留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天目铁木和多脉铁木不同器官氮磷钾生态化学计量特征

叶子豪 吴伟峰 彭健健 张崑 蔡广越 李云 战捷佳 吴家森

龚元, 纪小芳, 花雨婷, 等. 基于涡动相关技术的森林生态系统二氧化碳通量研究进展[J]. 浙江农林大学学报, 2020, 37(3): 593-604. DOI: 10.11833/j.issn.2095-0756.20190412
引用本文: 叶子豪, 吴伟峰, 彭健健, 等. 天目铁木和多脉铁木不同器官氮磷钾生态化学计量特征[J]. 浙江农林大学学报, 2021, 38(2): 426-432. DOI: 10.11833/j.issn.2095-0756.20200470
GONG Yuan, JI Xiaofang, HUA Yuting, et al. Research progress of CO2 flux in forest ecosystem based on eddy covariance technique: a review[J]. Journal of Zhejiang A&F University, 2020, 37(3): 593-604. DOI: 10.11833/j.issn.2095-0756.20190412
Citation: YE Zihao, WU Weifeng, PENG Jianjian, et al. Ecological stoichiometric characteristics of nitrogen, phosphorus and potassium in different organs of Ostrya rehderiana and O. multinervis[J]. Journal of Zhejiang A&F University, 2021, 38(2): 426-432. DOI: 10.11833/j.issn.2095-0756.20200470

天目铁木和多脉铁木不同器官氮磷钾生态化学计量特征

DOI: 10.11833/j.issn.2095-0756.20200470
基金项目: 浙江省省院合作林业科技项目(2017SY13)
详细信息
    作者简介: 叶子豪(ORCID: 0000-0001-8620-8248),从事农业资源与环境研究。E-mail: 572654962@qq.com
    通信作者: 吴家森(ORCID: 0000-0001-5519-9385),教授级高级工程师,博士,从事森林土壤与环境研究。E-mail: jswu@zafu.edu.cn
  • 中图分类号: S718.5

Ecological stoichiometric characteristics of nitrogen, phosphorus and potassium in different organs of Ostrya rehderiana and O. multinervis

  • 摘要:   目的   研究天目铁木Ostrya rehderiana和多脉铁木O. multinervis等2种极小种群植物不同器官的化学计量特征,推测2种植物生长的限制性元素,为林地土壤管理提供科学依据。   方法   以天目铁木和多脉铁木为研究对象,对植物根、枝、叶、树皮全氮、全磷、全钾的质量分数以及土壤基本理化性质进行了测定。采用SPSS软件进行差异显著性检验,分析2种植物不同器官之间的差异。   结果   天目铁木的氮、钾质量分数从大到小依次为叶、枝、皮、根,磷质量分数从大到小依次为枝、根、叶、皮;多脉铁木的氮、钾质量分数从大到小依次为叶、枝、根、皮,磷质量分数从大到小依次为根、枝、叶、皮。天目铁木的氮磷比平均值为3.18~19.22,氮钾比平均值为1.60~2.56,钾磷比平均值为1.97~11.80。多脉铁木氮磷比平均值为3.57~28.43,氮钾比平均值为1.14~4.59,钾磷比平均值为2.77~11.77。2种树种不同器官之间氮、磷、钾生态化学计量特征较为相似,仅多脉铁木根中的氮和叶、枝中的钾显著高于天目铁木的对应器官(P<0.05)。   结论   影响天目铁木生长的限制性元素是氮和磷,影响多脉铁木生长的限制性元素是磷。因此,在林地土壤管理中,天目铁木应适当增施氮肥和磷肥,而多脉铁木则应适当增施磷肥。图2表1参33
  • 18世纪60年代工业革命以来,由于全球土地利用变化、工业活动和化石燃料的使用,大量温室气体排放至大气中[1]。甲烷(CH4)和二氧化碳(CO2)等温室气体的大量排放,导致全球增温和气候变化,人类开始关注陆地生态系统碳循环过程和消失的碳汇(missing carbon sink)[1]。了解植物(草地、森林生态系统)对大气CO2吸收和排放的调节作用是人类应对全球气候变化的基础[1-2]。森林生态系统是陆地生态系统物质循环和能量流动的重要组成部分,开展不同生态尺度的森林生态系统碳循环研究对更好地了解陆地生态系统与大气间的碳交换过程,制定全球碳排放和碳交易政策(如欧洲碳排放交易体系等),应对全球气候变化具有参考和服务作用[2-4]。涡动相关系统是目前应用较多的温室气体观测技术。本文主要依据涡动相关观测系统对森林生态系统CO2通量观测值、微气象数据等相关研究成果,讨论森林生态系统CO2通量观测原理和数据预处理、CO2通量动态特征、CO2通量环境影响因素、CO2通量足迹估算等方面的研究成果,为其他森林生态系统碳循环研究提供服务和方法参考。

    研究森林生态系统碳循环过程就必须对其和大气间碳交换过程进行不同时间尺度/间隔的观测,其中对森林生态系统与大气间垂直碳交换即CO2通量观测是研究森林生态系统碳循环过程的重要研究内容[5-6]。CO2通量是指在一定生态尺度下单位时间单位面积内CO2流通的量,一般以μmol·m−2·s−1为单位,亦可依据不同的科学问题的需要对其质量单位、面积单位和时间单位进行换算[3]。对森林生态系统CO2通量进行观测的方式也较多,如自下而上(bottom-up)的涡动协方差/涡动相关技术和自上而下(top-down)的参数化遥感产品等[3]。20世纪90年代以来,涡动相关系统开始广泛应用于高大植被较多的森林生态系统CO2通量观测[7-8]。如今随着涡动相关系统的推广,为了数据共享和数据处理标准化形成了国际通量网(FLUXNET,https://fluxnet.fluxdata.org/),中国通量网(ChinaFLUX,http://www.chinaflux.org/)等全球-区域的通量和微气象数据共享网络平台[9-10]。依据国际通量网2017年2月的统计结果,目前在其注册的站点全球共914个,其中较多站点为森林生态系统CO2通量观测站点,且多分布于温带地区。基于涡动相关系统森林生态系统CO2通量观测的研究也较多,如森林生态系统的碳源/汇估算、CO2通量观测源区/足迹的计算、CO2通量动态特征的提取、CO2通量预测/建模、地面观测值与遥感观测值的验证等[5-8,11-18]。开展基于涡动相关系统的森林生态系统CO2通量研究,可以为了解陆地生态系统碳循环过程,应对全球气候变化和评估全球碳平衡提供服务和参考[17]

    大气湍流是下垫面与大气间进行物质交换和能量流动的主要方式,为记录其过程中物质和能量流通的量,涡动相关系统便因此诞生[8]。该系统一般安装在地面边界层内,在该层中通量随高度变化的影响较小,在该层开展下垫面与大气的碳交换具有较高的空间代表性[8]。涡动相关系统一般以10~20 Hz的采样频率来记录一定观测高度(zm,m)上的微气象信息(三维风速/风向、超声虚温等)和某物质(CO2、H2O和CH4等)流通的量,后一般取一定时间间隔内(30 min)的平均值来记录微气象数据和通量数据,其中已经假设垂直风速的时间平均值为0 m·s−1,CO2通量可依据下式计算[8]

    $$ {F_{\rm{C}}} = \overline {w'{\rho _{\rm{C}}}'} \text{。} $$ (1)

    式(1)中:FC为CO2通量(μmol·m−2·s−1或g·m−2·s−1)。w为垂直风速(m·s−1),w'为垂直风速脉动量(m·s−1),代表垂直风速瞬时值与平均值的偏差。ρC为CO2密度(kg·m−3),ρC'为CO2密度脉动量(kg·m−3),代表CO2密度瞬时值与平均值的偏差。公式横上线代表时间平均[8]。当FC<0时代表所观测的区域/下垫面为碳汇(carbon sink),当FC>0时代表所观测区域/下垫面为碳源(carbon source)[8]

    通量源区(source area)即代表涡动相关系统所测量CO2通量的下垫面来源。因涡动相关系统的观测受到下垫面、大气边界层环境等因素的影响,观测到的CO2通量只能代表传感器上风向一定区域内的状况,因此在使用这些CO2通量观测值时需要对CO2通量的观测源区的空间代表性进行评估[14]

    通量源区的足迹函数(footprint)代表上风向下垫面中若干个点源所形成的源区对在zm高度上所观测CO2通量F(0, 0, zm)的贡献强度。可由下式计算[18]

    $$ F(0,\;0,\;{z_{\rm{m}}}) = \int_{ - \infty }^\infty {\int_0^\infty {{F_0}(x,\;y,\;0)\phi (x,\;y,\;{z_{\rm{m}}}){\rm{d}}x{\rm{d}}y} } \text{。} $$ (2)

