相对稳定的种群结构,因而有相对稳定的年龄结构。不同稳定程度的森林群落的年龄结构图与种群的年龄结构图相近[22]。本研究南北坡森林群落的年龄结构都是稳定型,重要值高的蒙古栎和紫椴种群的年龄结构也都是稳定型,这说明南北坡各森林群落处于稳定状态。
3.3 坡向对森林群落多样性和稳定性的影响
在局部地区较小的尺度上,物种丰富度、多样性指数和均匀度指数也受到环境因素的影响。因为物理和生物因子的异质性发生在空间的各个尺度上,即使微生境如1株树或1束灌丛就可产生资源的异质性,从而影响其他生命体的分布(包括种类和数量)[28]。坡向影响了非生物资源分配,对地表接收的太阳辐射量能够产生较大的影响,进而使不同坡向的光、热、水、土等自然因素呈现较大的差异,营造局部小气候,从而使不同坡向的群落结构和群落物种多样性等产生相应的变化。在五大连池老期火山,南坡与北坡植物群落上层的主要生态因子光照和与之相关的水分和温度等生态因子存在一定的差异,耐干旱、瘠薄、喜光惯生长于阳坡的乔木和灌木种类少,耐阴湿惯生于北坡的乔木和灌木种类多,物种多样性增加,但同时北坡灌木种类多且盖度大导致草本植物可获得生长机会减少,致使北坡草本种类少且盖度小,物种多样性较南坡低。综上表明:北坡与南坡群落上层的光照、水分与温度等生态因子的差异导致北坡的乔木层和灌木层的物种多样性各指数均大于南坡,而草本层的物种多样性低于南坡,南北坡向间物种多样性各指数差异显著且变异系数都较大。稳定性与多样性具有更为复杂的关系,植物种的多样性并不能完全代表群落的稳定性,但却是群落稳定性的必要条件[29]。闫东锋等[30]在宝天曼栎属天然林物种多样性与稳定性研究中,通过群落物种多样性与稳定性相关机制的讨论,认为在森林生态系统中,物种多样性高可以导致较强稳定性,两者具有显著的正相关关系,并且发现最稳定的群落及不稳定的群落乔木层多样性指数的最大值分别为1.99和0.46。李凤英等[31]在凉水国家级自然保护区森林群落结构及物种多样性分析研究中发现:红松Pinus koraiensis-白桦Betula platyphylla森林群落乔木层多样性指数为2.08。本研究森林群落乔木层多样性最高值在北坡,为1.49,同时,北坡森林群落的年龄结构也较稳定,重要值显著高的紫椴种群的年龄结构也较稳定。综上所述,五大连池火山北坡森林群落多样性指数较高,且森林群落稳定性更好。
五大连池4座老期火山森林群落结构北坡较南坡丰富,北坡的乔木层和灌木层的物种多样性指数均大于南坡,而草本层的物种多样性低于南坡,南北坡向间物种多样性指数差异显著且变异系数都较大。北坡森林群落多样性指数也较南坡高,且森林群落稳定状态更好。同时,山体间森林群落结构较复杂的东焦得布山整体上物种多样性指数也较高。
-
表 1 数据资料来源统计
Table 1. Data source statistics
数据类型 数据名称 来源 遥感影像 1996年125/38、126/38 Landsat 5 TM遥感影像 美国地质勘探局网站(http://glovis.usgs.gov/) 2007年125/38、126/38 Landsat 8 OLI遥感影像 2018年125/38、126/38 Landsat 8 OLI遥感影像 相关规划资料 《神农架林区土地利用总体规划(2006−2020年)》 中国神农架林区人民政府 《神农架林区国民经济和社会发展统计公报》 《神农架林区统计年鉴》 中国神农架林区统计局 《神农架国家公园体制试点建设白皮书》 中国神农架国家公园管理局 表 2 1996、2007、2018年神农架林区土地利用结构表
Table 2. Land use structure in Shennongjia Forestry District basin in 1996, 2007, 2018
年份 林地 草地 建设用地 耕地 水域 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 1996 3 006.80 92.95 94.86 2.93 3.49 0.11 129.82 4.01 2.39 0.07 2007 2 994.11 92.78 83.72 2.59 8.06 0.25 141.25 4.38 10.21 0.32 2018 3 046.14 94.09 59.08 1.82 47.05 1.45 75.96 2.35 9.13 0.28 表 3 1996−2007年、2007−2018年、1996−2018年神农架林区土地利用转移矩阵
Table 3. Land use transfer matrix in Shennongjia Forestry District of 1996−2007, 2007−2018 and 1996−2018
年份 土地利用类型 2007 林地/km2 草地/km2 建设用地/km2 耕地/km2 水域/km2 1996 林地 2 925.30 23.47 2.83 49.29 5.91 草地 33.50 54.88 0.28 6.17 0.04 建设用地 0.07 0.06 2.04 0.59 0.72 耕地 35.06 5.32 2.85 85.11 1.48 水域 0.18 0.01 0.06 0.09 2.05 年份 土地利用类型 2018 林地/km2 草地/km2 建设用地/km2 耕地/km2 水域/km2 2007 林地 2 949.67 9.40 15.31 17.38 2.36 草地 36.92 42.99 0.93 2.40 0.47 建设用地 0.88 0.06 5.74 1.15 0.23 耕地 56.61 6.60 22.16 54.78 1.09 水域 2.05 0.01 2.91 0.26 4.98 年份 土地利用类型 2018 林地/km2 草地/km2 建设用地/km2 耕地/km2 水域/km2 1996 林地 2 935.21 14.35 25.45 26.35 5.43 草地 48.10 41.39 1.60 3.33 0.45 建设用地 0.16 0.03 2.74 0.26 0.30 耕地 62.47 3.31 16.88 45.94 1.22 水域 0.20 0.01 0.38 0.06 1.73 表 4 景观类型转移方向与距离
