留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薄壳山核桃全基因组LBD基因家族的生物信息学分析

黄元城 郭文磊 王正加

唐慧超, 洪泉, 徐斌. 浙江青山湖国家森林公园环湖绿道1期景观绩效评价[J]. 浙江农林大学学报, 2020, 37(6): 1177-1185. DOI: 10.11833/j.issn.2095-0756.20200167
引用本文: 黄元城, 郭文磊, 王正加. 薄壳山核桃全基因组LBD基因家族的生物信息学分析[J]. 浙江农林大学学报, 2021, 38(3): 464-475. DOI: 10.11833/j.issn.2095-0756.20200454
TANG Huichao, HONG Quan, XU Bin. Landscape performance assessment of phase I of greenway around Qingshan Lake National Forest Park, Zhejiang Province[J]. Journal of Zhejiang A&F University, 2020, 37(6): 1177-1185. DOI: 10.11833/j.issn.2095-0756.20200167
Citation: HUANG Yuancheng, GUO Wenlei, WANG Zhengjia. Genome-wide identification and bioinformatics analysis of LBD family of transcription factors in Carya illinoensis[J]. Journal of Zhejiang A&F University, 2021, 38(3): 464-475. DOI: 10.11833/j.issn.2095-0756.20200454

薄壳山核桃全基因组LBD基因家族的生物信息学分析

DOI: 10.11833/j.issn.2095-0756.20200454
基金项目: 浙江省科技厅重大研发专项(2018C02004);浙江省农业新品种选育重大科技专项(2016C02052-13);“十三五”国家重点研发计划项目(2018YFD1000604)
详细信息
    作者简介: 黄元城(ORCID: 0000-0002-2388-6057),从事经济林培育研究。E-mail: 834194037@qq.com
    通信作者: 王正加(ORCID: 0000-0002-6511-6771),教授,博士,博士生导师,从事经济林遗传育种和植物发育生物学研究。E-mail: wzhj21@163.com
  • 中图分类号: S722.3;Q75

Genome-wide identification and bioinformatics analysis of LBD family of transcription factors in Carya illinoensis

  • 摘要:   目的  研究薄壳山核桃Carya illinoensis LBD基因家族结构特征、进化模式和在胚发育过程中的表达模式。  方法  运用生物信息学手段鉴定薄壳山核桃LBD基因,分析该基因结构特征、系统发生学关系、显花植物中的进化历史和在胚发育过程中3个关键阶段的表达模式。  结果  薄壳山核桃全基因组中一共鉴定到52个候选LBD基因。根据基因结构、系统发生学最大似然树和Motif分析可分为3类:GroupⅠ、GroupⅡ和GroupⅢ。多序列比对分析中,52个LBD基因LOB结构域中鉴定出3个重要的结构:CX2CX6CX3C锌指结构、高度保守的甘氨酸GAS结构和亮氨酸拉链(zipper-like)结构,并且在3类内都分别发生了特异性的的变异或者缺失。根据代表性显花植物LBD基因家族的系统发生学分析,从变异程度看GroupⅠ和GroupⅡ相对较为保守,而GroupⅢ内的所有LBD基因共享1支较长的分支,它们已发生了较大的变异,可能已经分化出新的功能。表达分析结果显示:LBD基因家族参与调控胚发育过程,通常控制子叶的发育和形态建成。薄壳山核桃LBD基因中又有在整个胚发育过程中都高表达的一簇基因,这些基因可能在胚发育过程中发挥了更加重要的作用。  结论  薄壳山核桃全基因组中共获得LBD基因52个,共可分为3个亚家族,不同的亚家族具有不同的基因结构、蛋白质结构、进化模式和表达模式,转录组表达分析显示:不同亚家族之间在胚发育不同阶段具有差异性表达,它们共同参与调控薄壳山核桃胚发育过程。图5表2参47
  • 近年来,国内绿道建设发展迅猛。目前,已有广东、浙江、河北、江苏、四川、福建、安徽、新疆等省(自治区)的众多城市开展了绿道网规划和建设工作。绿道网的规划建设行动源于对日趋严峻的城乡环境问题和对传统生态绿色空间保护政策实效的主动反思和应对,然而,在部分地区绿道建设的快速推进中也出现了绿道生态性不足,存在功能单一、基础设施缺乏、绿道特色欠缺等问题[1]。当前,亟需对已建成的绿道价值进行评价与分析,以便清晰地呈现绿道建设的综合效益,为科学规划和建设绿道提供参考和依据。国内对于绿道评价体系的研究已有一定积累,但多为对绿道某一方面的性质或功能评价,对于绿道服务价值全面系统的评价较少。研究主要集中在2个方面:一为景观资源评价,包括植物景观评价[2]和景观视觉评价等[3];二是功能评价,包括生态效益评价[4-5]、休闲游憩功能评价[6]、生态系统服务功能评价[7]、使用后评价(POE)[8-9]和社会绩效评价[10]。此外,也有学者提出了以“使用者(人)—绿道(环境)”关系为中心的区域绿道网评价体系研究假设以及研究思路,但未进行实证研究[11]。“景观绩效”是“衡量景观解决方案在实现其预设目标的同时满足可持续性方面效率的指标”[12],即基于可持续发展目标,从环境、经济、社会等3个方面对景观进行全面的绩效评价。其评价以生态系统服务为基础,补充适合景观研究内容的评价指标[13],因此更具有针对性。美国景观设计基金会(Landscape Architecture Foundation,简称 LAF)于 2010 年提出“景观绩效系列”(Landscape Performance Series,简称 LPS)研究计划,针对已建成的景观项目,形成一套依托案例调查研究(case study investigation, CSI)的开放性评价体系。当前,景观绩效研究呈现迅速增长的发展态势[13],其研究主要集中于评价指标的选取[14]、评价体系的构建[15-16]和评估方法的应用[17]等方面。国内景观绩效的研究多集中于较小尺度风景园林的建成项目[18-19],或景观绩效中某些可持续特征的部分[13,20],缺少对大尺度区域景观的研究,对建成项目从环境、经济、社会等3个方面进行全面评价的研究也较少。为此,笔者依托案例研究,尝试对浙江青山湖国家森林公园环湖绿道1期的景观绩效进行评价,以期全面评估绿道的综合价值,为绿道的设计与建设提供参考,并向社会传播绿道的综合价值。

    浙江省杭州市临安区青山湖国家森林公园环湖绿道(简称“青山湖绿道”)1期,曾入选2017年“浙江省十大经典绿道”,并获2018年浙江建设工程“钱江杯”一等奖,2019年度中国风景园林学会科学技术奖一等奖。青山湖绿道位于杭州市临安区锦城镇东郊。青山湖为大型人工湖,水域开阔,湖山一体,环湖森林覆盖率79%,自然景色优美,生态环境优越。青山湖绿道沿湖而建,连接城、村、湖、山,全长42.195 km,分3期建设,于2019年7月全线贯通。本研究区段为青山湖绿道1期,长10 km,于2017年1月建成开放。

    根据中国住房与城乡建设部2016年9月编制的《绿道规划设计导则》(简称《导则》),郊野型绿道的功能包括生态环保、休闲健身、社会与文化、旅游与经济[21]。其中,生态环保作为其核心价值,体现在绿道有助于固土保水、净化空气、缓解热岛等,并为生物提供栖息地及迁徙廊道。以上功能与LPS中游径(trail,包含绿道类项目)[22]、滨水景观再开发(waterfront redevelopment)[23]等相关案例中所采用的评价指标(表1)高度吻合。另外,LPS基于可持续的发展目标,其经济评价指标还加入了节约建设成本。基于以上分析,结合青山湖绿道的实际情况,确定了本研究采用的景观绩效指标体系,包含环境、经济、社会等3个方面的17项指标(表2)。收集分析以上绩效数据,结合统计学、生态学、经济学、使用后评价等方法,进行景观绩效评价。

    表 1  郊野型绿道的功能与LPS相关案例评价指标的对照表
    Table 1  Comparison between the function of country greenways and the evaluation indexes of LPS-related cases
    《绿道规划设计导则》中的郊野绿道功能LPS相关案例采用的评价指标
    生态环保固土保水、净化空气、缓解热岛、生物提供栖息地及
     迁徙廊道
    环境土壤保护、水岸线保护、涵养水源、固碳释氧、空
     气质量、调节气温和城市热岛效应、栖息地改善/
     保护/创建/恢复
    旅游与经济整合旅游资源,促进相关产业发展,提升沿线土地价值经济地产价值、工作岗位、旅游业收入、节约建设成本
    休闲健身提供亲近自然、游憩健身的场所和途径,倡导健康的生
     活方式
    社会娱乐及社会价值、文化保护、健康、教育、可达
     性、景观质量
    社会与文化连接城乡居民点、公共空间以及历史文化节点,保护和
     利用文化遗产,促进人际交往、社会和谐与文化传承
    下载: 导出CSV 
    | 显示表格
    表 2  郊野型滨水绿道景观绩效指标体系
    Table 2  Country waterfront greenway landscape performance indicators system
    环境绩效经济绩效社会绩效
    土壤保护    房产价值   文化保护
    水岸线保护   工作岗位   健康  
    涵养水源    旅游业收入  教育价值
    固碳释氧    节约建设成本 可达性 
    调节气温    娱乐及社会价值景观质量
    净化空气    
    增加物种多样性、
    提高生态完整性等
    下载: 导出CSV 
    | 显示表格
    1.2.1   环境绩效评价方法