    式(2)中:通量观测点为原点(0, 0),x轴指向来风方向,F0(x, y,0)为上风向源区中某一个点源(x, y)的通量贡献强度[源强,量纲与F(0, 0, zm)一致]。ϕ(x, y, zm)即为通量足迹函数(flux footprint predictions,FFP) [16],足迹函数的量纲为m−2。通量足迹函数的计算结果主要包括上风向通量足迹贡献峰值的位置(m),以及不同通量足迹贡献百分比(10%~95%)在上风向的位置(m)等信息[16]。由于当通量足迹贡献率为1时,通量源区为无限大,因此在进行通量源区的空间代表性的评估时,一般将通量足迹贡献率设定为80%~90%[16]。近年来,随着通量足迹函数的发展,出现了较多优秀通量足迹计算模型,依据其计算模式可分为解析式模型、拉格朗日随机扩散模型、大涡模拟模型、闭合模型等,具体为FSAM模型[19]、KM01模型[18]、KLJUN模型[16]等。KLJUN模型是目前较新颖的基于尺度(量纲)的通量足迹模型,也是目前应用至森林生态系统通量足迹计算较多的模型之一[14],KLJUN等[16]提供了该通量足迹计算模型的在线计算平台(http://footprint.kljun.net/index.php),并且还提供了该通量足迹计算模型在Matlab和R语言软件平台下的开源代码,可供研究人员进行下载和使用。

    在使用和分析涡动相关系统对森林生态系统的CO2通量观测值时,需要对CO2通量数据进行质量控制和数据插补。CO2通量数据预处理过程如下表1所示[8]。为了方便和简化CO2通量数据的预处理过程,美国LI-COR公司(https://www.licor.com/)发展了几套基于涡动相关系统的配套通量数据计算软件,包括开源式涡动相关通量处理软件EddyPro。EddyPro集成了包括通量数据修正、质量控制、野点去除、通量足迹计算等预处理过程,使用方便。另外较新的通量处理软件Tovi,除了通量数据预处理功能之外还集成了通量源区绘制、数据插补等数据可视化功能。除了美国LI-COR公司之外,由德国马克斯普朗克生物地球化学研究所发展的通量数据在线预处理,插补和制图工具(https://www.bgc-jena.mpg.de/bgi/index.php/Main/HomePage)也为CO2通量数据和微气象数据的使用和分析提供了方便。

    表  1  CO2通量数据预处理方法
    Table  1.  CO2 flux data preprocessing method
    数据类型 数据预处理方法
    10~20 Hz高频原始观测数据 频谱修正、野点去除、气体分析仪信号检验、传感器信号强度检验
    30 min时间间隔通量和微气象观测数据 坐标轴旋转(2次旋转和3次旋转)、频率响应修正、感热的超声虚温修正、WPL密度修正
    通量数据质量控制 通量数据合格率检验(一般要求合格率大于50%)、建立通量数据质量控制指标(0-1-2,1-5,1-9)、通量足迹的空间代表性检验、依据经验值的异常通量值剔除、摩擦风速阈值的确定
    下载: 导出CSV 
    | 显示表格

    在CO2通量数据插补方面一般采用平均日变化、查表法和非线性回归法等[18]进行。其中非线性回归法是基于CO2通量与环境因子关系的经验模型,主要包括基于白天生态系统净交换量和光合有效辐射量对Michaelis-Menten光响应曲线模型和采用夜间生态系统呼吸的Arrhenius模型等[5-6]。一般在森林生态系统CO2通量插补时依据应所缺失通量数据的时间长度来确定插补方法,对缺失时间长度较短(≤14 d)使用平均日变化法和查表法[8],对缺失时间长度较长的(>14 d)则使用非线性回归法,如使用基于光合有效辐射的Landsberg模型[20]和基于土壤温度(Ts)的Arrhenius模型等[21]

    在完成通量数据质量控制、通量数据插补、通量源区空间代表性检验后便可开始分析和使用所观测到的局域尺度(local-scale)森林生态系统CO2通量数据,亦可称之为森林生态系统净CO2交换,也可将森林生态系统净CO2交换数据拆分为生态系统呼吸和总初级生产力应用于森林生态系统碳循环过程研究。目前,涡动相关系统在森林生态系统的应用也有较多,依据国际通量网的统计结果,全球大部分涡动相关通量观测站点位于温带地区,且多为森林通量站点[14]。目前,基于涡动相关系统的森林生态系统碳循环研究的数据来源主要分2类,即局域测量和国际通量网的共享通量数据。基于这些通量和气象数据的分析主要包括:CO2通量数据标准化、CO2通量特征分析、CO2通量建模、通量足迹分析和多站点大数据分析等[18-30]。由于树龄、地理和气候等因素的影响,不同森林生态系统的碳源/汇状态不同。一般认为,森林生态系统是陆地生态系统的重要碳汇[25]。由于通量塔架设和维护成本较高,基于涡动相关技术森林生态系统的碳循环研究多依托单个通量塔的观测数据,多站点、长时间序列的数据整合分析较少。涡动相关系统对地形、下垫面完整度、微气象环境等因素要求较高,通量数据的有效率研究依旧是重要研究内容。由于通量数据插补方法的差异,同一时间序列的通量数据会由于不同的数据插补方法对生态系统与大气间碳交换估算产生影响,即影响生态系统碳源/汇功能的判定,因此开展更多通量数据插补方法研究是通量数据质量控制和CO2通量研究的保障和前提。

    基于涡动相关系统对森林生态系统CO2通量研究包括CO2通量特征和通量源区的研究,其中CO2通量源区的计算包括足迹模型验证、足迹气候态和不同景观类型通量贡献差异等研究。CO2通量动态特征的讨论基于不同时间尺度、植物群落类型、气候条件等背景下森林生态系统与大气间碳交换的特征。

    涡动相关系统对CO2通量观测受到多种环境因素的影响,例如:观测高度、下垫面、大气稳定度、大气边界层高度等。因此,在使用CO2通量数据前需要对通量源区进行检验,即所观测的CO2通量值是否来源于感兴趣区域,即通量足迹分析[14]

    BALDOCCHI等[29]解释了拉格朗日随机模型(Lagrangian model)在高大植被冠层中通量足迹的应用,认为拉格朗日随机模型可应用于森林冠层上下2个部分的通量足迹分析,并强调在应用拉格朗日随机模型进行高大植被林冠层通量足迹分析时需要服从高斯力作用(Gaussian forcing)。KLJUN等[16]基于拉格朗日随机扩散模型所发展的三维拉格朗日足迹模型是目前应用较多的参数化通量足迹模型之一,并且引入了大气边界层高度的概念,认为在当通量足迹贡献率大于80%时即具有空间代表性。KIM等[14]基于KLJUN模型分析了美国哈佛森林多年通量足迹形态的气候态特征,认为森林景观变化直接影响了通量源区的形态和面积,且认为高大植被较多的森林生态系统CO2通量观测源区对观测高度(zm)即通量塔视场的依赖性较大。其他通量足迹模型例如FSAM模型、KM模型和HSIEH模型等也是应用至森林生态系统较多的模型。金莹等[30]基于FSAM模型分析了杨树Populus林的通量源区,认为通量源区的大小主要受到大气稳定度(zm/LL为莫宁-奥布霍夫长度)影响,当大气处于稳定状态时通量源区面积大于当大气处于不稳定状态下的通量源区面积,且生长季的通量源区面积大于非生长季的通量源区面积。龚笑飞等[31]基于FSAM模型对安吉毛竹Phyllostachys edilus林通量源区的分析与金莹等[30]的分析结果类似。NEFTEL等[18]基于KM01模型所开发的ART footprint tool首次增加了通量源区的区域选取功能,即可完成对多个感兴趣区域通量足迹贡献率的计算,首次应用至农田和草地生态系统,并且认为该通量足迹计算工具可应用至下垫面较均一的环境中的其他生态系统(如森林生态系统)的通量足迹检验和CO2通量数据质量检验。OGUNJEMIYO等[32]在对黑云杉Picea mariana和短叶松Pinus banksiana混交林进行通量足迹分析时结合卫星和航空器观测数据对下垫面不同景观结构的CO2通量源区与通量观测值的预测。张慧[33]基于FSAM模型、KM01模型和HSIEH模型共3个通量足迹模型分析了千烟洲中亚热带红壤丘陵区人工林的CO2通量足迹,认为参数化方式和建模方式的不同导致了3个通量足迹模型计算结果的差异,且同样认为通量源区的大小对观测高度的依赖性较大。这一结论与KIM等[14]的研究结果一致。

    通量源区/足迹分析是检验CO2通量数据来源的重要方法,是CO2通量数据预处理的必要过程之一[8]。通常在搭建通量塔前需要对局域尺度的上风向风区和通量源区进行估算,以及下垫面冠层高度的计算后再确定通量塔位置和传感器架设高度[8]。通量数据处理软件EddyPro也集成了相关的通量足迹计算功能,包括10%~90%通量足迹最远点在上风向的距离,通量足迹贡献峰值在上风向的距离等[16]。研究人员可依据下垫面实际情况使用相关的软件或者平台,对局域尺度的CO2通量源区进行估算,亦可配合CO2通量观测值分析下垫面中不同森林景观类型对大气CO2的贡献强度。

    由于森林生态系统受到光照、气温、降水等环境控制因素的影响,且由于自身光合作用和呼吸作用,一般局域尺度森林生态系统CO2通量的日变化特征呈现“U”形特征。即一般在当地时间的正午时分(12:00−14:00)达到碳汇的最大强度,夜间由于生态系统呼吸作用,CO2通量观测值达到最大值。白天由于植物光合作用吸收大气CO2,导致涡动相关系统CO2通量30 min观测值(Re)为负值。夜间整个生态系统进入呼吸作用,导致涡动相关系统CO2通量30 min观测值为正值,且夜间CO2通量变化较平稳[3]