Table 4. Landscape type transfer direction and distance
景观类型 1996−2007 2007−2018 1996−2018 距离/m 速度/(m·a−1) 方向 距离/m 速度/(m·a−1) 方向 距离/m 速度/(m·a−1) 方向 林地 5 674.80 515.89 东南 2 895.32 263.21 东北 5 594.52 254.30 东南 草地 3 088.72 280.79 东南 7 127.86 647.99 西南 5 286.79 240.31 西南 建设用地 9 120.18 829.11 西南 2 926.19 266.02 西北 10 752.54 488.75 西南 耕地 6 124.45 556.77 西南 5 135.85 466.90 东北 1 441.94 65.54 东北 水域 891.62 81.06 西南 2 331.64 211.97 西南 11 745.64 533.89 西南 表 5 神农架林区1996−2018年景观格局指数变化
Table 5. Change of landscape pattern index from 1996 to 2018
年份 景观类型 NP LPI IJI COHESION DIVISION SPLIT AI 1996 林地 372 92.75 52.14 99.99 0.14 1.16 98.67 草地 2 228 0.27 26.27 96.23 1.00 37 674.58 85.72 建设用地 274 0.02 64.51 86.60 1.00 11 459 303.82 72.60 耕地 4 618 0.13 25.90 92.27 1.00 134 702.27 78.60 水域 188 0.03 63.54 90.10 1.00 9 165 348.78 72.24 2007 林地 404 89.47 59.14 99.99 0.20 1.25 98.63 草地 2 470 0.35 34.02 96.06 1.00 35 191.27 85.05 建设用地 610 0.04 79.72 85.51 1.00 4 732 108.88 71.91 耕地 4 732 0.13 40.07 93.86 1.00 85 981.12 77.94 水域 1 013 0.05 70.28 88.06 1.00 2 654 644.95 64.97 2018 林地 292 93.98 85.89 99.99 0.12 1.13 98.84 草地 1 923 0.14 29.42 94.54 1.00 112 169.27 83.75 建设用地 3 168 0.11 66.81 88.65 1.00 522 690.55 70.45 耕地 4 192 0.04 52.17 87.89 1.00 719 999.04 72.54 水域 989 0.04 70.51 88.75 1.00 2 563 736.66 67.51 -
[1] 邬建国. 景观生态学: 格局、过程、尺度与等级[M]. 北京: 高等教育出版社, 2001. [2] 张秋菊, 傅伯杰, 陈利顶. 关于景观格局演变研究的几个问题[J]. 地理科学, 2003, 23(3): 264 − 270. ZHANG Qiuju, FU Bojie, CHEN Liding. Several problems about landscape pattern change research [J]. Sci Geogr Sin, 2003, 23(3): 264 − 270. [3] 吕乐婷, 张杰, 彭秋志, 等. 东江流域景观格局演变分析及变化预测[J]. 生态学报, 2019, 39(18): 6850 − 6859. LÜ Leting, ZHANG Jie, PENG Qiuzhi, et al. Landscape pattern analysis and prediction in the Dongjiang River Basin [J]. Acta Ecol Sin, 2019, 39(18): 6850 − 6859. [4] 傅伯杰, 张立伟. 土地利用变化与生态系统服务: 概念、方法与进展[J]. 地理科学进展, 2014, 33(4): 441 − 446. FU Bojie, ZHANG Liwei. Land-use change and ecosystem services: concepts, methods and progress [J]. Prog Geogr, 2014, 33(4): 441 − 446. [5] 姜广辉, 张凤荣, 孔祥斌, 等. 北京山区建设用地扩展空间分异分析[J]. 地理研究, 2006, 25(5): 905 − 912. JIANG Guanghui, ZHANG Fengrong, KONG Xiangbin, et al. The spatial differentiation of construction land expansion in Beijing mountainous area [J]. Geogr Res, 2006, 25(5): 905 − 912. [6] 喻红, 曾辉, 江子瀛. 快速城市化地区景观组分在地形梯度上的分布特征研究[J]. 地理科学, 2001, 21(1): 64 − 69. YU Hong, ZENG Hui, JIANG Ziying. Study on distribution characteristics of landscape elements along the terrain gradient [J]. Sci Geogr Sin, 2001, 21(1): 64 − 69. [7] 恭映璧. 