    在LPS的案例中,环境绩效的评价多通过相应的绩效评估工具集进行计算,但由于本研究场地尺度较大,利用工具集评估所需的部分数据获取较为困难,故本研究的环境绩效评价,主要参考了欧阳志云等[24]对中国陆地生态系统服务功能进行评估时所综合运用的生态学及经济学方法。吴隽宇[8]曾采用此方法对珠江三角洲区域绿道1号线进行评估。首先确定绿道线路、类型和控制范围,再对其相应的生态系统面积进行计算。研究采用的绿道图纸由绿道的设计单位提供。《浙江省绿道规划设计技术导则》[25]规定,根据绿道所处区域和功能要求,分为城镇型绿道、乡野型绿道、山地型绿道3种类型。其中,乡野型绿道是指城镇规划建设用地范围外,依托林地、园地、湿地、水体、农田,连接风景名胜区、旅游度假区、历史文化名镇名村、农业观光区、特色乡村、农家乐等的绿道。乡野型绿道的总宽度一般不小于100 m。青山湖绿道依托青山湖国家森林公园,一面临水,一面靠山,属于该导则中的乡野型绿道。本研究将100 m作为其控制范围的宽度。以青山湖绿道1期的总体平面图为基本研究范围,将卫星图片导入Auto CAD软件,依据其控制范围的宽度,描绘其具体范围。再根据卫星图片及实地踏勘,确定绿道沿线生态系统的类型,主要包括林地、耕地、草地、湿地、水域等5种类型。根据设计单位提供的信息,在Auto CAD软件中分层描绘,并统计新增及因绿道建设而被保护的各类型生态系统的面积。在此基础上,分别计算其保持土壤、涵养水源、固碳释氧、调节气温、净化空气等方面的环境绩效。

    1.2.2   经济绩效评价方法

    经济绩效的评估采用市场价值法。工作岗位数据源自现场调研,旅游业收入的数据来自于对绿道周边乡村村委会的调研,节约建设成本的数据由绿道设计单位提供。

    1.2.3   社会绩效评价方法

    社会绩效的评估主要采用使用后评价、问卷调查等方法。在2017年3−5月、11月、2018年4月,本研究对583位场地使用者进行了现场问卷调查,其中有效问卷531份,问卷有效率91%。问卷内容根据社会绩效的相应指标设置,包括受访者对绿道的娱乐价值、文化保护、教育价值、景观质量评价,以及绿道对受访者健康的影响。

    根据彭建等[26]的经验,生态系统面积为有效林地、草地、湿地沼泽和水域面积的和,其中有效林地面积=林地面积+耕地面积×0.2(表3)。

    表 3  青山湖绿道1期生态系统面积
    Table 3  Ecosystem area of Qingshan Lake Greenway Phase I
    有效林地/hm2草地/hm2湿地沼泽/hm2水域/hm2生态系统面积/hm2
    针叶林阔叶林耕地(按0.2系数折算成林地)
    1.67013.6920.8967.19817.2500.13440.840
    下载: 导出CSV 
    | 显示表格
    2.1.1   保持土壤效益

    保持土壤带来的经济价值,以林地、草地每年减少土壤侵蚀的总量为基础,计算林地、草地对表土损失、肥力损失和减轻泥沙淤积灾害3个方面的价值。(1)林地、草地每年减少的土壤侵蚀总量。潜在土壤侵蚀量是指无任何植被覆盖的情况下,土壤的最大侵蚀量。而不同植被覆盖下的土壤侵蚀量有很大差别。林地、草地减少的土壤侵蚀量=潜在土壤侵蚀量−林地、草地覆盖区土壤侵蚀量。本研究参考欧阳志云等[24]统计的侵蚀模数进行计算(表4~6)。(2)效益估算。①每年减少的土地损失面积及间接价值。根据土壤侵蚀量和土壤耕作层的平均厚度来推算土地损失面积。每年减少的土壤损失量按表5的平均值计,土壤密度以1.3 g·cm−3计,先算出每年减少的土壤损失量对应的体积。将中国耕作土壤的平均厚度0.5 m作为林地、草地的土层厚度[16],进而算出每年林地、草地减少的土地损失面积分别为0.798、0.353 hm2·a−1。单位面积的生产收益根据2014年浙江省林业、牧业生产的平均收益2 224.8和1 489.7元·hm−2·a−1计算,则每年减少的林地、草地损失的经济价值分别为1 094、2 620元·a−1。②减少土壤肥力损失的间接效益。土壤侵蚀带走了大量的土壤营养物质,主要是土壤有机质、氮、磷、钾。根据实地调查,绿道所在区域土壤主要为红黄泥土,按照临安农林信息网[27]中红黄泥土的有机质、氮、磷、钾质量分数为标准,结合每年林地、草地分别减少的土壤损失平均值,估算林地、草地每年减少的有机质、氮、磷、钾元素的损失量分别为195.10 t·a−1、9.21 t·a−1、51.51 kg·a−1、1 075.05 kg·a−1。根据浙江价格网的公示,2018年第3季度浙江省化肥市场价格的平均值约2.52元·kg−1,据此可以估算林地、草地每年减少的土壤氮、磷、钾损失的经济价值为26 044元·a−1。③减少泥沙淤积的经济效益。根据中国主要流域的泥沙运动规律,一般土壤侵蚀流失的泥沙有24%淤积于水库、江河、湖泊,另有33%滞留,37%入海[28]。本研究仅考虑淤积于水库、江河、湖泊的24%,这部分泥沙直接造成蓄水量的下降。按林地、草地每年减少的土壤损失量平均值计算蓄水损失量,再根据蓄水成本计算其价值。按水库建设需投入成本5.714元·m−3[29],减少泥沙淤积的经济价值为7 897元·a−1

    表 4  每年林地草地的潜在土壤侵蚀量
    Table 4  Annual potential soil erosion of woodland and grassland
    侵蚀模数/(t·hm−2·a−1)林地草地总潜在侵蚀量/(t·a−1)
    面积/hm2潜在侵蚀量/
    (t·a−1)
    面积/hm2潜在侵蚀量/
    (t·hm−2·a−1)
    最低值192.016.2583 121.5367.1981 382.0164 503.552
    最高值447.77 278.7073 222.54510 501.251
    平均值319.85 199.3082 301.9207 501.229
    下载: 导出CSV 
    | 显示表格
    表 5  每年林地草地覆盖区的土壤侵蚀量
    Table 5  Annual soil erosion of woodland and grassland
    林地草地总侵蚀量/(t·a−1)
    侵蚀模数/(t·hm−2·a−1)面积/hm2侵蚀量/(t·a−1)侵蚀模数/(t·hm−2·a−1)面积/hm2侵蚀量/(t·a−1)
    0.63016.25810.2430.5007.1984.53514.777
    下载: 导出CSV 
    | 显示表格
    表 6  每年林地草地减少的土壤损失量
    Table 6  Annual reduction in soil loss of woodland and grassland
    林地减少的土壤损失量/(t·a−1)草地减少的土壤损失量/(t·a−1)总减少土壤损失量/(t·a−1)
    最低值3 111.293最低值 1 377.4814 488.775
    最高值7 268.464最高值3 218.01010 486.474
    平均值5 189.066平均值2 297.3867 486.452
    下载: 导出CSV 
    | 显示表格

    综合以上,青山湖绿道1期每年保持土壤的总经济价值包括减少土壤损失面积的经济价值3 714元·a−1,减少土壤氮磷钾损失的经济价值26 044元·a−1,减少泥沙淤积的经济价值为7 897元·a−1,合计37 655元·a−1

    2.1.2   涵养水源效益

    本研究采用替代工程法评估涵养水源的价值。根据浙江省杭州市临安区气象局的数据,临安多年年均降水量为1 506.0 mm。参考陈波等[30]对杭州西湖风景区绿地储水保土研究,假设降水的蒸散量为65%,则青山湖绿道1期每年截留水量为1 506.0 mm×35%×23.45 hm2=123 636.58 m3。单位库容的水库工程费用仍以5.714元·m−3计,则每年涵养水源价值为70.65万元·a−1

    2.1.3   固碳释氧效益

    参考孙燕飞[31]在临安的研究,杉木Cunninghamia Lanceolata林的固碳量为2.44 t·hm−2·a−1,释氧量为6.52 t·hm−2·a−1;针阔混交林的固碳量为2.16 t·hm−2·a−1,释氧量为5.76 t·hm−2·a−1。根据温家石[32]对城市建成区所做研究,考虑到绿道的草坪修剪次数远低于城市内部,假设绿道的草坪修剪次数是后者的1/4,得出绿道草地固碳量6.68 t·hm−2·a−1,草地释氧量为11.55 t·hm−2·a−1。对于生态系统二氧化碳吸收功能经济价值的评估多采用碳税法和造林成本法[33],并取两者的平均值。国际上通常采用瑞典碳税,折合人民币1 010元·t−1,中国造林成本折合为255元·t−1[34]。对于释放氧气的价值采用工业制氧法进行评估,中国工业制氧的平均成本为400元·t−1。经计算可得青山湖绿道1期每年固碳价值为5.17万元·a−1元,释放氧气价值为6.92万元·a−1

    2.1.4   调节气温效益

    根据已有研究测定[35],夏季绿地可从环境中吸收81.8 MJ·hm−2·d−1的热量,相当于189台空调机全天工作的制冷效果。室内空调机耗电0.86 kWh·h−1·台−1,电费按浙江省电费价格0.538元·kWh−1计,则绿地节约电费为2 098.7元·hm−2·d−1。按每年使用空调60 d计,则青山湖绿道1期每年调节气温所创造的价值为295.29万元·a−1

    2.1.5   净化空气效益

    (1)吸收二氧化硫的价值。阔叶林对二氧化硫的吸收能力为88.65 kg·hm−2·a−1,针叶林对二氧化硫的平均吸收能力值为215.60 kg·hm−2·a−1,两者对二氧化硫的平均吸收能力为152.13 kg·hm−2·a−1,二氧化硫的治理代价为3 000元·t−1,得到吸收二氧化硫价值为0.74万元·a−1。(2)吸收氮氧化物的价值。目前,汽车尾气脱氮治理的代价是1.6万元·t−1。林地可吸收氮氧化物380 kg·hm−2·a−1,得到吸收氮氧化物价值为9.88万元·a−1。(3)滞尘价值。针叶林的滞尘能力为33.20 t·hm−2·a−1,阔叶林的滞尘能力为10.11 t·hm−2·a−1,平均为21.67 t·hm−2·a−1。削减粉尘价格为170元·t−1,则其滞尘价值为5.99万元·a−1。因此,绿道净化空气的总价值为16.61万元·a−1

    2.2.1   房产价值

    绿道的建设,极大地改善了周边居民的生活环境。根据安居客网站的数据,绿道建设前的2015年11月与竣工投入使用后的2018年12月相比,紧邻绿道的房产单价增幅约27.76%,可见绿道对于房产价值提升有积极影响。