    局域尺度的森林生态系统CO2通量观测一般依托于通量观测塔(tower-based) [34-39],进行自下而上的森林下垫面与大气间CO2交换观测。单个森林通量观测站点会搭配1套涡动相关系统、1套微气象梯度观测系统以及1个数据采集器。部分通量观测站点会在通量塔不同高度搭载多套红外气体分析仪和三维超声风速温度测量仪器,以满足在不同大气条件下(稳定、中性和不稳定)对感兴趣区域进行均一性观测[25]

    森林植被高度决定通量观测塔架设高度。森林生态系统的通量观测塔架设高度一般高于城市、湿地和草地等陆地生态系统[35]。目前,已知较高的森林通量塔安装在美国威斯康星州,观测高度为距离地面447.0 m[35]。位于北京市八达岭林场的通量塔架设高度较低(11.7 m),其原因是该地区下垫面树种的平均高度较低(约4.0 m),其较低的下垫面冠层高度决定了通量塔高度[34]。不同森林生态系统由于地理位置和环境差异,导致其CO2通量特征有一定空间分异性,其中主要表现为热带地区森林生态系统的碳汇峰值最强(−1.32 mg·m−2·s−1),且热带地区的CO2通量最大值也高于其他温带森林生态系统CO2通量峰值(0.66 mg·m−2·s−1)[38]。森林通量站点中CO2通量极值一般出现于当地的生长季,其原因可能是下垫面中的绿色植物在生长季产生了较强的光合作用,但在夜晚植物自身生长也增加了生态系统呼吸作用。目前,对森林生态系统CO2通量动态特征的相关研究也已经比较成熟,一般认为,在日尺度下森林生态系统在白天由于光合作用形成碳汇,夜间由于呼吸作用形成碳源,在更长的时间尺度例如多年局域尺度,森林生态系统CO2通量估算中热带雨林表现为较稳定的碳汇,但是在生长季/雨季中会表现为碳源。如张一平等[38]研究的森林生态系统,由于阴雨天气较多导致光合有效辐射降低,地上凋落物增加也增强了土壤呼吸,使局域森林生态系统在生长季/雨季表现为碳源,但在全年尺度上依然表现为微弱的碳汇。在温带森林生态系统中,唐祥等[34]认为:成熟林因为较高的叶面积指数比新造林具有更强的碳汇潜力,且其研究的中国北京市八达岭林场CO2通量特征表现为7月的日CO2吸收值最大。在亚热带森林生态系统中,纪小芳等[27]研究的浙江凤阳山混交林生态系统在全年角度表现为碳汇,在7月净CO2交换水平达到最低,碳汇强度达到最大。

    开展基于涡动相关系统在森林生态系统CO2通量观测,可以为长时间序列森林生态系统碳交易(carbon budget)、碳平衡(carbon balance)进行评估,森林通量观测站点长时间序列CO2通量数据积累可以帮助我们更好地理解森林生态系统对大气CO2的调节,即碳源和碳汇状态转换的时空特征。BRACHO等[25]基于涡动相关系统观测的美国东南部种植的湿地松Pinus elliottii林1998−2008年的CO2通量数据,分析了多年尺度湿地松林的碳平衡状态,结果表明:相对年轻的湿地松林分在1998−2001年表现为碳汇,年碳交易分别为−12.68、−8.85、−5.28、−2.37 Mg·hm−2·a−1,而相对老龄的林分表现为碳源。研究结果显示:年平均叶面积指数为1~2 m2·m−2时,年轻的林分表现为较强的碳汇。随着年平均叶面积指数的上升,林分渐渐转换为碳源。相对老龄林分的年叶面积指数为6~8 m2·m−2,且在年尺度上均表现为碳源,年碳交易为4.91~8.18 Mg·hm−2·a−1,该局域尺度生长季降水是影响湿地松林生态系统年碳交易的主要因素。PITA等[23]分析了4类不同树种林分CO2通量的差异和季节分异,认为在长时间序列下桉树Eucalyptus有效的叶片气孔控制可以应对地中海气候下饱和水汽压差的变化,适宜在地中海地区种植。杨树Populus在干旱期间的主要表现为叶面积指数下降。由于温带地区的苏格兰松Pinus sylvestris 林有地下水位的补给导致受到水分胁迫的压力较小,且长时间序列的总初级生产力受气候变化的影响较小,但是4类林分中月均尺度总初级生产力最大值出现在5月的洛克里斯蒂的苏格兰松林,为7.9 g·m−2·d−1,表现为较强吸收CO2的能力。王春林等[28]所研究的鼎湖山常绿针阔叶混交林碳交易表明:在2003和2004年该局域尺度森林生态系统表现为碳汇,年碳交易分别为−563.0,−441.2 g·m−2·a−1,这与欧洲通量网的大部分森林站点的结果一致,且认为在夜间大气稳定度高的状态下土壤和森林冠层呼吸作用所产生的CO2不能被传感器有效观测到,可能会对CO2通量观测值产生影响。由于涡动相关系统对夜间生态系统呼吸的低估可能会导致高估该生态系统年尺度下的碳汇能力,其他中国通量网的注册站点,例如:LIU等[39]基于涡动相关系统研究千烟洲常绿针叶林碳交易,在2003年同样表现为碳汇;张一平等[38]研究的西双版纳热带季雨林在2003和2004年也表现为微弱碳汇。

    森林生态系统碳循环受到环境以及气候变化的影响较大。基于涡动相关系统CO2通量观测可结合梯度微气象观测系统的气象观测值如气温、降水、土壤温度、水汽压差和光量子通量密度(DPPF)等环境因子与CO2通量进行关系分析,研究环境控制因子中对森林生态系统碳循环影响和森林下垫面对气候变化的响应[8]。目前,研究环境因子与CO2通量关系一般通过CO2通量30 min观测值(μmol·m−2·s−1,g·m−2·s−1),CO2通量日累积值(μmol·m−2·d−1,g·m−2·d−1)和CO2通量月累积值(μmol·m−2·月−1,g·m−2·月−1)与环境控制因子进行回归分析建立线性或者非线性的关系模型。这里的环境因子包括不同时间尺度的空气温平均值(°)、降水量累积值(mm)、光合有效辐射平均值(μmol·m−2·s−1)等[3]

    不同森林生态系统对以上环境因子变化的响应不同。目前,一般认为气温是森林生态系统碳循环的主要影响因子[3],降水会影响光合有效辐射后对森林生态系统与大气间CO2交换造成影响[38],其他环境因子对森林生态系统碳循环的影响包括生态系统呼吸、净CO2交换量、总初级生产力、净初级生产力等[3]

    叶面积指数、增强植被指数、归一化植被指数等[40]植被指数产品(https://modis.gsfc.nasa.gov/data/dataprod/)也开始被应用于森林生态系统碳循环的辅助测量,配合地面通量塔的观测数据,可研究植被生长状况对局域尺度生态系统CO2通量的影响,以及研究植被生理活动对气候变化的响应。

    涡动相关系统CO2通量观测值除了用于分析CO2通量动态变化的现象特征外,亦可将观测数据用于建立生态过程模型(统计模型/机理模型),以及将CO2通量观测值作为地面参考数据(ground reference data)拆分出总初级生产力、净初级生产力等通量数据与遥感观测数据,进行交叉验证,推动全球森林生态系统碳循环的整合分析,完成从局域尺度CO2通量测量到全球生态系统碳循环研究的尺度上推。