长沙城市湿地景观格局时空演变与驱动机制研究[D]. 长沙: 中南林业科技大学, 2013. GONG Yingbi. The Spatial-Temporal Pattern Evolution of Wetland Landscape and Its Driving Mechanism in Changsha[D]. Changsha: Central South University of Forestry and Technology, 2013. [8] 侯鑫源. 湖北神农架自然保护区不同海拔高度巴山冷杉径向生长对气候的响应[D]. 南京: 南京大学, 2015. HOU Xinyuan. Growth Response of Abies fargesii at Different Altitudes in Shennongjia Nature Reserve of Hubei Province, Southeastern China[D]. Nanjing: Nanjing University, 2015. [9] 袁琴. 神农架林区开发史研究[D]. 杨凌: 西北农林科技大学, 2015. YUAN Qin. The Exploition of Shennongjia Forest Region-Based on History Perspective[D]. Yangling: Northwest A&F University, 2015. [10] 汪正祥, 朱俊林, 宛晶, 等. 神农架林区河流水文特征初步研究[J]. 湖北大学学报(自然科学版), 2013, 35(1): 6 − 10. WANG Zhengxiang, ZHU Junlin, WAN Jing, et al. Preliminary study on hydrologic characteristics of main rivers in Shennongjia Forest Region [J]. J Hubei Univ Nat Sci, 2013, 35(1): 6 − 10. [11] 李成悦. 基于云平台的生态承载力评价系统设计与实现[D]. 武汉: 武汉大学, 2017. LI Chengyue. The Design and Implementation of the Ecological Carrying Capacity Assessment System based on the Cloud Platform[D]. Wuhan: Wuhan University, 2017. [12] 彭建, 王仰麟, 吴健生, 等. 区域生态系统健康评价:研究方法与进展[J]. 生态学报, 2007, 27(11): 4877 − 4885. PENG Jian, WANG Yanglin, WU Jiansheng, et al. Evaluation for regional ecosystem health: methodology and research progress [J]. Acta Ecol Sin, 2007, 27(11): 4877 − 4885. [13] 白根川, 夏建国, 王昌全, 等. 基于地类空间转化趋势模型的眉山市东坡区土地利用转化分析[J]. 资源科学, 2009, 31(10): 1793 − 1799. BAI Genchuan, XIA Jianguo, WANG Changquan, et al. Land use transition in Dongpo District, Meishan City in China based on a tendentious model for analyzing spatial transition of land use types [J]. Resour Sci, 2009, 31(10): 1793 − 1799. [14] 王祺, 蒙吉军, 毛熙彦. 基于邻域相关的漓江流域土地利用多情景模拟与景观格局变化[J]. 地理研究, 2014, 33(6): 1073 − 1084. WANG Qi, MENG Jijun, MAO Xiyan. Scenario simulation and landscape pattern assessment of land use change based on neighborhood analysis and auto-logistic model: a case study of Lijiang River Basin [J]. Geogr Res, 2014, 33(6): 1073 − 1084. [15] 韩会然, 杨成凤, 宋金平. 北京市土地利用变化特征及驱动机制[J]. 经济地理, 2015, 35(5): 148 − 154. HAN Huiran, YANG Chengfeng, SONG Jinping. The spatial-temporal characteristic of land use change in Beijing and its driving mechanism [J]. Econ Geogr, 2015, 35(5): 148 − 154. [16] 谢霞, 王宏卫, 塔西甫拉提·特依拜. 基于RS和GIS的艾比湖区域景观格局动态变化研究[J]. 中国沙漠, 2010, 30(5): 1166 − 1173. XIE Xia, WANG Hongwei, Tashpolat Tiyip. Study on landscape pattern change in Ebinur Lake region based on RS and GIS [J]. J Desert Res, 2010, 30(5): 1166 − 1173. [17] 魏静, 郑小刚, 葛京凤. 