    2.2.2   工作岗位和旅游业收入

    绿道建成后为管理维护提供了20个就业岗位,为带动旅游业发展而提供了37个就业岗位。绿道建成后对周边如泥山湾村等乡村的农家乐、民宿等有显著促进作用。据不完全统计,该区域旅游产值增幅超过20.00%。

    2.2.3   节约建设成本

    回收利用场地遗留的废旧材料,如红砖、青砖、石等,节约了废旧材料外运与处理费用,以及购买等量新材料的材料费和运输费用,节约成本为23.33万元(表7)。利用原有水利废弃设施等构筑物而产生的节约费用,包括拆除、清运、处理费用,及新建相应设施的费用,合计66.75万元(表8)。

    表 7  利用废旧建材产生的节约建设成本
    Table 7  Construction costs savings from the use of waste building materials
    废旧材料工程量/ m3外运处理总价/元新材料单价(含材料费、运费)/元新材料总价/元合计节约建设成本/元
    砖   4.4 132730 3 212 3 344
    卵石  16.3 489330 5 379 5 868
    景观石233.42 334810189 054191 388
    老石板 54.0 162603 32 562 32 724
    合计  233 324
    下载: 导出CSV 
    | 显示表格
    表 8  利用原有构筑物产生的节约建设成本
    Table 8  Construction costs savings from the use of existing structures
    构筑物名称工程量/ m3拆除、清运、处理费用/元新建栈道基础费用/元合计节约建设成本/元
    钓鱼台 63 15 750 31 500 47 250
    观星台675168 750337 500506 250
    “鱼头”小品 51 12 750 25 500 38 250
    青风徐来亭101 25 250 50 500 75 750
    合计 667 500
    下载: 导出CSV 
    | 显示表格

    根据问卷调查统计结果,青山湖绿道在1期自开放以来,已吸引大量长期使用者,首次来绿道的人群比例较低;绿道的使用者主要来自临安本地,尽管绿道距离杭州主城区有36 km,依然吸引了不少来自杭州的游人。表9记述了社会绩效调查的结果。多数使用者认为绿道建设提升了城市形象,绿道设计体现了临安的历史文化。82.7%的受访者对绿道的骑行或步行体验表示满意。多数受访者认为绿道提升了其户外活动的参与度,近半数使用者表示绿道改变了其生活方式。在可达性方面,公共交通的可达性较差,间接导致了选择私家车出行的游人增多,在节假日游客高峰时期,交通及停车问题较为突出。10.0%的受访者表示绿道当前最突出的问题即到达绿道的路线不畅通。增设绿道附近的公交站点,是增强其可达性及缓解交通与停车压力的有效方式。作为郊野型绿道,青山湖绿道吸引游客的主要因素是其自然环境优美,而绿道设计中对于乡土材料的应用也受到了使用者的关注,57.0%的受访者表示对于可持续设计有了更深的了解。

    表 9  青山湖绿道1期的景观绩效评价结果
    Table 9  Landscape performance evaluation results of Qingshan Lake Greenway Phase I
    类别项目指标评价结果
    环境
    绩效
    土地土壤保护经济价值为3.8万元
    水岸线保护未进行评估
    涵养水源经济价值为70.65万元
    碳及空
    气质量
    固碳释氧固碳价值为5.17万元,释氧价值为6.92万元
    调节气温经济价值为295.29万元
    净化空气经济价值为16.61万元
    栖息地增加物种多样性、提高
     生态完整性等
    未进行评估
    经济
    绩效
    房产价值绿道建设后,紧邻绿道的房产单价增幅约27.76%
    工作岗位绿道建成后管理维护提供了57个就业岗位
    旅游业收入绿道拉动了地方旅游业的发展,旅游产值增幅超过20.00%
    节约建设成本利用废旧建材节约23.33万元,利用原有构筑物设节约66.75万元
    社会
    绩效
    娱乐及社会价值531名受访者中有82.7%对绿道骑行或步行的体验是满意的,67.0%的受访者认为绿道建设提升了城市形象,有组织的大型徒步、毅行、马拉松活动达到近1.5万余人次
    文化保护73.4%的受访者表示绿道设计体现了临安的历史文化
    健康65%的受访者表示绿道提升了其户外活动的参与度,68%的受访者来绿道活动的目的是散 步,25%选择了旅游观光,17%选择了骑行,10%选择聚会;43%的受访者表示绿道改变 了其生活方式,骑行、散步、聚会、摄影、钓鱼等活动对其生活产生了积极影响; 82%的受访者表示愿意居住在步行可达的范围内
    教育价值9%的受访者表示来此地是为了研究学习,57%的受访者表示对于可持续设计有了更深 的了解
    可达性38%的受访者开私家车到达绿道,其次为步行占30%,骑自行车或电动自行车前来的 占20%,采用公交交通者仅占11%
    景观质量82%的受访者表示由于绿道自然环境优美而选择来此
    下载: 导出CSV 
    | 显示表格

    在环境绩效评价中,青山湖绿道1期的相应经济价值约398.44万元·a−1,其中调节气温价值为295.29万元·a−1,占总价值的74%,其次为涵养水源价值为70.65万元·a−1,占总价值的18%,净化空气价值为16.61万元·a−1,固碳释氧价值为12.09万元·a−1,保持土壤的经济价值较低,为3.80万元·a−1

    在经济绩效评价中,青山湖绿道1期充分利用废旧建材与原有构筑物,节约建设成本约90.08万元;绿道建成后提供了新的工作岗位,拉动了当地旅游业发展。

    在社会绩效评价中,绿道的建设提升了城市形象,体现了临安的历史文化,提升了人们的户外活动参与度,在一定程度上改变了人们的生活方式,大多数人因自然环境优美而来到绿道,超半数受访者表示对可持续设计有了更深的了解。

    本研究的郊野型滨水绿道景观绩效进行了较为全面的评价,客观、清晰地呈现了绿道建设的综合效益。青山湖绿道1期的建设投入约7 200万元,仅以环境绩效价值398.44万元·a−1计算,约18 a可获得与建设投入相当的经济价值,而其对于地区发展和市民健康的促进也将产生更大的价值。对于场地中废旧建材与原有构筑物进行充分利用,能够创造较大的经济价值。

    景观绩效评价可以更全面地考察、直观地展现绿道建成的综合价值,但因绿道的规模尺度较大,沿线的自然、人文资源类型丰富,需要在绿道建设前,即结合评价指标体系进行全面的数据收集,且此过程需要延续至项目建成后的数年,才能够得到更客观且全面的评价结果。本研究也存在一定局限,其中水岸线保护、栖息地恢复等指标由于原始数据缺失而无法获取;经济绩效中,房产价值的增长未排除绿道之外的其他要素影响比例;针对健康等方面的评价可在对使用者进行问卷调查的基础上,采用更完善的研究方法,以获得更客观、准确的结果。

    浙江农林大学风景园林与建筑学院史琰副教授对本文写作提供帮助,谨致谢意。

  • 图  1  薄壳山核桃LBD基因家族系统进化树

    Figure  1  Phylogenetic tree constructed based on the full-length sequences of pecan LBD genes using JTT+CAT algorithm with FastTree software

    图  2  薄壳山核桃LBD转录因子家族系统发育树和保守蛋白质基序结构

    Figure  2  Phylogenetic tree constructed based on the full-length sequences of pecan LBD genes using JTT+CAT algorithm with FastTree software

    图  3  薄壳山核桃LBD 转录因子家族LOB蛋白质结构域多序列比对

    Figure  3  Multiple sequence alignment of LOB domain in C. illinoensis transcription factor family

    图  4  利用从裸子植物银杏到高等植物551个LBD基因全长蛋白质序列构建系统发育树

    Figure  4  Phylogenetic tree constructed based on the full-length sequences of 551 LBD genes from gymnosperm ginkgo to higher angiosperms

    图  5  薄壳山核桃LBD 转录因子家族胚发育表达模式

    Figure  5  Transcriptome expression profile of LBD gene family in embryo development

    表  1  多物种LBD基因鉴定结果

    Table  1.   Identify result of LBD genes in multi-species

    鉴定程序基因数量/个
    银杏无油樟蓝星睡莲水稻拟南芥葡萄大豆核桃山核桃薄壳山核桃
    BLASTX904551619198153878980
    HMMER502635295857116725652
    下载: 导出CSV

    表  2  薄壳山核桃LBD转录因子家族蛋白质理化性质

    Table  2.   Physicochemical properties of LBD transcription factor family protein in C. illinoensis