    基于涡动相关系统CO2通量观测使用统计模型,即非线性/线性逻辑模型等方法进行生态过程建模,主要包括植物群落光合作用模型、威布尔累积分布函数、参数化逻辑函数和人工神经网络模型等[24],其函数功能主要包括下垫面植物生理/物候过程的提取、CO2通量值预测、CO2通量观测值与遥感数据的交叉验证等。RICHARDSON等[41]使用国际通量网多站点森林CO2通量(GEP/NEP),基于物候模型分析了温带森林生态系统CO2通量对全球气候变化的响应,认为全球增温会延长温带森林生态系统生长季长度。GU等[24]开发了植物群落光合作用物候模型(phenology model)。该模型主要基于单日总初级生产力30 min观测最大值,提取其动态变化的关键时间点,来划分局域尺度生态系统的物候阶段。其物候阶段主要分为:准备阶段(pre-phase)、恢复阶段(recovery phase)、稳定阶段(stable phase)、衰落阶段(senescence phase)、终止阶段(termination phase),以及计算生长季长度、生长季中点、生长季开始和结束点等物候特征参数。NIU等[42]使用国际通量网CO2通量数据,基于物候模型,分析了北半球生态系统CO2通量对年均气温变化的响应,认为所分析的森林通量站点的物候特征均对年均气温变化的敏感性较高。GONSAMO等[43]使用国际通量网数据,基于一个非线性逻辑函数(double logistic function)分析了北美温带森林生态系统物候特征,并且基于遥感数据(NDVI/NDII)开发了一个新的物候指数(PI),在将该物候指数与通量数据的交叉验证中,遥感数据与涡动通量数据显示了较好的一致性,均较好地体现了下垫面森林景观的物候过程。基于逻辑算法的下垫面物候特征参数提取还有很多其他的函数可用,例如:非对称高斯函数、D-L拟合和S-G滤波法等[44]。在人工神经网络模型的应用方面,MANCUSO等[45]讨论了人工神经网络在橄榄树Olea europaea物候过程建模的潜力,通过训练反向传播神经网络并对其进行了测试,预测了下垫面中橄榄树生物事件的时间节点,并且结合了微气象数据预测橄榄树物候对未来气候变化的响应。PAPALE等[46]使用EUROFLUX等通量数据来训练神经网络模拟器(neural network simulator),讨论了欧洲范围内森林碳通量的空间(1 km×1 km)和时间(周)格局,认为在欧洲南部的生长季更长(约32周)。HE等[47]使用人工神经网络技术,基于中国通量网中3个不同生态系统(森林、草地和农田)的CO2通量和微气象数据,来训练人工神经网络并预测CO2通量,结果表明:该技术可以成功地预测生态系统CO2通量,相关系数为0.75~0.86。上述模型和方法均可应用于森林生态系统物候特征参数提取的研究,一般统计模型多基于1个或者多个非线性逻辑函数对CO2通量观测数据进行拟合分析,并且依据拟合后的CO2通量变化斜率的计算划分不同的物候阶段。这些方法对温带、亚热带(暖季)植被的拟合效果较好。由于热带地区常绿植物较多,物候特征不明显,上述物候模型在热带地区的应用效果差于温带和亚热带地区。GU等[24]开发的物候模型集成了CO2通量增长率计算的功能,并且针对植物群落生物事件划分了多个关键物候阶段,是具有代表性的统计模型之一。近年来,随着遥感技术的发展,MODIS遥感产品为科研工作者提供了总初级生产力和净初级生产力等遥感植被产品,其中总初级生产力的产品周期为8 d,净初级生产力的产品周期为1 a[48-49]。基于遥感数据与地面观测数据的交叉验证也较多,且较多集中于总初级生产力产品的扩展应用[48]。杜启勇等[49]同样基于遥感和地面通量数据进行了验证分析,认为在森林生态系统总初级生产力估算值和实测值在年碳交易尺度上误差较小,但低估了其他生态系统的总初级生产力。刘啸添等[50]基于遥感数据和地面通量观测数据提取了局域尺度的温带针阔混交林的物候特征,认为叶绿素荧光与地面观测总初级生产力值的物候特征一致性较高,较真实地反应了地面植被的生长/生理过程。遥感数据与地面观测数据的交叉验证,可以为提高遥感数据观测精度提供参考,也方便了局域尺度CO2通量观测的尺度上推[51-52]

    基于植物生理/机理的CO2通量模型研究多集中于净CO2交换数据拆分、CO2通量预测、CO2通量数据插补方法等研究。目前应用较多的植物生理模型主要包括CANVEG模型、CANOAK模型、CHANGE模型和BKPF模型等[53-55]。唐欢等[48]基于FLUXNET和中国通量网的涡动相关通量观测数据和遥感总初级生产力产品进行了交叉验证,认为在生长季中期出现了遥感产品与地面数据不一致的情况,主要原因可能是模型输入参数对环境变量的敏感度差异。LAI等[53]基于CANVEG模型对美国北卡罗来纳州的杜克森林的CO2通量分布进行预测和模拟。MEDLYN等[54]基于涡动相关系统CO2通量观测数据评估了一套生态系统碳交换模型,认为其中的总初级生产力模型(sun-shade GPP model)表现较好,2套生态系统呼吸模型(RE model 1/2)即基于土壤温度的呼吸模型和基质回收模型,由于受到局域尺度云杉Picea asperata林的环境差异限制不能完全表现真实的生态系统呼吸情况。BALDOCCHI等[55]基于生物物理模型CANOAK,对一个温带落叶林生态系统和大气之间的CO2交换进行了不同时间尺度的模拟,认为生长季长度会影响森林生态系统与大气间碳交易估算,主要表现为生长季节长度每增加1 d会使生态系统的净CO2交换量减少5.9 g·m−2。PARK等[56]使用生物地球化学模型(CHANGE)模拟了1998−2006年期间西伯利亚东部的落叶松Larix cajanderi林生态系统与大气间CO2交换,以了解该生态系统对气候变化的响应及其控制因素,研究结果表明:生态系统净CO2交换变化与净初级生产力密切相关,且土壤含水量是影响该落叶松林生态系统中CO2通量的决定因素。XIE等[57]使用通量塔观测数据结合CLM模型,讨论了干旱对亚热带森林生态系统的影响,研究结果表明:由于长时间的干旱,生态系统总初级生产总值下降了76%,水分条件影响了该生态系统的碳固存能力。CHEN等[58]使用BKPF模型预测了中国东北寒带和温带森林交界处的森林生态系统与大气间CO2交换,讨论了在大气CO2浓度上升的背景下,不同林分叶面积指数和生物量的差异。SHI等[59]使用多层气孔导度耦合模型模拟了温带混交林生态系统CO2通量,研究结果表明:在2003年5月至2007年9月,通量模拟值与CO2通量观测值有较好的相关性(R2 = 0.734)。李雪建等[60]基于2个竹林生态系统通量观测站点2014−2015年的通量观测数据和遥感数据,使用BEPS模型预测2种竹林生态系统总初级生产力、净CO2交换和生态系统呼吸等碳循环数据,结果表明:使用BEPS模型的模拟结果较好地体现了下垫面碳循环过程。陈晨等[61]使用2011年帽儿山生态站CO2通量数据,基于卡尔曼滤波的顺序同化技术,对BEPS模型的关键参数进行优化,结果表明:该方法明显改善了模型模拟碳水通量的能力。杨延征等[62]利用集成生物圈IBIS模型模拟分析了1960−2006年中国陆地生态系统碳收支时空变异特征和趋势,认为大兴安岭、小兴安岭和长白山等地区的森林生态系统是较强的碳汇。王萍[63]使用IBIS模型对2004−2005年大小兴安岭的植被净初级生产力进行了定量估算,结果表明:大小兴安岭森林植被的年均净初级生产力为494.7 g·m−2·a−1,热量条件是其主要影响因子。王培娟等[64]使用BEPS模型分析了在长白山自然保护区森林植被净初级生产力,认为叶面积指数是影响森林净初级生产力的重要影响因子。以上关于CO2通量的建模在局域尺度的运用多有限制,不同生理模型对叶面积指数、气温和降水等环境因素的敏感性不同,且影响机制复杂。当需要对局域尺度CO2通量进行预测时,应该准确评估当地的实际环境情况,考虑水文、生理、生化和生态因素与气象条件之间的相互作用[56],选择合适的CO2通量模型,亦可选择统计模型和机制模型交叉验证的方式进行森林生态系统CO2通量预测。

    涡动相关通量观测系统是目前应用最广泛的森林生态系统CO2通量观测技术,该系统可以直接观测森林冠层与大气间的碳交换,但是在应用该系统观测森林生态系统CO2通量时,需要对局域尺度的通量源区和上风风区延伸度进行估算。此后对CO2通量观测结果需进行必要的修正和通量数据质量控制,对不合格或者缺失的数据需依据实际情况进行插补。

    森林生态系统CO2通量源区受观测高度的影响较大,下垫面森林景观的更迭会直接影响通量源区的形态和长度。CO2通量动态特征具有较明显的日、月和季节分异,具体表现在日尺度上30 min的CO2通量观测值多呈现“U”形特征,且森林生态系统在白天由于光合作用多表现为碳汇,夜间由于呼吸作用变为碳源。亚热带和温带森林系统的CO2通量月累积值约在当地时间夏季达到最低,即碳汇能力最强。热带森林生态系统较之其他气候带的森林生态系统表现为更强的碳汇。森林生态系统长时间序列碳交易受到叶面积指数、树龄、降水等多种因素的影响,年轻林分是更强的碳汇。

    森林生态系统CO2通量数据的建模主要集中于CO2通量数值预测和下垫面物候特征的提取,植被生长曲线和通量值模拟主要通过统计模型和机制模型2种模式进行。基于CO2通量通过建立统计模型提取其物候特征是CO2通量建模的重要方向,统计模型所提取的物候特征参数主要包括:生长季长度、生长季中点、生长季开始和结束日期、CO2通量增长率等。基于机理模型的CO2通量数值预测/模拟受气候背景的影响较大,不同局域尺度的CO2通量预测需准确评估当地微气象环境情况和植被生长状况,其中空气温度、土壤含水量是主要环境控制因子。

    基于遥感技术的辅助测量是森林生态系统碳循环研究的重要手段,针对遥感数据和地面观测数据的建模和验证主要集中在遥感总初级生产力和地面观测数据的线性相关性分析,其他例如叶面积指数、增强植被指数和归一化植被指数等遥感植被产品对辅助研究森林生长状态对其CO2通量的影响也是重要的碳循环研究内容。

    基于涡动相关技术的森林生态系统CO2通量观测研究为森林生态系统碳循环研究提供了观测手法,是目前使用最广泛且科学的温室气体观测的技术手段。基于该技术的CO2通量观测和研究分析是现在和未来全球变化生态学的研究热点。但由于受观测设备故障、恶劣天气事件和人为活动等因素的影响,CO2通量数据的质量检验和数据插补依然是未来CO2通量研究的前提之一。