石家庄西部太行山区景观格局时空变化[J]. 生态学报, 2007, 27(5): 1993 − 2001. WEI Jing, ZHENG Xiaogang, GE Jingfeng. Spatial and temporal change of landscape pattern in the western Shijiazhuang, Taihang Mountains [J]. Acta Ecol Sin, 2007, 27(5): 1993 − 2001. [18] LIU Xinliang, LI Yong, SHEN Jianlin, et al. Landscape pattern changes at a catchment scale: a case study in the upper Jinjing river catchment in subtropical central China from 1933 to 2005 [J]. Landscape Ecol Eng, 2014, 10(2): 263 − 276. [19] AHLQVIST O, SHORTRIDGE A. Spatial and semantic dimensions of landscape heterogeneity [J]. Landscape Ecol, 2010, 25(4): 573 − 590. [20] 岑晓腾. 土地利用景观格局与生态系统服务价值的关联分析及优化研究[D]. 杭州: 浙江大学, 2016. CEN Xiaoteng. Correlation Analysis and Optimization between Land Use Landscape Patterns and Ecosystem Service Values-a Case Study of South Coast of Hangzhou Bay[D]. Hangzhou: Zhejiang University, 2016. [21] 徐双, 李飞雪, 张卢奔, 等. 长沙市热力景观空间格局演变分析[J]. 生态学报, 2015, 35(11): 3743 − 3754. XU Shuang, LI Feixue, ZHANG Luben, et al. Spatiotemporal changes of thermal environment landscape pattern in Changsha [J]. Acta Ecol Sin, 2015, 35(11): 3743 − 3754. [22] 许倍慎. 江汉平原土地利用景观格局演变及生态安全评价[D]. 武汉: 华中师范大学, 2012. XU Beishen. Study on Landscape Pattern Evolution of Land Use and Ecological Security Assessment in Jianghan Plain[D]. Wuhan: Central China Normal University, 2012. [23] 朱会义, 李秀彬, 何书金, 等. 环渤海地区土地利用的时空变化分析[J]. 地理学报, 2001, 68(3): 253 − 260. ZHU Huiyi, LI Xiubin, HE Shujin, et al. Spatio-temporal change of land use in Bohai Rim [J]. Acta Geogr Sin, 2001, 68(3): 253 − 260. [24] 郭慧, 王兵, 牛香. 中国退耕还林生态效益监测网络构建方法[J]. 水土保持通报, 2014, 34(6): 131 − 133. GUO Hui, WANG Bing, NIU Xiang. Construction method of ecological benefits monitoring network of China Grain for Green Project [J]. Bull Soil Water Conserv, 2014, 34(6): 131 − 133. [25] 李柏山. 水资源开发利用对汉江流域水生态环境影响及生态系统健康评价研究[D]. 武汉: 武汉大学, 2013. LI Boshan. Study of Influence on Water Ecoenvironment and Ecosystem Health Assessment for Water Resources Development and Utilization in Hanjiang River Basin[D]. Wuhan: Wuhan University, 2013. [26] 余璟, 王学雷, 吴宜进, 等. 神农架大九湖景观格局变化与湿地生态恢复对策[J]. 华中农业大学学报, 2008, 25(1): 122 − 126. YU Jing, WANG Xuelei, WU Yijin, et al. Changes of Shennongjia Dajiuhu landscape pattern and the strategies of wetland ecological restoration [J]. J Huazhong Agric Univ, 2008, 25(1): 122 − 126. [27] 陈露, 汪正祥, 雷耘, 等. 1990−2010年神农架林区气候变化特征分析[J]. 湖北大学学报(自然科学版), 2013, 35(1): 11 − 16. CHEN Lu, WANG Zhengxiang, LEI Yun, et al. The characteristic of climate change in Shennongjia forest area from 1990 to 2010 [J]. J Hubei Univ Nat Sci, 2013, 35(1): 11 − 16. [28] 黄靖, 夏智宏. 