    蛋白质氨基酸残基数/个分子量/kD理论等电点酸性氨基酸/个碱性氨基酸/个不稳定系数脂肪系数总平均亲水性
    pecanLBD1 21023 309.198.24171947.6573.52−0.485
    pecanLBD2 20822 353.777.55202158.3288.650
    pecanLBD3 28831 617.018.99293561.9276.88−0.326
    pecanLBD4 22324 069.377.69171873.8977.89−0.171
    pecanLBD5 18820 808.567.63171867.2469.15−0.490
    pecanLBD6 26028 451.228.23313452.5569.38−0.501
    pecanLBD7 15617 540.209.03121855.8778.91−0.235
    pecanLBD8 17218 611.248.59141761.2470.35−0.238
    pecanLBD9 27630 985.118.55283230.8476.96−0.522
    pecanLBD1032636 029.866.91232264.4577.58−0.472
    pecanLBD1120422 376.577.53181960.7877.99−0.233
    pecanLBD1223225 857.685.90211450.5265.22−0.425
    pecanLBD1317018 808.036.42181765.0457.47−0.607
    pecanLBD1420221 823.688.59141757.4180.20−0.175
    pecanLBD1520323 706.088.15272952.0077.39−0.556
    pecanLBD1619120 998.776.08191770.0572.04−0.423
    pecanLBD1723025 054.589.22172378.9470.04−0.284
    pecanLBD1817218 626.238.82141867.6473.14−0.296
    pecanLBD1930633 113.727.95333546.0381.54−0.280
    pecanLBD2016218 029.726.70141451.7688.52−0.133
    pecanLBD2112714 182.024.4814736.1892.20−0.246
    pecanLBD2217619 971.985.17251844.8880.34−0.186
    pecanLBD2313015 042.749.84102545.4377.23−0.541
    pecanLBD2416218 285.758.23131557.6578.40−0.337
    pecanLBD2521423 771.708.25171949.4274.44−0.472
    pecanLBD2631033 384.038.22343747.4480.87−0.302
    pecanLBD2716818 892.286.28171372.8663.87−0.476
    pecanLBD2821523 539.685.33181475.4770.88−0.272
    pecanLBD2916718 504.186.94151559.0081.80−0.217
    pecanLBD3017619 230.736.50181769.1573.75−0.242
    pecanLBD3116918 881.586.49171651.2879.59−0.219
    pecanLBD3223626 157.915.74221346.7365.76−0.405
    pecanLBD3321323 405.507.06191965.2367.37−0.380
    pecanLBD3432637 266.205.47543549.0574.29−0.813
    pecanLBD3525127 236.496.44242259.5580.08−0.322
    pecanLBD3622824 949.426.29171683.4071.05−0.271
    pecanLBD3722824 709.228.06222459.2076.14−0.244
    pecanLBD3821623 449.536.03171364.1175.05−0.227
    pecanLBD3915817 663.156.27151353.4480.25−0.243
    pecanLBD4022124 171.044.97211258.4578.60−0.143
    pecanLBD4126530 244.096.42332946.8677.66−0.594
    pecanLBD4223724 801.388.20131569.0779.87−0.065
    pecanLBD4321323 452.556.74191856.4580.61−0.203
    pecanLBD4422424 373.778.93172269.4173.62−0.276
    pecanLBD4520221 927.158.56192354.6683.47−0.159
    pecanLBD4622124 114.379.01182373.1866.29−0.421
    pecanLBD4728932 466.215.27292167.1965.92−0.600
    pecanLBD4817619 971.985.17251844.8880.34−0.186
    pecanLBD4917018 770.956.19191760.44 55.18−0.615
    pecanLBD50 9210 319.086.26111039.17115.65 0.018
    pecanLBD5131334 650.037.29202064.34 73.07−0.490
    pecanLBD5232035 091.256.83232166.59 67.53−0.593
    下载: 导出CSV
  • [1] IWAKAWA H, UENO Y, SEMIARTI E, et al. The ASYMMETRIC LEAVES2 gene ofArabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper [J]. Plant Cell Physiol, 2002, 43(5): 467 − 478.
    [2] SHUAI Bin, REYNAGA-PEÑA C G, SPRINGER P S. The Lateral organ boundaries gene defines a novel, plant-specific gene family [J]. Plant Physiol, 2002, 129(2): 747 − 761.
    [3] LANDSCHULZ W H, JOHNSON P F, MCKNIGHT S L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins [J]. Science, 1988, 240(4860): 1759 − 1764.
    [4] MAJER C, HOCHHOLDINGER F. Defining the boundaries: structure and function of LOB domain proteins [J]. Trends Plant Sci, 2011, 16(1): 47 − 52.
    [5] CHEN Weifei, WEI Xiaobin, RETY S, et al. Structural analysis reveals a “molecular calipers” mechanism for a lateral organ boundaries domain transcription factor protein from wheat [J]. J Biol Chem, 2019, 294(1): 142 − 156.
    [6] THATCHER L F, POWELL J J, AITKEN E A B, et al. The lateral organ boundaries domain transcription factor LBD20 functions in fusarium wilt susceptibility and jasmonate signaling in Arabidopsis [J]. Plant Physiol, 2012, 160(1): 407 − 418.
    [7] XU Changzheng, LUO Feng, HOCHHOLDINGER F. LOB domain proteins: beyond lateral organ boundaries [J]. Trends Plant Sci, 2016, 21(2): 159 − 167.
    [8] RUBIN G, TOHGE T, MATSUDA F, et al. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis [J]. Plant Cell, 2009, 21(11): 3567 − 3584.
    [9] THATCHER L F, KAZAN K, MANNERS J M. Lateral organ boundaries domain transcription factors: new roles in plant defense [J]. Plant Signal Behav, 2012, 7(12): 1702 − 1704.
    [10] SEMIARTI E, UENO Y, TSUKAYA H, et al. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves [J]. Development, 2001, 128(10): 1771 − 1783.
    [11] GOH T, TOYOKURA K, YAMAGUCHI N, et al. Lateral root initiation requires the sequential induction of transcription factors LBD16 and PUCHI in Arabidopsis thaliana [J]. New Phytol, 2019, 224(2): 749 − 760.
    [12] CHO C, JEON E, PANDEY S K, et al. LBD13 positively regulates lateral root formation in Arabidopsis [J]. Planta, 2019, 249(4): 1251 − 1258.
    [13] LEE H W, CHO C, PANDEY S K, et al. LBD16 and LBD18 acting downstream of ARF7 and ARF19 are involved in adventitious root formation in Arabidopsis[J]. BMC Plant Biol, 2019, 19: 46. doi: 10.1186/s12870-019-1659-4.
    [14] NAITO T, YAMASHINO T, KIBA T, et al. A link between cytokinin and ASL9 (asymmetric leaves 2Like 9) that belongs to the AS2/LOB (lateral organ boundaries) family genes in Arabidopsis thaliana [J]. Biosci Biotechnol Biochem, 2007, 71(5): 1269 − 1278.
    [15] ZENTELLA R, ZHANG Zhonglin, PARK M, et al. Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis [J]. Plant Cell, 2007, 19(10): 3037 − 3057.
    [16] GOH T, KASAHARA H, MIMURA T, et al. Multiple AUX/IAA-ARF modules regulate lateral root formation: the role of Arabidopsis SHY2/IAA3-mediated auxin signalling [J]. Phil Trans Roy Soc B Biol Sci, 2012, 367(1595): 1461 − 1468.
    [17] LEE K H, DU Qian, ZHUO Chunliu, et al. LBD29-involved auxin signaling represses NAC master regulators and fiber wall biosynthesis [J]. Plant Physiol, 2019, 181(2): 595 − 608.
    [18] FENG Zhenhua, ZHU Jian, DU Xiling, et al. Effects of three auxin-inducible LBD members on lateral root formation in Arabidopsis thaliana [J]. Planta, 2012, 236(4): 1227 − 1237.
    [19] ZHANG Jingrong, TANG Wei, HUANG Yulan, et al. Down-regulation of a LBD-like gene, OsIG1, leads to occurrence of unusual double ovules and developmental abnormalities of various floral organs and megagametophyte in rice [J]. J Exp Bot, 2015, 66(1): 99 − 112.
    [20] LI Haohao, LIU Xin, AN Jianping, et al. Cloning and elucidation of the functional role of apple MdLBD13 in anthocyanin biosynthesis and nitrate assimilation [J]. Plant Cell Tissue Organ Cult, 2017, 130(1): 47 − 59.
    [21] ZHANG Xueying, HE Yuqing, HE Wenda, et al. Structural and functional insights into the LBD family involved in abiotic stress and flavonoid synthases in Camellia sinensis[J]. Sci Rep, 2019, 9: 14. doi: 10.1038/s41598-019-52027-6.
    [22] LIU Hengzhi, CAO Minxuan, CHEN Xiaoli, et al. Genome-wide analysis of the lateral organ boundaries domain (LBD) gene family in Solanum tuberosum [J]. Int J Mol Sci, 2019, 20(21): 5360. doi: 10.3390/ijms20215360.
    [23] LU Qiang, SHAO Fenjuan, MACMILLAN C, et al. Genomewide analysis of the lateral organ boundaries domain gene family in Eucalyptus grandis reveals members that differentially impact secondary growth [J]. Plant Biotechnol J, 2018, 16(1): 124 − 136.
    [24] HUANG Xiaoyun, LIU Gang, ZHANG Weiwei. Genome-wide analysis of LBD (lateral organ boundaries domain) gene family in Brassica rapa[J]. Braz Arch Biol Technol, 2018, 61: e18180049. doi: 10.1590/1678-4324-2018180049.
    [25] GRIMPLET J, PIMENTEL D, AGUDELO-ROMERO P, et al. The LATERAL ORGAN BOUNDARIES Domain gene family in grapevine: genome-wide characterization and expression analyses during developmental processes and stress responses[J]. Sci Rep, 2017, 7: 15968. doi: 10.1038/s41598-017-16240-5.
    [26] YANG Hui, SHI Guixia, DU Hongyang, et al. Genome-wide analysis of soybean LATERAL ORGAN BOUNDARIES domain-containing genes: a functional investigation of GmLBD12[J]. Plant Genome, 2017, 10(1). doi: 10.3835/plantgenome2016.07.0058.
    [27] HUANG Youjun, XIAO Lihong, ZHANG Zhongren, et al. The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition[J]. GigaScience, 2019, 8(5). doi: 10.1093/gigascience/giz036.
    [28] GUO Wenlei, CHEN Junhao, LI Jian, et al. Portal of Juglandaceae: a comprehensive platform for Juglandaceae study[J]. Hortic Res, 2020, 7: 35. doi: 10.1038/s41438-020-0256-x.
    [29] EL-GEBALI S, MISTRY J, BATEMAN A, et al. The Pfam protein families database in 2019 [J]. Nucleic Acids Res, 2019, 47(D1): D427 − D432.
    [30] FINN R D, CLEMENTS J, EDDY S R. HMMER web server: interactive sequence similarity searching [J]. Nucleic Acids Res, 2011, 39(S2): W29 − W37.
    [31] WANG Yupeng, TANG Haibao, DEBARRY J D, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Res, 2012, 40(7): e49. doi: 10.1093/nar/gkr1293.
    [32] LARKIN M A, BLACKSHIELDS G, BROWN N P, et al. Clustal W and Clustal X version 2.0 [J]. Bioinformatics, 2007, 23(21): 2947 − 2948.
    [33] EDGAR R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput [J]. Nucleic Acids Res, 2004, 32(5): 1792 − 1797.
    [34] PRICE M N, DEHAL P S, ARKIN A P. FastTree 2-approximately maximum-likelihood trees for large alignments [J]. PLoS One, 2010, 5(3): e9490. doi: 10.1371/journal.pone.0009490.
    [35] JONES D T, TAYLOR W R, THORNTON J M. The rapid generation of mutation data matrices from protein sequences [J]. Comput Appl Biosci, 1992, 8(3): 275 − 282.
    [36] SUBRAMANIAN B, GAO Shenghan, LERCHER M J, et al. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees [J]. Nucleic Acids Res, 2019, 47(W1): W270 − W275.
    [37] HU Bo, JIN Jinpu, GUO Anyuan, et al. GSDS 2.0: an upgraded gene feature visualization server [J]. Bioinformatics, 2015, 31(8): 1296 − 1297.
    [38] SCHMUTZ J, CANNON S B, SCHLUETER J, et al. Genome sequence of the palaeopolyploid soybean [J]. Nature, 2010, 463(7278): 178 − 183.
    [39] GUAN Rui, ZHAO Yunpeng, ZHANG He, et al. Draft genome of the living fossil Ginkgo biloba[J]. GigaScience, 2016, 5(1): 49. doi: 10.1186/s13742-016-0154-1.
    [40] CONANT G C, WOLFE K H. Turning a hobby into a job: how duplicated genes find new functions [J]. Nat Rev Genet, 2008, 9(12): 938 − 950.
    [41] PRINCE V E, PICKETT F B. Splitting pairs: the diverging fates of duplicated genes [J]. Nat Rev Genet, 2002, 3(11): 827 − 837.
    [42] CANNON S B, MITRA A, BAUMGARTEN A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana[J]. BMC Plant Biol, 2004, 4: 10. doi: 10.1186/1471-2229-4-10.
    [43] LEE H W, KIM M J, PARK M Y, et al. The conserved proline residue in the LOB domain of LBD18 is critical for DNA- binding and biological function [J]. Mol Plant, 2013, 6(5): 1722 − 1725.
    [44] ARIEL F D, DIET A, CRESPI M, et al. The LOB-like transcription factor MtLBD1 controls Medicago truncatula root architecture under salt stress [J]. Plant Signal Behav, 2010, 5(12): 1666 − 1668.
    [45] 卢翔, 李效文, 夏海涛, 等. 薄壳山核桃胚发育过程中主要营养成分的变化[J]. 林业科技, 2018, 43(3): 40 − 44.