    森林生态系统CO2通量动态特征的现象讨论趋于成熟,未来局域尺度森林生态系统CO2通量研究应该集中于提高CO2通量足迹模型计算精度和讨论局域森林生态系统中不同林分对大气CO2的贡献强度,结合通量和微气象观测数据建立植物生理过程参数化模型和设计控制实验,提取其物候特征并且预测气候和景观格局变化对森林碳交换的影响。由于国际通量网和其他区域通量共享系统提供了数据平台,区域-全球尺度森林生态系统CO2通量研究未来将关注多站点通量,气象数据长时间序列的整合分析,主要讨论CO2通量气候态特征与碳源/汇的空间格局。为了解未来气候变化背景下全球植被生理活动过程和其温室气体排放动态,使用CO2通量数据与区域大气模型、生态生理模型等地球系统模型结合,讨论气象/气候系统、能量传输、生物圈对森林生态系统净CO2交换影响,亦可使用该过程对生态系统净CO2交换进行预测是未来重要的研究方向。

    在中国生态文明建设的背景下,未来森林生态系统CO2通量研究可结合社会经济、土地利用等数据,讨论城市化过程对森林生态系统碳循环的影响,完善森林生态系统服务功能体系,评估局域自然-社会系统碳平衡,为合理森林布局、保护生态环境和社会可持续发展提供理论依据和参考。

  • 图  1  不同器官氮、磷、钾质量分数

    Figure  1  Mass fractions of N, P and K in different organs

    图  2  不同器官氮磷比、氮钾比、钾磷比

    Figure  2  Ratio N∶P, N∶K, P∶K in different organs

    表  1  天目铁木和多脉铁木根区土壤理化性质

    Table  1.   Basic physical and chemical properties of soil in O. rehderiana and O. multinervis woodlands

    树种pH碱解氮/(mg·kg−1)有效磷/(mg·kg−1)速效钾/(mg·kg−1)有机碳/(g·kg−1)
    天目铁木6.26±0.03 a166.4±2.67 a5.25±0.38 a158.5±1.48 a24.1±0.23 A
    多脉铁木5.55±0.18 b137.3±9.65 b4.45±0.61 a152.3±1.69 b16.1±0.14 B
      说明:表中同列小写字母表示不同树种土壤间差异显著(P<0.05),同列大写字母表示不同树种土壤间差异极显著(P<0.01)
    下载: 导出CSV
  • [1] 孙雪娇, 常顺利, 宋成程, 等. 雪岭云杉不同器官N、P、K化学计量特征随生长阶段的变化[J]. 生态学杂志, 2018, 37(5): 1291 − 1298.

    SUN Xuejiao, CHANG Shunli, SONG Chengcheng, et al. Age-related N, P, and K stoichiometry in different organs of Picea schrenkiana [J]. Chin J Ecol, 2018, 37(5): 1291 − 1298.
    [2] 牛得草, 李茜, 江世高, 等. 阿拉善荒漠区6种主要灌木植物叶片C∶N∶P化学计量比的季节变化[J]. 植物生态学报, 2013, 37(4): 317 − 325.

    NIU Decao, LI Qian, JIANG Shigao, et al. Seasonal variations of leaf C∶N∶P stoichiometry of six shrubs in desert of China’s Alxa Plateau [J]. Chin J Plant Ecol, 2013, 37(4): 317 − 325.
    [3] 周鹏, 耿燕, 马文红, 等. 温带草地主要优势植物不同器官间功能性状的关联[J]. 植物生态学报, 2010, 34(1): 7 − 16.

    ZHOU Peng, GENG Yan, MA Wenhong, et al. Linkages of functional traits among plant organs in the dominant species of the Inner Mongolia grassland, China [J]. Chin J Plant Ecol, 2010, 34(1): 7 − 16.
    [4] 李红林, 贡璐, 洪毅. 克里雅绿洲旱生芦苇根茎叶C、N、P化学计量特征的季节变化[J]. 生态学报, 2016, 36(20): 6547 − 6555.

    LI Honglin, GONG Lu, HONG Yi. Seasonal variations in C, N, and P stoichiometry of roots, stems, and leaves of Phragmites australis in the Keriya Oasis, Xinjiang, China [J]. Acta Ecol Sin, 2016, 36(20): 6547 − 6555.
    [5] 李月芬, 王冬艳, LASOUKANH V, 等. 基于土壤化学性质与神经网络的羊草碳氮磷含量预测[J]. 农业工程学报, 2014, 30(3): 104 − 111.

    LI Yuefen, WANG Dongyan, LASOUKANH V, et al. Prediction of carbon, nitrogen and phosphorus contents of Leymus chinensis based on soil chemical properties using artificial neural networks [J]. Trans Chin Soc Agric Eng, 2014, 30(3): 104 − 111.
    [6] 曾冬萍, 蒋利玲, 曾从盛, 等. 生态化学计量学特征及其应用研究进展[J]. 生态学报, 2013, 33(18): 5484 − 5492.

    ZENG Dongping, JIANG Liling, ZENG Congsheng, et al. Reviews on the ecological stoichiometry characteristics and its applications [J]. Acta Ecol Sin, 2013, 33(18): 5484 − 5492.
    [7] AGREN G I, WEIH M. Plant stoichiometry at different scales: element concentration patterns reflect environment more than genotype [J]. New Phytol, 2012, 194(4): 944 − 952.
    [8] 赵明水, 张华峰. 天目铁木物理力学性质初步分析[J]. 浙江林业科技, 2006, 26(1): 52 − 55.

    ZHAO Mingshui, ZHANG Huafeng. Analysis on physical mechanics property of Ostrya rehderiana wood [J]. J Zhejiang For Sci Technol, 2006, 26(1): 52 − 55.
    [9] 吴世斌, 库伟鹏, 周小荣, 等. 浙江省极小种群多脉铁木年龄结构与动态[J]. 浙江农业科学, 2018, 59(8): 1381 − 1384.

    WU Shibin, KU Weipeng, ZHOU Xiaorong, et al. Age structure and dynamics of extremely small populations of Ostrya multinervis in Zhejiang Province [J]. J Zhejiang Agric Sci, 2018, 59(8): 1381 − 1384.
    [10] 张若蕙, 龚关文, 沈锡康, 等. 天目铁木花粉、种子及幼苗的研究[J]. 浙江林业科技, 1988, 8(4): 7 − 11, 30.

    ZHANG Ruohui, GONG Guanwen, SHEN Xikang, et al. A study of pollen, seed and seedling of Ostrya rehderiana Chun [J]. J Zhejiang For Sci Technol, 1988, 8(4): 7 − 11, 30.
    [11] 王祖良, 陆海根, 黄珊珊, 等. 天目铁木雄花序内源多胺的HPLC分析及其动态变化[J]. 安徽农业大学学报, 2012, 39(1): 79 − 83.

    WANG Zuliang, LU Haigen, HUANG Shanshan, et al. Dynamic changes of endogenous polyamines in male anthotaxy of Ostrya rehderiana by HPLC [J]. J Anhui Agric Univ, 2012, 39(1): 79 − 83.
    [12] 管康林, 陶银周. 濒危树种天目铁木的现状和繁殖[J]. 浙江林学院学报, 1988, 5(1): 90 − 92.

    GUAN Kanglin, TAO Yinzhou. Current situation and propagation of rare tree species: Ostrya rederiana [J]. J Zhejiang For Coll, 1988, 5(1): 90 − 92.
    [13] 乐笑玮, 崔敏燕, 杨淑贞, 等. 濒危植物天目铁木种子休眠及萌发特征研究[J]. 华东师范大学学报(自然科学版), 2013(6): 150 − 158.

    LE Xiaowei, CUI Minyan, YANG Shuzhen, et al. Characters on the seed dormancy and germination of an endangered species, Ostrya rehderiana, in Tianmu Mountain, China [J]. J East China Norm Univ Nat Sci, 2013(6): 150 − 158.
    [14] 孟爱平, 何子灿, 李建强, 等. 桦木科2种濒危植物的染色体数目[J]. 武汉植物学研究, 2004, 22(2): 171 − 173.

    MENG Aiping, HE Zican, LI Jianqiang, et al. Chromosome numbers of two threatened species of Betulaceae [J]. J Wuhan Bot Res, 2004, 22(2): 171 − 173.
    [15] 王祖良, 丁丽霞, 赵明水, 等. 濒危植物天目铁木遗传多样性的RAPD分析[J]. 浙江林学院学报, 2008, 25(3): 304 − 308.

    WANG Zuliang, DING Lixia, ZHAO Mingshui, et al. Genetic diversity of Ostrya rehderiana revealed by RAPD markers [J]. J Zhejiang For Coll, 2008, 25(3): 304 − 308.
    [16] 顾地周, 陆爽, 巴春影, 等. 天目铁木愈伤组织和芽苗诱导技术[J]. 浙江大学学报(理学版), 2013, 40(2): 216 − 220.

    GU Dizhou, LU Shuang, BA Chunying, et al. Technique of callus induction and bud seedling of Ostrya rehderiana Chun [J]. J Zhejiang Univ Sci Ed, 2013, 40(2): 216 − 220.
    [17] 王晓燕, 杨淑贞, 赵明水, 等. 濒危植物天目铁木和羊角槭的光合及蒸腾特性日动态比较[J]. 华东师范大学学报(自然科学版), 2015(2): 113 − 121.