基于MODIS-EVI数据的神农架林区植被指数变化特征研究[J]. 气象与环境科学, 2013, 36(3): 39 − 43. HUANG Jing, XIA Zhihong. Research on the change characteristics for Shennongjia forest vegetation index based on MODIS-EVI Data [J]. Meteorol Environ Sci, 2013, 36(3): 39 − 43. [29] 刘家琰, 谢宗强, 申国珍, 等. 基于SPOT-VEGETATION数据的神农架林区1998−2013年植被覆盖度格局变化[J]. 生态学报, 2018, 38(11): 3961 − 3969. LIU Jiayan, XIE Zongqiang, SHEN Guozhen, et al. Dynamics and analysis of vegetation fraction changes in Shennongjia Forest District during 1998 to 2013 by using SPOT-VEGETATION NDVI data [J]. Acta Geogr Sin, 2018, 38(11): 3961 − 3969. [30] 张子一, 查玉平, 王少明, 等. 神农架林区华山松大小蠹生物学特性研究[J]. 中国森林病虫, 2015, 34(6): 1 − 4. ZHANG Ziyi, ZHA Yuping, WANG Shaoming, et al. Bionomics of Dendroctonus armandi in Shennongjia Forestry District [J]. For Pest Dis, 2015, 34(6): 1 − 4. [31] 俞飞, 李智勇. 天目山林区景观格局时空变化及驱动因素分析[J]. 浙江农林大学学报, 2020, 37(3): 439 − 446. YU Fei, LI Zhiyong. Forests landscape pattern changes and driving forces in Mount Tianmu [J]. J Zhejiang A&F Univ, 2020, 37(3): 439 − 446. [32] RUSHDI A M A, HASSAN A K. Reliability of migration between habitat patches with heterogeneous ecological corridors [J]. Ecol Mod, 2015, 304: 1 − 10. 期刊类型引用(15)
1. 谢立红,黄庆阳,曹宏杰,杨帆,王继丰,杨立宾. 五大连池火山黑桦叶性状对生境因子的响应. 中南林业科技大学学报. 2024(05): 112-124 . 百度学术
2. 谢立红,黄庆阳,曹宏杰,王继丰,王建波,倪红伟. 五大连池火山蒙古栎种群空间分布格局. 生态与农村环境学报. 2023(07): 896-906 . 百度学术
3. 孔斌,贺淑霞. 京西九龙山林下植被物种多样性及其空间分异研究. 环境生态学. 2023(07): 87-92 . 百度学术
4. 孙玉真,王志泰,包玉,刘淑萍. 城市遗存山体植物群落结构与稳定性对人为干扰的响应. 生态学杂志. 2023(08): 1829-1840 . 百度学术
5. 周甜,杜君,刘永志,江云兵,杨立宾. 落叶松林建群种差异对土壤真菌多样性的影响. 中南林业科技大学学报. 2023(12): 153-164 . 百度学术
6. 刘鲁光,陈曦,朱兆棋,刘守江. 汶川震后谢家店滑坡体不同次生林林下草本群落特征. 林业科技通讯. 2022(03): 18-23 . 百度学术
7. 窦沛彤,贺思腾,高成杰,李昆,刘方炎. 干热河谷不同恢复群落对林下物种多样性和土壤理化性质的影响. 浙江农林大学学报. 2022(03): 616-624 . 本站查看
8. 宋文璐,张华,伏捷,张俊,杜维新,苑知言,赵海涵. 辽宁仙人洞国家级自然保护区森林群落稳定性评价. 浙江农林大学学报. 2022(03): 505-515 . 本站查看
9. 杨晓宇,王震明,郑宇,李领寰,唐娟娟,许益燃. 公益林乔木层群落结构变化特征研究——以浦江公益林为例. 自然保护地. 2022(01): 119-128 . 百度学术
10. 王继丰,黄庆阳,谢立红,曹宏杰,王建波,董海鹏,曾昭文,倪红伟. 黑龙江松嫩草地植物群落物种多样性与植物碳储量的关系. 中国草地学报. 2022(07): 33-42 . 百度学术
11. 谢立红,黄庆阳,曹宏杰,杨帆,王继丰,王建波,倪红伟. 五大连池火山蒙古栎种群结构及动态特征. 浙江农林大学学报. 2022(05): 960-970 . 本站查看
12. 曹娓,郭佳月,武小栖,肖玉哲,朱牛牛,郭璟,马杰,宋利利. 京港澳高速公路郑新段边坡植物群落稳定性. 草业科学. 2022(10): 2074-2082 . 百度学术
13. 田莹,卢杰. 植物种群结构、数量动态与物种多样性的关系. 广西农学报. 2022(04): 78-83 . 百度学术
14. 谢立红,黄庆阳,曹宏杰,王继丰. 五大连池火山天然次生林蒙古栎树龄与胸径的关系. 黑龙江科学. 2022(24): 9-12 . 百度学术
15. 朱兆棋,刘鲁光,陈曦,胡翠华. 银厂沟谢家店滑坡体植被物种多样性和群落稳定性研究. 西华师范大学学报(自然科学版). 2021(04): 348-354 . 百度学术
其他类型引用(3)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200279