    LU Xiang, LI Xiaowen, XIA Haitao, et al. Embryonic developmental and main nutritional components of Carya illinoinensis [J]. For Sci Technol, 2018, 43(3): 40 − 44.
    [46] 刘力, 龚宁, 夏国华, 等. 山核桃种仁蛋白质及氨基酸成分含量的变异分析[J]. 林业科学研究, 2006, 19(3): 376 − 378.

    LIU Li, GONG Ning, XIA Guohua, et al. Analysis on the protein and amino acids contents in hickory (Carya cathayensis sarg.) kernel and their variations [J]. For Res, 2006, 19(3): 376 − 378.
    [47] 于敏, 徐宏化, 王正加, 等. 6个薄壳山核桃品种的形态及营养成分分析[J]. 中国粮油学报, 2013, 28(12): 74 − 77.

    YU Min, XU Honghua, WANG Zhengjia, et al. Analysis of morphology and main nutrient components of 6 pecan varieties [J]. J Chin Cereals Oils Assoc, 2013, 28(12): 74 − 77.
  • [1] 李莉, 庞天虹, 付建新, 张超.  桂花番茄红素β-环化酶基因LCYB上游B2亚组ERF转录因子的筛选和鉴定 . 浙江农林大学学报, 2025, 42(1): 86-93. doi: 10.11833/j.issn.2095-0756.20240316
    [2] 郭玉婷, 杜长霞.  黄瓜R2R3-MYB亚家族鉴定及生物信息学分析 . 浙江农林大学学报, 2024, 41(2): 286-296. doi: 10.11833/j.issn.2095-0756.20230278
    [3] 叶青青, 周明兵.  木本植物形成层活动的分子调控机制 . 浙江农林大学学报, 2024, 41(4): 879-886. doi: 10.11833/j.issn.2095-0756.20230473
    [4] 杨勇, 张俊红, 韩潇, 张毓婷, 杨琪, 童再康.  闽楠bZIP基因家族鉴定和脱落酸处理下的表达分析 . 浙江农林大学学报, 2024, 41(2): 275-285. doi: 10.11833/j.issn.2095-0756.20230342
    [5] 刘萱, 邹龙海, 周明兵.  黄槽毛竹叶绿体基因组及毛竹种下分类群的叶绿体基因组序列比较 . 浙江农林大学学报, 2024, 41(5): 1037-1046. doi: 10.11833/j.issn.2095-0756.20240110
    [6] 周佩娜, 党静洁, 邵永芳, 石遵睿, 张琳, 刘潺潺, 吴啟南.  荆芥HD-Zip基因家族的全基因组鉴定及分析 . 浙江农林大学学报, 2023, 40(1): 12-21. doi: 10.11833/j.issn.2095-0756.20220390
    [7] 周洁璐, 吴天昊, 巨云为, 杨旭涛, 梁甜, 朱海军.  薄壳山核桃叶斑病病原菌生物学特性及室内药剂毒力测定 . 浙江农林大学学报, 2023, 40(5): 1018-1025. doi: 10.11833/j.issn.2095-0756.20230029
    [8] 王诗忆, 黄奕孜, 李舟阳, 黄华宏, 林二培.  植物体细胞胚胎发生及其分子调控机制研究进展 . 浙江农林大学学报, 2022, 39(1): 223-232. doi: 10.11833/j.issn.2095-0756.20210141
    [9] 王倩清, 张毓婷, 张俊红, 刘慧, 童再康.  闽楠PLR基因家族鉴定及响应激素的表达分析 . 浙江农林大学学报, 2022, 39(6): 1173-1182. doi: 10.11833/j.issn.2095-0756.20220351
    [10] 潘浪波, 段伟, 黄有军.  基于MaxEnt模型预测薄壳山核桃在中国的种植区 . 浙江农林大学学报, 2022, 39(1): 76-83. doi: 10.11833/j.issn.2095-0756.20210106
    [11] 阮诗雨, 张智俊, 陈家璐, 马瑞芳, 朱丰晓, 刘笑雨.  毛竹GRF基因家族全基因组鉴定与表达分析 . 浙江农林大学学报, 2021, 38(4): 792-801. doi: 10.11833/j.issn.2095-0756.20200544
    [12] 尚杨娟, 谭鹏鹏, 范平桦, 孔德仪, 彭方仁, 李永荣.  薄壳山核桃叶面喷锌效果的评价 . 浙江农林大学学报, 2020, 37(6): 1071-1079. doi: 10.11833/j.issn.2095-0756.20190687
    [13] 严泽埔, 张佳琦, 梁璧, 魏广利, 张启香, 王正加.  外施赤霉素对薄壳山核桃幼苗生长及相关代谢基因表达的影响 . 浙江农林大学学报, 2020, 37(5): 922-929. doi: 10.11833/j.issn.2095-0756.20190566
    [14] 刘云辉, 李珅, 王洋, 羊健, 周伟, 沈亚芳.  药用植物中GRAS转录因子的功能研究进展 . 浙江农林大学学报, 2019, 36(6): 1233-1240. doi: 10.11833/j.issn.2095-0756.2019.06.022
    [15] 杨标, 刘壮壮, 彭方仁, 曹凡, 陈涛, 邓秋菊, 陈文静.  干旱胁迫和复水下不同薄壳山核桃品种的生长和光合特性 . 浙江农林大学学报, 2017, 34(6): 991-998. doi: 10.11833/j.issn.2095-0756.2017.06.004
    [16] 马进, 郑钢, 裴翠明, 张振亚.  南方型紫花苜蓿根系盐胁迫应答转录因子鉴定与分析 . 浙江农林大学学报, 2016, 33(2): 201-208. doi: 10.11833/j.issn.2095-0756.2016.02.003
    [17] 顾建强, 陈东辉, 徐奎源, 陈友吾, 吴佳伟, 周靖, 徐志宏.  薄壳山核桃林地昆虫物种多样性、功能多样性及其相互关系分析 . 浙江农林大学学报, 2015, 32(1): 116-122. doi: 10.11833/j.issn.2095-0756.2015.01.017
    [18] 司马晓娇, 郑炳松.  植物生长素原初响应基因Aux/IAA研究进展 . 浙江农林大学学报, 2015, 32(2): 313-318. doi: 10.11833/j.issn.2095-0756.2015.02.021
    [19] 俞春莲, 王正加, 夏国华, 黄坚钦, 刘力.  10个不同品种的薄壳山核桃脂肪含量及脂肪酸组成分析 . 浙江农林大学学报, 2013, 30(5): 714-718. doi: 10.11833/j.issn.2095-0756.2013.05.012
    [20] 方佳, 何勇清, 余敏芬, 郑炳松.  植物生长素响应因子基因的研究进展 . 浙江农林大学学报, 2012, 29(4): 611-616. doi: 10.11833/j.issn.2095-0756.2012.04.020
  • 期刊类型引用(9)

    1. 宋雨璇,刘静. 基于多源数据视角下的厦门山海健康步道活力提升策略研究. 福建建筑. 2024(04): 14-20 . 百度学术
    2. 邓迪雅,徐文辉,林旭. 郊野绿道生物多样性的公众感知——以杭州青山湖绿道为例. 中国城市林业. 2024(05): 75-81 . 百度学术
    3. 温瑀,秦津,关泽. 秦皇岛海滨国家森林公园北园景观绩效评价. 河北环境工程学院学报. 2023(02): 59-66 . 百度学术
    4. 蔡益杭,张明如,张建国. 浙江青山湖绿道小气候要素与游人游憩行为的关系探析. 生态科学. 2023(04): 154-162 . 百度学术
    5. 陶一舟,李朝晖,严少君. 安吉天荒坪森林特色小镇景观绩效评价. 浙江农林大学学报. 2023(04): 883-891 . 本站查看
    6. 张聪,唐宇力,郭婷婷,张洁,傅东示,幸怡,杨意帆,邵锋. 青山湖滨水绿道景观特征要素与美学感知关系研究. 浙江林业科技. 2023(04): 74-81 . 百度学术
    7. 陈丽军,万志芳. 历次五年计划期间中国新建国家森林公园时空分布及动态演化. 世界林业研究. 2022(03): 61-66 . 百度学术
    8. 唐庭庭,蒋文伟. 夏季小气候效应对人体舒适度的影响——以临安青山湖绿道为例. 现代园艺. 2022(15): 32-34 . 百度学术
    9. 仲启铖,张浪,张桂莲. 基于城市搬迁地的公园绿地建设项目综合效益评价研究——以上海世博公园为例. 园林. 2021(10): 2-10 . 百度学术