    WANG Xiaoyan, YANG Shuzhen, ZHAO Mingshui, et al. Comparative diurnal variations in photosynthesis and transpiration ofendangered plant species, Ostrya rehderiana and Acer yangjuechi [J]. J East China Norm Univ Nat Sci, 2015(2): 113 − 121.
    [18] 罗远, 吴世斌, 库伟鹏, 等. 珍稀濒危植物天目铁木群落结构及物种多样性[J]. 浙江农业科学, 2018, 59(11): 2061 − 2064.

    LUO Yuan, WU Shibin, KU Weipeng, et al. Community structure characteristics and species diversity of rare and endangered plants of Ostrya rehderiana [J]. J Zhejiang Agric Sci, 2018, 59(11): 2061 − 2064.
    [19] 《石垟林场志》编篡委员会. 石垟林场志[M]. 北京: 北京艺术与科学电子出版社, 2012.
    [20] 吴世斌, 库伟鹏, 周小荣, 等. 浙江文成珍稀植物多脉铁木群落结构及物种多样性[J]. 浙江农林大学学报, 2019, 36(1): 31 − 37.

    WU Shibin, KU Weipeng, ZHOU Xiaorong, et al. Structural characteristics and species diversity for survival of the rare plant Ostrya multinervis [J]. J Zhejiang A&F Univ, 2019, 36(1): 31 − 37.
    [21] 叶柳欣, 张勇, 蒋仲龙, 等. 不 同林龄杨梅叶片与土壤的碳、氮、磷生态化学计量特征[J]. 安徽农业大学学报, 2019, 46(3): 454 − 459.

    YE Liuxin, ZHANG Yong, JIANG Zhonglong, et al. The stoichiometic characteristics of carbon, nitrogen and phosphorus in soil and leaves of different ages of Myrica rubra [J]. J Anhui Agric Univ, 2019, 46(3): 454 − 459.
    [22] 王增, 蒋仲龙, 刘海英, 等. 油茶不同器官氮、磷、钾化学计量特征随年龄的变化[J]. 浙江农林大学学报, 2019, 36(2): 264 − 270.

    WANG Zeng, JIANG Zhonglong, LIU Haiying, et al. Ecological stoichiometry of N, P, and K with age in Camellia oleifera organs [J]. J Zhejiang A&F Univ, 2019, 36(2): 264 − 270.
    [23] 吴家森, 张勇, 吕爱华, 等. 不同林龄油茶叶片与土壤的碳氮磷生态化学计量特征研究[J]. 西南林业大学学报(自然科学), 2019, 39(3): 86 − 92.

    WU Jiasen, ZHANG YONG, LÜ Aihua, et al. Eco-stoichiometric characteristics of carbon, nitrogen and phosphorusin leaves and soil of Camellia oleifera at different ages [J]. J Southwest For Univ Nat Sci, 2019, 39(3): 86 − 92.
    [24] 任书杰, 于贵瑞, 陶波, 等. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学, 2007, 28(12): 2665 − 2673.

    REN Shujie, YU Guirui, TAO Bo, et al. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC [J]. Environ Sci, 2007, 28(12): 2665 − 2673.
    [25] 秦海, 李俊祥, 高三平, 等. 中国660种陆生植物叶片8种元素含量特征[J]. 生态学报, 2010, 30(5): 1247 − 1257.

    QIN Hai, LI Junxiang, GAO Sanping, et al. Characteristics of leaf element contents for eight nutrients across 660 terrestrial plant species in China [J]. Acta Ecol Sin, 2010, 30(5): 1247 − 1257.
    [26] 郭素娟, 谢明明, 张丽, 等. 板栗细根碳、氮、磷化学计量时间变异特征[J]. 植物营养与肥料学报, 2018, 24(3): 825 − 832.

    GUO Sujuan, XIE Mingming, ZHANG Li, et al. Temporal variation of C, N, P stoichiometric in fine roots of Castanea mollissima [J]. J Plant Nutr Fert, 2018, 24(3): 825 − 832.
    [27] 皮发剑, 袁丛军, 喻理飞, 等. 黔中天然次生林主要优势树种叶片生态化学计量特征[J]. 生态环境学报, 2016, 25(5): 801 − 807.

    PI Fajian, YUAN Congjun, YU Lifei, et al. Ecological stoichiometry characteristics of plant leaves from the maindominant species of natural secondary forest in the central of Guizhou [J]. Ecol Environ Sci, 2016, 25(5): 801 − 807.
    [28] 姜沛沛, 曹扬, 陈云明, 等. 不同林龄油松(Pinus tabulaeformis)人工林植物、凋落物与土壤C、N、P化学计量特征[J]. 生态学报, 2016, 36(19): 6188 − 6197.

    JIANG Peipei, CAO Yang, CHEN Yunming, et al. Variation of C, N, and P stoichiometry in plant tissue, litter, and soil during stand development in Pinus tabulaeformis plantation [J]. Acta Ecol Sin, 2016, 36(19): 6188 − 6197.
    [29] VENTERINK H G M O, WASSEN M J, VERKROOST A W M, et al. Species richness-productivity patterns differ between N-, P-, and K-limited wetlands [J]. Ecology, 2003, 84(8): 2191 − 2199.
    [30] 吴家森, 蒋仲龙, 吕爱华, 等. 不同年龄杨梅各器官氮、磷、钾化学计量特征[J]. 江西农业大学学报, 2019, 41(3): 447 − 453.

    WU Jiasen, JIANG Zhonglong, LÜ Aihua, et al. The ecological stoichiometry of N, P and K in organs of Myrica rubra of different ages [J]. Acta Agric Univ Jiangxi, 2019, 41(3): 447 − 453.
    [31] KOCRSCLMAN W, MEULEMAN AF M. The vegetation N∶P ratio: anew tool to detect the nature of nutrient limitation [J]. J Appl Ecol, 1996, 33(6): 1441 − 1450.
    [32] WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum [J]. Nature, 2004, 428(6985): 821 − 827.
    [33] ZHANG Sheng, ZHOU Rong, ZHAO Hongxia, et al. iTRAQ-based quantitative proteomic analysis gives insight into sexually different metabolic processes of poplars under nitrogen and phosphorus deficiencies [J]. Proteomics, 2016, 16(4): 614 − 628.
  • [1] 高子滢, 王海燕, 张亦凡.  土壤碳氮磷化学计量特征及其驱动因素 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20240564
    [2] 詹紫馨, 冯天骄, 梅柏寒, 王平.  晋西黄土区典型植被恢复生态系统各层次化学计量与生态因子的关系 . 浙江农林大学学报, 2024, 41(4): 797-809. doi: 10.11833/j.issn.2095-0756.20230448
    [3] 辛鹏程, 魏天兴, 陈宇轩, 于欢, 沙国良, 郭鑫, 任康.  山西西南部黄土丘陵区典型林分生态化学计量特征 . 浙江农林大学学报, 2024, 41(3): 549-556. doi: 10.11833/j.issn.2095-0756.20230573
    [4] 兰洁, 肖中琪, 李吉玫, 张毓涛.  天山雪岭云杉生物量分配格局及异速生长模型 . 浙江农林大学学报, 2020, 37(3): 416-423. doi: 10.11833/j.issn.2095-0756.20190384
    [5] 李左玉, 董红先, 刘雷雷, 雷祖培.  浙江乌岩岭国家级自然保护区森林生态系统服务价值评估 . 浙江农林大学学报, 2020, 37(5): 891-897. doi: 10.11833/j.issn.2095-0756.20190573
    [6] 李非凡, 孙冰, 裴男才, 闫玮明, 罗鑫华.  粤北3种林分凋落叶-根系-土壤生态化学计量特征 . 浙江农林大学学报, 2020, 37(1): 18-26. doi: 10.11833/j.issn.2095-0756.2020.01.003
    [7] 吴世斌, 库伟鹏, 周小荣, 纪美芬, 吴家森.  浙江文成珍稀植物多脉铁木群落结构及物种多样性 . 浙江农林大学学报, 2019, 36(1): 31-37. doi: 10.11833/j.issn.2095-0756.2019.01.005
    [8] 王增, 蒋仲龙, 刘海英, 叶柳欣, 汪舍平, 张勇, 金锦, 吴家森.  油茶不同器官氮、磷、钾化学计量特征随年龄的变化 . 浙江农林大学学报, 2019, 36(2): 264-270. doi: 10.11833/j.issn.2095-0756.2019.02.007
    [9] 牛晓栋, 江洪, 方成圆, 陈晓峰, 孙恒.  天目山常绿落叶阔叶混交林生态系统水汽通量特征 . 浙江农林大学学报, 2016, 33(2): 216-224. doi: 10.11833/j.issn.2095-0756.2016.02.005
    [10] 牛晓栋, 江洪, 王帆.  天目山森林生态系统大气水汽稳定同位素组成的影响因素 . 浙江农林大学学报, 2015, 32(3): 327-334. doi: 10.11833/j.issn.2095-0756.2015.03.001
    [11] 曾莹莹, 王玉魁, 蔡先锋, 于晓鹏, 李洪吉, 袁佳丽, 张汝民, 温国胜.  毛竹林爆发式生长期立竹器官营养成分的动态变化 . 浙江农林大学学报, 2015, 32(2): 272-277. doi: 10.11833/j.issn.2095-0756.2015.02.015
    [12] 顾鸿昊, 翁俊, 孔佳杰, 叶小猛, 刘永军, 漆良华, 宋新章.  粗放和集约经营毛竹林叶片的生态化学计量特征 . 浙江农林大学学报, 2015, 32(5): 661-667. doi: 10.11833/j.issn.2095-0756.2015.05.002
    [13] 魏书精, 孙龙, 魏书威, 胡海清.  森林生态系统粗木质残体研究进展 . 浙江农林大学学报, 2013, 30(4): 585-598. doi: 10.11833/j.issn.2095-0756.2013.04.019
    [14] 蔡霞, 王祖华, 陈丽娟.  淳安县森林生态系统服务功能空间分异区划 . 浙江农林大学学报, 2011, 28(5): 727-734. doi: 10.11833/j.issn.2095-0756.2011.05.007
    [15] 森林生态系统空心树研究进展 . 浙江农林大学学报, 2010, 27(6): 928-934. doi: 10.11833/j.issn.2095-0756.2010.06.021
    [16] 王斌, 杨效生, 张彪, 刘某承.  1973 - 2003年中国森林生态系统服务功能变化研究 . 浙江农林大学学报, 2009, 26(5): 714-721.
    [17] 王祖良, 丁丽霞, 赵明水, 程晓渊, 沈乾.  濒危植物天目铁木遗传多样性的RAPD分析 . 浙江农林大学学报, 2008, 25(3): 304-308.
    [18] 何莹, 韦新良, 蔡霞, 李可追, 王珍.  生态景观林群落结构定量分析 . 浙江农林大学学报, 2007, 24(6): 711-718.
    [19] 金则新, 李钧敏.  珍稀濒危植物七子花提取物的抑菌活性 . 浙江农林大学学报, 2006, 23(3): 306-310.
    [20] 刘力, 林新春, 金爱武, 冯天喜, 周昌平, 季宗富.  苦竹各器官营养元素分析 . 浙江农林大学学报, 2004, 21(2): 172-175.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200470

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/2/426

图(2) / 表(1)
计量
  • 文章访问数:  1482
  • HTML全文浏览量:  336
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-21
  • 修回日期:  2020-12-30
  • 网络出版日期:  2021-04-01
  • 刊出日期:  2021-04-01

天目铁木和多脉铁木不同器官氮磷钾生态化学计量特征

doi: 10.11833/j.issn.2095-0756.20200470
    基金项目:  浙江省省院合作林业科技项目(2017SY13)
    作者简介:

    叶子豪(ORCID: 0000-0001-8620-8248),从事农业资源与环境研究。E-mail: 572654962@qq.com

    通信作者: 吴家森(ORCID: 0000-0001-5519-9385),教授级高级工程师,博士,从事森林土壤与环境研究。E-mail: jswu@zafu.edu.cn
  • 中图分类号: S718.5

摘要:    目的   研究天目铁木Ostrya rehderiana和多脉铁木O. multinervis等2种极小种群植物不同器官的化学计量特征,推测2种植物生长的限制性元素,为林地土壤管理提供科学依据。   方法   以天目铁木和多脉铁木为研究对象,对植物根、枝、叶、树皮全氮、全磷、全钾的质量分数以及土壤基本理化性质进行了测定。采用SPSS软件进行差异显著性检验,分析2种植物不同器官之间的差异。   结果   天目铁木的氮、钾质量分数从大到小依次为叶、枝、皮、根,磷质量分数从大到小依次为枝、根、叶、皮;多脉铁木的氮、钾质量分数从大到小依次为叶、枝、根、皮,磷质量分数从大到小依次为根、枝、叶、皮。天目铁木的氮磷比平均值为3.18~19.22,氮钾比平均值为1.60~2.56,钾磷比平均值为1.97~11.80。多脉铁木氮磷比平均值为3.57~28.43,氮钾比平均值为1.14~4.59,钾磷比平均值为2.77~11.77。2种树种不同器官之间氮、磷、钾生态化学计量特征较为相似,仅多脉铁木根中的氮和叶、枝中的钾显著高于天目铁木的对应器官(P<0.05)。   结论   影响天目铁木生长的限制性元素是氮和磷,影响多脉铁木生长的限制性元素是磷。因此,在林地土壤管理中,天目铁木应适当增施氮肥和磷肥,而多脉铁木则应适当增施磷肥。图2表1参33

English Abstract

龚元, 纪小芳, 花雨婷, 等. 基于涡动相关技术的森林生态系统二氧化碳通量研究进展[J]. 浙江农林大学学报, 2020, 37(3): 593-604. DOI: 10.11833/j.issn.2095-0756.20190412
引用本文: 叶子豪, 吴伟峰, 彭健健, 等. 天目铁木和多脉铁木不同器官氮磷钾生态化学计量特征[J]. 浙江农林大学学报, 2021, 38(2): 426-432. DOI: 10.11833/j.issn.2095-0756.20200470
GONG Yuan, JI Xiaofang, HUA Yuting, et al. Research progress of CO2 flux in forest ecosystem based on eddy covariance technique: a review[J]. Journal of Zhejiang A&F University, 2020, 37(3): 593-604. DOI: 10.11833/j.issn.2095-0756.20190412
Citation: YE Zihao, WU Weifeng, PENG Jianjian, et al. Ecological stoichiometric characteristics of nitrogen, phosphorus and potassium in different organs of Ostrya rehderiana and O. multinervis[J]. Journal of Zhejiang A&F University, 2021, 38(2): 426-432. DOI: 10.11833/j.issn.2095-0756.20200470
  • 氮、磷、钾是植物生长发育的必需营养元素。植物体内的氮、磷、钾含量分布及其生态化学计量特征能够反映植物对各器官营养元素的分配及相互作用关系,对判断限制性营养元素、养分利用情况等具有重要作用[13],是当前生态学研究的主要内容和热点[47]。桦木科Betulaceae铁木属Ostrya植物在全世界共有7种,其中中国自然分布的有4种,而浙江省境内仅见2种,即天目铁木Ostrya rehderiana和多脉铁木O. multinervis。天目铁木为国家二级保护树种,现有野生大树仅5株[8],生长于杭州市临安区天目山镇,多脉铁木仅分布于文成县石垟林场,野生株数118株[9],是浙江省重点保护野生植物。铁木属植物具有树体高大,干形通直圆满,材质优良的特点。国内学者已对天目铁木和多脉铁木的生育、繁殖、遗传、栽培等方面进行了一定的研究[1017]。目前,国内外缺少有关天目铁木和多脉铁木这2种珍稀植物不同器官营养元素含量及生态化学计量差异的研究。掌握天目铁木与多脉铁木生长对元素的需求情况,可以提供针对性的施肥方案,有助于天目铁木与多脉铁木的正常生长与繁育。本研究对2种铁木属植物根系、枝条、叶片、树皮的氮磷钾质量分数以及根区土壤的基本理化性质进行研究,探究2种铁木属植物的生态化学计量特征与差异,旨在为这2种植物的生存繁衍提供适合的营养管理方案,为扩大其种群数量提出合理的措施。

    • 天目铁木研究区位于杭州市临安区西天目山,中心位置为30°17′N,119°27′E。属北亚热带季风气候,年平均气温为14.8 ℃;最冷月为1月,月平均气温3.4 ℃;最热月为7月,月平均气温为28.1 ℃。年降水量1390.0 mm,年日照时数1550.0 h,无霜期235.0 d[18]。土壤类型属于凝灰岩发育的红壤土类。

      多脉铁木研究区位于文成县石垟林场,分布中心地理位置为27°50′N,119°50′E。属中亚热带季风气候,年平均气温为12.8 ℃;最冷月为1月,月平均气温为4.0 ℃;最热月为7月,月平均气温为23.6 ℃。年降水量1604.0 mm,年均相对湿度84.0%,年日照时数1755.0 h,全年无霜期288.0 d[19]。该区域属原始次生常绿阔叶林,森林覆盖率达90%以上。多脉铁木群落分布区域的海拔为500~700 m,坡度30°~35°,南坡和坡中部地表有石块层覆盖,厚度20~30 cm,石块大小20~40 cm[20]。土壤类型为发育于花岗岩的红壤土类。2种铁木属植物根区土壤均为酸性土壤,其理化性质如表1

      表 1  天目铁木和多脉铁木根区土壤理化性质

      Table 1.  Basic physical and chemical properties of soil in O. rehderiana and O. multinervis woodlands

      树种pH碱解氮/(mg·kg−1)有效磷/(mg·kg−1)速效钾/(mg·kg−1)有机碳/(g·kg−1)
      天目铁木6.26±0.03 a166.4±2.67 a5.25±0.38 a158.5±1.48 a24.1±0.23 A
      多脉铁木5.55±0.18 b137.3±9.65 b4.45±0.61 a152.3±1.69 b16.1±0.14 B
        说明:表中同列小写字母表示不同树种土壤间差异显著(P<0.05),同列大写字母表示不同树种土壤间差异极显著(P<0.01)
    • 在研究区对天目铁木和多脉铁木群落展开调查,测量胸径和株高。选取地径和株高均为平均值的植株各3株[21],分别采集2种铁木属植物东、南、西、北带叶枝条各1根,包括当年生和多年生枝条,长度为(50.0±5.0) cm,枝径为(0.5±0.1) cm。随机均匀采集距离地面1.0 m高的2种植株树皮样品,采集后均匀混合。根系的取样以样本植株为中心,分别以0.5 m为半径,挖取深度为30.0 cm,宽度为50.0 cm的土壤剖面,采集剖面中的所有根系。