    其他类型引用(15)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200454

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/3/464

图(5) / 表(2)
计量
  • 文章访问数:  1703
  • HTML全文浏览量:  316
  • PDF下载量:  90
  • 被引次数: 24
出版历程
  • 收稿日期:  2020-07-14
  • 修回日期:  2020-12-24
  • 网络出版日期:  2021-06-09
  • 刊出日期:  2021-06-09

薄壳山核桃全基因组LBD基因家族的生物信息学分析

doi: 10.11833/j.issn.2095-0756.20200454
    基金项目:  浙江省科技厅重大研发专项(2018C02004);浙江省农业新品种选育重大科技专项(2016C02052-13);“十三五”国家重点研发计划项目(2018YFD1000604)
    作者简介:

    黄元城(ORCID: 0000-0002-2388-6057),从事经济林培育研究。E-mail: 834194037@qq.com

    通信作者: 王正加(ORCID: 0000-0002-6511-6771),教授,博士,博士生导师,从事经济林遗传育种和植物发育生物学研究。E-mail: wzhj21@163.com
  • 中图分类号: S722.3;Q75

摘要:   目的  研究薄壳山核桃Carya illinoensis LBD基因家族结构特征、进化模式和在胚发育过程中的表达模式。  方法  运用生物信息学手段鉴定薄壳山核桃LBD基因,分析该基因结构特征、系统发生学关系、显花植物中的进化历史和在胚发育过程中3个关键阶段的表达模式。  结果  薄壳山核桃全基因组中一共鉴定到52个候选LBD基因。根据基因结构、系统发生学最大似然树和Motif分析可分为3类:GroupⅠ、GroupⅡ和GroupⅢ。多序列比对分析中,52个LBD基因LOB结构域中鉴定出3个重要的结构:CX2CX6CX3C锌指结构、高度保守的甘氨酸GAS结构和亮氨酸拉链(zipper-like)结构,并且在3类内都分别发生了特异性的的变异或者缺失。根据代表性显花植物LBD基因家族的系统发生学分析,从变异程度看GroupⅠ和GroupⅡ相对较为保守,而GroupⅢ内的所有LBD基因共享1支较长的分支,它们已发生了较大的变异,可能已经分化出新的功能。表达分析结果显示:LBD基因家族参与调控胚发育过程,通常控制子叶的发育和形态建成。薄壳山核桃LBD基因中又有在整个胚发育过程中都高表达的一簇基因,这些基因可能在胚发育过程中发挥了更加重要的作用。  结论  薄壳山核桃全基因组中共获得LBD基因52个,共可分为3个亚家族,不同的亚家族具有不同的基因结构、蛋白质结构、进化模式和表达模式,转录组表达分析显示:不同亚家族之间在胚发育不同阶段具有差异性表达,它们共同参与调控薄壳山核桃胚发育过程。图5表2参47

English Abstract

唐慧超, 洪泉, 徐斌. 浙江青山湖国家森林公园环湖绿道1期景观绩效评价[J]. 浙江农林大学学报, 2020, 37(6): 1177-1185. DOI: 10.11833/j.issn.2095-0756.20200167
引用本文: 黄元城, 郭文磊, 王正加. 薄壳山核桃全基因组LBD基因家族的生物信息学分析[J]. 浙江农林大学学报, 2021, 38(3): 464-475. DOI: 10.11833/j.issn.2095-0756.20200454
TANG Huichao, HONG Quan, XU Bin. Landscape performance assessment of phase I of greenway around Qingshan Lake National Forest Park, Zhejiang Province[J]. Journal of Zhejiang A&F University, 2020, 37(6): 1177-1185. DOI: 10.11833/j.issn.2095-0756.20200167
Citation: HUANG Yuancheng, GUO Wenlei, WANG Zhengjia. Genome-wide identification and bioinformatics analysis of LBD family of transcription factors in Carya illinoensis[J]. Journal of Zhejiang A&F University, 2021, 38(3): 464-475. DOI: 10.11833/j.issn.2095-0756.20200454
  • LBD转录因子是一类在其蛋白质N端具有侧生器官边界(LOB)蛋白质结构域的植物特有转录因子[1]。SHUAI等[2]首次发现了LBD基因,发现它在植物侧生器官的边界细胞中表达并且参与侧生器官的发育形成。根据侧生器官边界(LOB)域的结构,拟南芥Arabidopsis thaliana中的LBD转录因子家族通常可被分为2类。类1(Group 1)具有1个完整的高度保守的CX2CX6CX3C锌指结构,通常能够结合特定DNA序列。同时类1的LBD基因具有高度保守的甘氨酸GAS结构和亮氨酸拉链(zipper-like)结构(LX6LX3LX6L),它们之间会形成卷曲-螺旋结构的蛋白质并相互作用。而类2(Group 2)只含有1个保守的CX2CX6CX3C锌指结构[1-4]。大多数的LBD转录因子基因从属于类1。类2的LBD蛋白质往往保存有1个可能不具有功能的残缺的亮氨酸拉链结构,它会形成1个盘绕-线圈结构[4]。最近,CHEN等[5]通过研究小麦Triticum aestivum LBD蛋白质中LOB结构域的蛋白质结晶学,揭示了之前提到的CX2CX6CX3C锌指结构实际是C4型锌指结构。C4锌指结构常常与GAS结构以及α4和α5之间的垂直构象共同作用,从而精确识别DNA,并能对结合位点的空间构型进行定位。最初的一些LBD基因功能研究表明:LBD基因通常在侧生器官底部的边界新生细胞中表达,在器官分化和侧生器官发育中具有潜在功能[1]。同时,LBD基因还能够参与植物花青素、氮元素代谢和器官再生等关键过程[6]。类1的LBD基因大多数参与植物发育过程[4, 7]和由生长素信号转导级联反应介导的侧根形成过程。相反,类2基因往往作为花青素合成的阻遏物和有效性信号参与了新陈代谢过程[8]。在拟南芥LBD转录因子的表达模式研究中,病原体几乎诱导了类2的所有LBD基因的表达,这表明LBD基因能够在植物病原防御反应中发挥作用[9]。LBD基因参与到拟南芥许多组织发育过程中,比如叶片发育[10]、根部侧生器官发育[11-13]、细胞分裂素信号转导[14]和赤霉素途径[15]。值得一提的是,拟南芥中的AthLBD16基因会促进侧根的​​起始发育[16]AthLBD29则能够抑制拟南芥茎纤维壁增厚的生长素信号转导过程[17]。在尖孢镰刀菌Fusarium oxysporumAtLBD20作为易感基因似乎能够调节茉莉酸(JA)信号传导和激活尖孢镰刀菌中JA信号转导过程依赖的反应[18]。除拟南芥之外LBD基因功能在许多物种中同样被研究过,如OsIG1基因会参与配子发生过程并影响水稻Oryza sativa的花器官数量[19];MdLBD13蛋白质则可以抑制苹果Malus × domestica中的花色苷合成和氮吸收[20]。与此同时,在许多物种中也开展了利用基因组数据资源对LBD基因家族鉴定和分析的研究,如茶树Camellia sinensis[21]、马铃薯Solanum tuberosum[22]、桉树Eucalyptus robusta[23]、芸薹Brassica campestris[24]、葡萄Vitis vinifera[25]、大豆Glycine max[26]。但是目前薄壳山核桃Carya illinoensis中的LBD基因研究却鲜有报道。在薄壳山核桃全基因组测序组装完成后LBD基因家族仍然没有进行系统的研究[27]。本研究通过生物信息学手段鉴定了薄壳山核桃全基因组内的LBD基因,分析其基因结构、基序(motif)分布、转录组表达模式并构建系统进化树,预测LBD基因家族在薄壳山核桃中可能的功能,并为进一步研究提供理论基础。

    • 薄壳山核桃、山核桃Carya cathayensis、核桃Juglans reiga的全基因组蛋白质序列来源于胡桃科Juglandaceae数据库(http://www.juglandaceae.net/)[28]。银杏Ginkgo biloba、无油樟Amborella trichopoda、蓝星睡莲Nymphaea coloratar、大豆、葡萄、水稻的全基因组蛋白质序列来源于美国国立生物技术信息中心(NCBI)。拟南芥的全基因组蛋白质序列来源于拟南芥信息资源库(TAIR,https://www.arabidopsis.org/)。

    • 以LBD为关键词,搜索获取LBD在拟南芥中的10条核酸编码序列(CDS),并下载这10条基因的FASTA格式的核酸序列。将获得的10条拟南芥编码序列通过本地NCBI-BLAST 2.9.0软件的BLASTX程序与1.1中获得的全基因组蛋白质序列进行同源比对,在Pfam数据库[29]中下载LOB结构域的种子文件,得到的候选LBD蛋白质序列用HMMER软件[30]使用隐马尔科夫模型算法筛选出LBD基因,利用ExPASy蛋白质在线分析网站对蛋白质序列进行理化性质的鉴定和分析。

    • 通过MCSCAN软件[31],将薄壳山核桃全基因组核酸编码序列CDS文件和基因组注释GFF文件输入执行Pairwise Synteny Search程序,得到的Anchor Pairwise结果以30个基因为阈值过滤小片段block。在最后的gene block中寻找1.2中鉴定到的LBD基因。

    • 利用ENSEMBL的CLUSTALW软件[32]对获取的52条薄壳山核桃LBD基因进行多重序列比对,将比对后的ALN文件输入至ENDscript网站进行多序列比对的可视化。