    • 植物样品用去离子水洗净,置于烘箱中105 ℃杀青30 min,然后在80 ℃条件下烘干至恒量[2223],取出,用高速粉碎机将样品粉碎,过0.149 mm筛后,分别装袋编号,待用。土壤有机质的测定采用重铬酸钾容量法,土壤碱解氮的测定采用碱解扩散法,土壤有效磷的测定采用钼蓝比色法,土壤速效钾的测定采用火焰光度计法;植物样品经过H2SO4-H2O2处理,全氮采用半微量开氏法,全磷采用钼蓝比色法,全钾采用火焰光度法。

    • 数据均采用Excel 2016及SPSS 22.0软件整理,采用单因素方差分析的最小显著差异(LSD)法进行差异显著性检验及相关性分析。图表绘制采用Origin 2018软件处理。

    • 图1可见:氮、磷、钾在2种铁木属植株不同器官之间的差异较为显著。叶片中氮质量分数均为最高,显著高于根、枝和树皮(P<0.05)。2种铁木的枝、叶、树皮相同器官之间相比,氮质量分数并无显著性差异(P>0.05),仅多脉铁木的根氮质量分数显著高于天目铁木(P<0.05)。2种铁木的根、枝中磷质量分数最高,树皮中磷质量分数显著低于根、枝和叶(P<0.05)。但是2种铁木的根、枝、叶和树皮相同器官之间相比,磷质量分数并无显著性差异(P>0.05)。2种铁木的叶中钾质量分数最高,树皮中钾质量分数显著低于叶(P<0.05)。其中多脉铁木的根、枝、叶中钾质量分数都高于天目铁木,特别是枝和叶,钾质量分数都显著高于天目铁木的枝、叶(P<0.05)。但是多脉铁木的树皮中钾质量分数略低于天目铁木,但无显著性差异(P>0.05)。总体看来,多脉铁木植株中钾质量分数高于天目铁木。

      图  1  不同器官氮、磷、钾质量分数

      Figure 1.  Mass fractions of N, P and K in different organs

      树皮中的氮、磷、钾元素的质量分数较低,而叶片的氮和钾质量分数远大于其他器官,根和枝的各元素质量分数较为接近。2种铁木相同器官之间相比,仅多脉铁木根中的氮和叶、枝中的钾显著高于天目铁木(P<0.05)。

    • 图2中可知:2种铁木不同器官氮磷比差异变化较大,叶和树皮氮磷比显著高于根和枝(P<0.05),根和枝之间无显著差异(P>0.05)。多脉铁木的树皮氮磷比显著高于天目铁木的树皮(P<0.05)。2树种根、枝、叶相同器官之间相比,多脉铁木氮磷比高于天目铁木,但无显著差异(P>0.05)。总体上多脉铁木各不同器官的氮磷比都高于天目铁木。2种铁木不同器官氮钾比之间差异变化较小,仅有多脉铁木树皮氮钾比显著高于其他器官(P<0.05)以及天目铁木叶显著高于多脉铁木枝(P<0.05)。2树种的根、枝、叶相同器官之间相比,天目铁木略高于多脉铁木,但无显著性差异(P>0.05),多脉铁木树皮氮钾比显著高于天目铁木树皮。2种铁木不同器官钾磷比之间差异变化较大,多脉铁木叶和天目铁木树皮钾磷比显著高于其他器官(P<0.05),且多脉铁木叶也显著高于天目铁木叶(P<0.05)。2树种的根、枝相同器官之间相比,多脉铁木略高于天目铁木,但无显著性差异(P>0.05)。总体上除天目铁木树皮钾磷比高于多脉铁木,其他根、枝、叶器官都低于多脉铁木。

      图  2  不同器官氮磷比、氮钾比、钾磷比

      Figure 2.  Ratio N∶P, N∶K, P∶K in different organs

    • 通过植物的氮、磷、钾质量分数及其特征可以判断植物的营养状况与养分利用情况,判断植物在生长过程中应对外界环境变化的能力,也可与同种或其他物种的植物营养情况进行差异比较。本研究结果得出:天目铁木叶的氮、磷、钾质量分数平均值分别为20.441、1.400、7.914 g·kg−1,氮质量分数高于全国陆生植物叶片平均质量分数(19.090 g·kg−1),磷、钾质量分数平均值低于全国陆生植物叶片磷(1.560 g·kg−1)、钾(15.090 g·kg−1)质量分数的平均水平[24],钾质量分数平均值低于全国阔叶树(8.950 g·kg−1)和灌丛(8.380 g·kg−1)质量分数的平均水平[25],磷的质量分数高于全国常绿木本植物质量分数的平均水平(0.960 g·kg−1)。多脉铁木叶的氮、磷、钾质量分数平均值分别为21.376、1.097、11.425 g·kg−1,氮的质量分数高于全国陆生植物叶片氮的质量分数(19.090 g·kg−1),磷、钾的质量分数平均值低于全国陆生植物叶片磷(1.560 g·kg−1)、钾(15.090 g·kg−1)质量分数的平均水平[24],钾质量分数平均值高于全国阔叶树(8.950 g·kg−1)和灌丛(8.380 g·kg−1)质量分数的平均水平[25],磷的质量分数高于全国常绿木本植物磷质量分数(0.960 g·kg−1)平均水平。

      2种植物叶片中氮质量分数均高于全国陆生植物叶片,这可能与研究区样地土壤氮质量分数背景值相对较高有关;2种植物叶片中磷质量分数均低于全国陆生植物叶片,一定程度上与2种植物体对磷的分配规律不同及利用能力较弱有关。叶片中的磷质量分数低可能是导致2种植物种群数量小的原因之一。

    • 植物内元素的化学计量比可以客观反映植物的限制性元素及生长过程中所遵循的营养调控方案。氮、磷、钾是影响植物生长的限制性元素,氮磷比、氮钾比、钾磷比可作为植物营养元素限制的判断性指标[21,23,26]。研究表明:植物叶片的氮磷比可作为森林植物营养元素限制的判断性指标,当氮磷比<14时,植物生长主要受氮的限制;当氮磷比>16时,植物生长主要受磷的限制;当氮磷比为14~16时,受氮和磷的共同限制[2729]

      天目铁木叶的氮磷比为14~16,说明天目铁木的生长受到氮、磷共同限制。当氮钾比>2.100,钾磷比<3.400时,植物的生长主要受钾的限制[3032]。天目铁木氮钾比的平均值为1.607~2.597,钾磷比平均值为1.970~11.837,说明天目铁木的生长没有受到钾元素的限制。

      多脉铁木叶的氮磷比远大于16,初步判断多脉铁木的生长主要受磷的限制。当氮钾比>2.100并且钾磷比<3.400时,植物的生长主要受钾的限制[30-32]。多脉铁木氮钾比的平均值为1.143~4.590,钾磷比平均值为2.770~11.770,说明多脉铁木的生长没有受到钾元素的限制。因此,在林地土壤管理中,天目铁木可适当增施氮肥和磷肥,而多脉铁可适当增施磷肥。

    • 植株氮、磷、钾在不同器官中的质量分数反映了植物的生理活动和对不同环境的适应能力[32],叶片是植物光合作用的主要场所,氮是细胞合成叶绿素和蛋白质的主要元素,因此植物的叶片中氮的质量分数较高。天目铁木和多脉铁木叶片氮的平均比例达到56.3%和56.7%,这也进一步表明营养元素在不同器官与不同组分之间有显著差异,叶片氮质量分数显著高于其他器官。

      磷不仅是核酸和核蛋白的主要成分,构成生物膜的重要组成部分,也对细胞分裂和植物各器官的分化发育具有不同程度的作用[33]。植物体不同器官中磷质量分数明显受到外界供磷水平的影响,当植株缺磷时,根系会保留从土壤中吸收的大部分磷,地上部生长发育所需的磷则主要依靠枝、叶中的磷再利用;而供磷适宜的植株根系仅会保留吸收的部分磷,大多数则运往地上部。根据本研究结果可以推测,2种铁木属植物生长受到了磷的限制。

      根、树皮在植物中的作用是主要负责水分和养料的吸收与运输,对外界环境的响应不够敏感,因此根、树皮中的营养元素质量分数相对来说较为稳定。根是吸收外界营养物质和水分的器官,它将营养物质及水分由下往上传导至地上部分,以此完成植物正常的生长发育。由于天目铁木和多脉铁木生长的环境处于种群密度较高的森林群落中,为了获取更多的阳光照射,树木必须向上生长,增加叶片的数量及面积并且提升细胞内叶绿素的含量。植物选择优先满足叶片的各项生理活动及代谢的需求,对森林植物的生长来说,叶片中增加氮质量分数是合理且非常必要的调控手段。

参考文献 (33)

目录

/

返回文章
返回