    • 利用MUSCLE v3.8.31软件[33]分别对获取的52条薄壳山核桃和547条多物种LBD基因的蛋白质序列进行多序列比对。获得的多序列比对结果文件使用FastTree V2.1.11软件[34]的JTT+CAT算法[35]构建最大似然树,获得的树文件通过Evolview在线网站[36]可视化。在胡桃科数据库下载薄壳山核桃基因组结构注释GFF文件,并利用Gene Structure Display Server 2.0在线网站[37]可视化LBD基因结构图。在MEME网站上传52条薄壳山核桃蛋白质序列分析基序。

    • 转录组原始测序数据从NCBI (https://www.ncbi.nlm.nih.gov/) PRJNA435846下的SRA数据库获取:SRR6793964、SRR6793963、SRR6793962、SRR6793961、SRR6793960、SRR6793959、SRR6793958、SRR6793957、SRR6793956、SRR6793955。从GIGADB (http://gigadb.org/)获取薄壳山核桃全基因组序列和基因组注释GFF文件,利用fastp软件进行质控和过滤,STAR软件进行序列比对,RSEM软件对基因进行定量分析,计算TPM值并生成基因表达数据框。得到的表达数据通过R软件将表达值进行对数转换后利用pheatmap包绘制表达热图。

    • 通过BLASTX初筛出LBD的同源基因,经HMM-SEARCH程序[29]分析和筛选,供试的10个物种中共获得551条LBD基因(表1)。其中大豆中LBD基因的数量是无油樟的4.46倍、核桃的1.61倍,推测这可能和大豆是由古四倍体演化而来的二倍体有关[38]。根据薄壳山核桃基因组GFF注释文件,发现有pecanLBD50、pecanLBD51和pecanLBD52等3个基因是位于scaffold123681的短串联重复基因。

      表 1  多物种LBD基因鉴定结果

      Table 1.  Identify result of LBD genes in multi-species

      鉴定程序基因数量/个
      银杏无油樟蓝星睡莲水稻拟南芥葡萄大豆核桃山核桃薄壳山核桃
      BLASTX904551619198153878980
      HMMER502635295857116725652

      MCSCAN分析显示:薄壳山核桃基因组共有211个共线性的区块。在这些共线性的区块中找到了13对在可能全基因组加倍事件中发生重复的同源LBD基因对:pecanLBD1和pecanLBD25、pecanLBD4和pecanLBD17、pecanLBD5和pecanLBD16、pecanLBD11和pecanLBD33、pecanLBD11和pecanLBD32、pecanLBD12和pecanLBD33、pecanLBD12和pecanLBD32、pecanLBD14和pecanLBD43、pecanLBD14和pecanLBD42、pecanLBD19和pecanLBD26、pecanLBD20和pecanLBD29、pecanLBD21和pecanLBD36、pecanLBD34和pecanLBD41。共线性分析共得到基因23个,占所有LBD基因的44.2%,这说明了全基因组加倍事件使LBD基因家族得到了扩张。

      通过理化性质分析(表2):在氨基酸数量、分子量、等电点、不稳定系数和脂肪系数等方面存在差异。氨基酸数量为 92~326个,大部分为 170~300个;等电点为4.48~9.85,>7.5的有24个,多在碱性范围内;不稳定系数<40的有51个,为稳定蛋白质;>40仅1个,为不稳定蛋白质;蛋白质的脂肪系数大多<100,为疏水性蛋白质,仅有pecanLBD50脂肪系数>100,为亲水性蛋白质。

      表 2  薄壳山核桃LBD转录因子家族蛋白质理化性质

      Table 2.  Physicochemical properties of LBD transcription factor family protein in C. illinoensis

      蛋白质氨基酸残基数/个分子量/kD理论等电点酸性氨基酸/个碱性氨基酸/个不稳定系数脂肪系数总平均亲水性
      pecanLBD1 21023 309.198.24171947.6573.52−0.485
      pecanLBD2 20822 353.777.55202158.3288.650
      pecanLBD3 28831 617.018.99293561.9276.88−0.326
      pecanLBD4 22324 069.377.69171873.8977.89−0.171
      pecanLBD5 18820 808.567.63171867.2469.15−0.490
      pecanLBD6 26028 451.228.23313452.5569.38−0.501
      pecanLBD7 15617 540.209.03121855.8778.91−0.235
      pecanLBD8 17218 611.248.59141761.2470.35−0.238
      pecanLBD9 27630 985.118.55283230.8476.96−0.522
      pecanLBD1032636 029.866.91232264.4577.58−0.472
      pecanLBD1120422 376.577.53181960.7877.99−0.233
      pecanLBD1223225 857.685.90211450.5265.22−0.425
      pecanLBD1317018 808.036.42181765.0457.47−0.607
      pecanLBD1420221 823.688.59141757.4180.20−0.175
      pecanLBD1520323 706.088.15272952.0077.39−0.556
      pecanLBD1619120 998.776.08191770.0572.04−0.423
      pecanLBD1723025 054.589.22172378.9470.04−0.284
      pecanLBD1817218 626.238.82141867.6473.14−0.296
      pecanLBD1930633 113.727.95333546.0381.54−0.280
      pecanLBD2016218 029.726.70141451.7688.52−0.133
      pecanLBD2112714 182.024.4814736.1892.20−0.246
      pecanLBD2217619 971.985.17251844.8880.34−0.186
      pecanLBD2313015 042.749.84102545.4377.23−0.541
      pecanLBD2416218 285.758.23131557.6578.40−0.337
      pecanLBD2521423 771.708.25171949.4274.44−0.472
      pecanLBD2631033 384.038.22343747.4480.87−0.302
      pecanLBD2716818 892.286.28171372.8663.87−0.476
      pecanLBD2821523 539.685.33181475.4770.88−0.272
      pecanLBD2916718 504.186.94151559.0081.80−0.217
      pecanLBD3017619 230.736.50181769.1573.75−0.242
      pecanLBD3116918 881.586.49171651.2879.59−0.219
      pecanLBD3223626 157.915.74221346.7365.76−0.405
      pecanLBD3321323 405.507.06191965.2367.37−0.380
      pecanLBD3432637 266.205.47543549.0574.29−0.813
      pecanLBD3525127 236.496.44242259.5580.08−0.322
      pecanLBD3622824 949.426.29171683.4071.05−0.271
      pecanLBD3722824 709.228.06222459.2076.14−0.244
      pecanLBD3821623 449.536.03171364.1175.05−0.227
      pecanLBD3915817 663.156.27151353.4480.25−0.243
      pecanLBD4022124 171.044.97211258.4578.60−0.143
      pecanLBD4126530 244.096.42332946.8677.66−0.594
      pecanLBD4223724 801.388.20131569.0779.87−0.065
      pecanLBD4321323 452.556.74191856.4580.61−0.203
      pecanLBD4422424 373.778.93172269.4173.62−0.276
      pecanLBD4520221 927.158.56192354.6683.47−0.159
      pecanLBD4622124 114.379.01182373.1866.29−0.421
      pecanLBD4728932 466.215.27292167.1965.92−0.600
      pecanLBD4817619 971.985.17251844.8880.34−0.186
      pecanLBD4917018 770.956.19191760.44 55.18−0.615
      pecanLBD50 9210 319.086.26111039.17115.65 0.018
      pecanLBD5131334 650.037.29202064.34 73.07−0.490
      pecanLBD5232035 091.256.83232166.59 67.53−0.593
    • 图1所示:52个薄壳山核桃LBD基因聚成3类:GroupⅠ、GroupⅡ、GroupⅢ。其中,GroupⅠ含有最多的33个LBD基因,它们可能承担了LBD基因促进侧生器官发育的主要功能。GroupⅠ中有1对蛋白质序列完全相同的基因pecanLBD22和pecanLBD48,导致它们在进化树上没有显示变异,而pecanLBD41的进化枝长度达到3.7346,是GroupⅠ中相对于其他LBD基因变异程度最大的。GroupⅡ细分为3支基因簇,其中 Sub groupⅠ和Sub groupⅢ的进化枝相对较短,因此序列和功能变异不大;而Sub groupⅡ有明显的进化变异,其中pecanLBD6的枝长为6.2748,是Sub groupⅡ中变异最大的基因,它可能已经出现了功能上的分化变异。GroupⅢ是3类中最保守的一支,其中的pecanLBD9基因的枝长在所有52个LBD基因中最长,达6.764 2。

      图  1  薄壳山核桃LBD基因家族系统进化树

      Figure 1.  Phylogenetic tree constructed based on the full-length sequences of pecan LBD genes using JTT+CAT algorithm with FastTree software

      图2中52个薄壳山核桃LBD基因基序分析结果所示:共发现了10个基序并命名为Motif1~Motif10。对LBD转录因子家族较重要的有3个基序:Motif1含GAS(Gly-Ala-Ser)甘氨酸保守结构;Motif 2拥有完整的高度保守的CX2CX6CX3C锌指结构,通常具有结合特定DNA序列的能力;Motif 3 为亮氨酸拉链结构(LX6LX3LX6L)。Motif1和Motif3往往会形成卷曲-螺旋结构的蛋白质并相互作用。52个薄壳山核桃LBD基因中的39个具有完整的Motif1、Motif2和Motif3的顺序基序结构;而pecanLBD34、pecanLBD41和pecanLBD9在进化过程中丢失了Motif1的GAS甘氨酸保守结构;pecanLBD6、pecanLBD19、pecanLBD26、pecanLBD45、pecanLBD37、pecanLBD2和pecanLBD3丢失了Motif3亮氨酸zipper-like结构(LX6LX3LX6L),尽管它们仍具有GAS结构但已经丧失了和Motif1结合生成卷曲-螺旋蛋白质结构的功能;pecanLBD50则丢失了所有的基序,可能丧失了LBD基因的基本功能。

      图  2  薄壳山核桃LBD转录因子家族系统发育树和保守蛋白质基序结构

      Figure 2.  Phylogenetic tree constructed based on the full-length sequences of pecan LBD genes using JTT+CAT algorithm with FastTree software

      基因结构分析显示:薄壳山核桃LBD基因一般具有1~3个外显子。其中pecanLBD41~pecanLBD52都只具有1个外显子(除pecanLBD47有2个外显子除外),并且都属于GroupⅠ;具有3个外显子的基因只有pecanLBD3、pecanLBD34和pecanLBD9,在每类都有部分;剩余的LBD基因都为2个外显子,占所有薄壳山核桃LBD基因的67.3%。因此,薄壳山核桃LBD转录因子家族的大多数基因较为保守,有着相似的基序、基因结构,执行并发挥LBD的主要功能,而其发生变异的小部分可能已经丢失了原来的基因功能或者特化出新的功能。

    • 对52个薄壳山核桃LBD转录因子基因的LOB蛋白质结构域多序列比对(图3)发现:LOB蛋白质结构域主要由3个保守序列模式组成:长度为16个氨基酸的CX2CX6CX3C锌指结构、长度为50个氨基酸的甘氨酸GAS结构和LX6LX3LX6L亮氨酸拉链结构。其中pecanLBD50和pecanLBD21完全缺失了锌指结构和部分的甘氨酸GAS结构,而其他的LBD的锌指结构则全部保存下来没有发生缺失或者突变,较为保守。甘氨酸GAS结构相对锌指结构变异程度较大,GroupⅠ中pecanLBD23~pecanLBD47、pecanLBD10、pecanLBD51发生了1~2个氨基酸的变异,GroupⅡ中pecanLBD6、pecanLBD19、pecanLBD26、pecanLBD45、pecanLBD37、pecanLBD2、pecanLBD3等7个转录因子GAS中的丙氨酸突变为精氨酸、丝氨酸突变为丙氨酸,52个LBD转录因子中有12个发生了突变,2个缺失了GAS结构。LX6LX3LX6L亮氨酸拉链结构中,上述7个转录因子的第1个亮氨酸位置都突变为甘氨酸,第3个亮氨酸位置突变为甘氨酸或苏氨酸,有5个转录因子的第2个亮氨酸位置发生了突变,由此可见上述7个LBD转录因子与进化模式(图1)一致,已经发生了较大程度的变异,可能已经分化出新的功能。pecanLBD15、pecanLBD47、pecanLBD10、pecanLBD51、 pecanLBD52、pecanLBD7和pecanLBD24的第2个亮氨酸位置发生了突变,第3个亮氨酸位置只有pecanLBD40、pecanLBD23和pecanLBD10发生了突变,相对保守。

      图  3  薄壳山核桃LBD 转录因子家族LOB蛋白质结构域多序列比对

      Figure 3.  Multiple sequence alignment of LOB domain in C. illinoensis transcription factor family

    • 图4可见:与薄壳山核桃LBD系统发育树相似,图4中各物种LBD转录因子可以聚为3类:GroupⅠ、GroupⅡ和GroupⅢ。其中GroupⅠ有314个LBD基因,为总数的57.0%,占比最多;GroupⅡ有166个LBD基因,占总数的30.1%;而GroupⅢ的基因数量最少,只有71个,占总数的12.9%。从表1鉴定到的LBD转录因子的数量来看,裸子植物银杏的数量是早期被子植物类群的2倍,这与银杏最近一次特异性的WGD事件有关[39];早期被子植物类群和单子叶植物水稻的LBD基因数量接近;而双子叶植物的LBD基因数量明显又发生了1次倍增。从分布来看,GroupⅠ、GroupⅡ和GroupⅢ中每个植物类群都存在LBD基因,因此LBD转录因子家族可能在裸子植物和被子植物未分化前已经分为3类,分化后3类LBD继续各自进化。从变异程度看GroupⅠ和GroupⅡ相对较为保守,而GroupⅢ内的所有LBD基因共享一支较长的分支,说明它们已发生了较大的变异,可能已经分化出新的功能。

      图  4  利用从裸子植物银杏到高等植物551个LBD基因全长蛋白质序列构建系统发育树

      Figure 4.  Phylogenetic tree constructed based on the full-length sequences of 551 LBD genes from gymnosperm ginkgo to higher angiosperms

    • 为了探究LBD转录因子家族在胚发育的关键过程中的作用,从NCBI网站的SRA原始测序数据库中下载了薄壳山核桃胚成熟过程中3个关键时期的原始测序数据:子叶伸展早期(early extended stage of cotyledon development)、子叶完全伸展期(fully extended stage of cotyledon development)、胚完全成熟期(fully matured stage of embryo),并进行分析和绘制聚类热图(图5)。不同LBD基因和不同发育阶段之间的表达模式有显著差异。基因表达量可以聚为4类:①pecanLBD2、pecanLBD19和pecanLBD26在3个阶段的表达量比较高;②pecanLBD30、pecanLBD3和pecanLBD37在子叶伸展早期和子叶完全伸展期表达;③pecanLBD11、pecanLBD18、pecanLBD8、pecanLBD25、pecanLBD6、pecanLBD42、pecanLBD13、pecanLBD52、pecanLBD17、pecanLBD35、pecanLBD1、pecanLBD43、pecanLBD29和pecanLBD44仅在子叶伸展早期有表达;④其余的LBD基因在3个阶段都不表达。从2.2中系统发育分析的结果来看:③类表达的14个LBD基因(78.6%),属于较为保守的Group I,因此它们在胚发育过程中主要参与经典的器官分化过程,加快子叶边界新生的细胞分化。而①类表达的基因都是进化枝较长、变异程度较大的GroupⅡ中Sub GroupⅡ的成员,可见GroupⅡ中Sub Group Ⅱ的LBD成员已经发生了较大程度的变异,它们参与到胚发育的全程,可能与胚中营养物质的积累过程和胚组织分生发育的过程密切相关。②类中pecanLBD30和pecanLBD3属于GroupⅡ, pecanLBD 37属于GroupⅠ,它们在功能上可能介于①类和③类,即既参与了器官分化、细胞分裂的过程调控,又和胚中营养物质积累的过程相关。总体上,薄壳山核桃胚发育过程中LBD基因功能较为保守,主要参与新生细胞分裂分化、子叶形态建成等,但GroupⅡLBD基因的变异程度较大,可能进化出新的功能,在胚发育过程中发挥更加关键的作用。

      图  5  薄壳山核桃LBD 转录因子家族胚发育表达模式

      Figure 5.  Transcriptome expression profile of LBD gene family in embryo development

    • 本研究分别在银杏、无油樟、蓝星睡莲、水稻、拟南芥、葡萄、大豆、核桃、山核桃和薄壳山核桃全基因组蛋白质序列中系统鉴定了551个LBD基因。这些LBD基因包含典型的LOB结构域,即1个含有DNA结合活性所需的 (CX2CX6CX3C)锌指结构、1个Gly-Ala-Ser(GAS)结构和1个负责蛋白质二聚体化的亮氨酸拉链 (LX6LX3LX6L)结构。根据LOB结构域的组成模式和系统发育学分析结果。薄壳山核桃52个LBD基因可分为GroupⅠ、GroupⅡ和GroupⅢ 3类。33个LBD基因被划分为GroupⅠ,15个被划分为GroupⅡ,4个为GroupⅢ。根据进化枝的长度,GroupⅠ是数量较多同时也比较保守的一支,而GroupⅡ和 GroupⅢ都发生了一定程度的变异。

      新基因功能产生或分化的一大动力是基因重复,基因重复对物种提高环境适应性至关重要[40]。在进化过程中,重复的基因可能会经历功能分化、亚功能分化或功能丢失等多种过程[41]。基因重复通常会导致基因家族扩张[42]。为了揭示薄壳山核桃LBD基因家族的复制机制,利用MCScanX对薄壳山核桃的基因组共线性区块内成对的LBD基因进行筛选。根据目前的基因组内LBD基因位置分析结果,薄壳山核桃基因组内只存在1个连续3个LBD基因的串联重复事件,但是存在13对23个由全基因组加倍产生的LBD基因共线性基因对。这说明全基因组加倍在LBD基因家族进化中起到了主导性的推动作用。

      本研究构建了以裸子植物(银杏)、早期被子植物(无油樟、睡莲)、单子叶植物(水稻)、双子叶植物(拟南芥、葡萄、大豆)、近缘种植物(核桃、山核桃)和薄壳山核桃为显花植物中主要类群的LBD基因系统发育树。显花植物LBD系统发育树与与薄壳山核桃LBD相似,同样可以聚为3类。从分布来看,GroupⅠ、GroupⅡ和GroupⅢ中每个植物都存在LBD基因,因此LBD转录因子家族可能在裸子植物和被子植物未分化前已经分化为3类。从变异程度看,GroupⅠ和GroupⅡ相对较为保守,而GroupⅢ内的所有LBD基因共享一支较长的分支,说明已发生了较大的变异,可能已经分化出新的功能。

      LBD蛋白质协调了很多植物发育过程,并对环境刺激作出反应,特别是在调控侧根器官发育和代谢过程中起着至关重要的作用。例如LBD18通过抑制LBD18 DNA-结合活性控制侧根发育[43]。一般来说,主根受到侧根过度生长的影响,会降低植物提取水分和养分的能力。在土壤中蔓延的侧根过多,将增加被病原体攻击的可能性。以前的一些工作已经证明了这些预测。如LBD1通过抑制主根生长和维持侧根萌发来控制盐胁迫下的根结构[44]。LBD基因由于其对一系列下游基因的转录调控,成为植物病原体入侵的关键分子靶基因[7]

      在薄壳山核桃研究中胚的发育是非常重要的阶段[45],特别是胚内蛋白质、不饱和脂肪酸、淀粉等重要营养物质累积过程是薄壳山核桃研究的热点[46-47]。本研究分析LBD转录因子家族在薄壳山核桃子叶伸展早期、子叶完全伸展期和胚完全成熟期3个时期的转录数据发现:薄壳山核桃LBD基因存在4种表达模式。可见LBD基因具有参与调控胚发育过程的功能,通常基于在侧生器官底部的边界新生的细胞中调控细胞分裂分化来控制子叶的发育和形态建成。薄壳山核桃LBD基因中有在整个胚发育过程中都高表达的一簇基因,这些基因在胚发育过程中发挥了更加重要的作用,因此有必要对这一簇LBD基因进行更为深入的基因功能研究,可为进一步改良薄壳山核桃遗传性状提供基础。

参考文献 (47)

目录

/

返回文章
返回