留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桂花OfNAC转录因子鉴定及在花开放阶段的表达分析

缪云锋 周丹 董彬 赵宏波

缪云锋, 周丹, 董彬, 赵宏波. 桂花OfNAC转录因子鉴定及在花开放阶段的表达分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200474
引用本文: 缪云锋, 周丹, 董彬, 赵宏波. 桂花OfNAC转录因子鉴定及在花开放阶段的表达分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200474
MIAO Yunfeng, ZHOU Dan, DONG Bin, ZHAO Hongbo. Identification and expression analysis of OfNAC transcription factors in Osmanthus fragrans during flower opening stage[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200474
Citation: MIAO Yunfeng, ZHOU Dan, DONG Bin, ZHAO Hongbo. Identification and expression analysis of OfNAC transcription factors in Osmanthus fragrans during flower opening stage[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200474

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

桂花OfNAC转录因子鉴定及在花开放阶段的表达分析

doi: 10.11833/j.issn.2095-0756.20200474
基金项目: 国家自然科学基金面上项目(32072615)
详细信息
    作者简介: 缪云锋,从事观赏植物遗传育种研究。E-mail: 1150827869@qq.com
    通信作者: 赵宏波,教授,博士,从事观赏植物遗传育种等研究。E-mail: zhaohb@zafu.edu.cn
  • 中图分类号: S718.3

Identification and expression analysis of OfNAC transcription factors in Osmanthus fragrans during flower opening stage

  • 摘要:   目的  研究OfNAC基因对桂花Osmanthus fragrans花开放的调控作用。  方法  从桂花品种‘堰虹桂’O. fragrans ‘Yanhonggui’转录组数据中,筛选获得相关OfNAC基因序列,分析预测其理化性质和结构,运用实时荧光定量PCR技术分析花开放过程的表达特性。  结果  筛选得到22条OfNAC序列。生物信息学分析发现:22条OfNAC转录因子均含有NAM结构域,氨基酸序列含有5个保守的亚结构域(A~E),其保守性由强到弱依次为C、A、D、B、E;二级结构中不同结构的占比由大到小表现为无规则卷曲、α-螺旋、延伸链、β-折叠;亚细胞定位及跨膜结构预测表明:OfNAC17、OfNAC17-X2、OfNAC53、OfNAC91、OfNTM1-9在膜上表达,其他OfNAC在细胞核内发挥功能。在桂花花开放进程中,OfNAC100-2、OfNAC43、OfNAC73相对表达量在铃梗期(S4)到达顶峰,在此之后相对表达降低; OfNAC43在铃梗期(S4)骤然升高,并且在此时期相对表达最大;OfNAC71、OfNAC29-1、OfNAC21/22从起始期(S1)呈缓慢上升趋势,在顶壳期 (S3) 到达最高,随后整体呈现下降趋势;OfNAC29-2在圆珠期(S2)相对表达量陡然上升,在铃梗期(S4)相对表达最低。  结论  推测OfNAC100-2、OfNAC43、OfNAC73、OfNAC71、OfNAC29-1、OfNAC21/22、OfNAC29-2等成员极有可能参与调控桂花的花开放。图6表3参33
  • 图  1  桂花NAC的NAM保守功能域分析

    绿色部分表示NAM保守功能域

    Figure  1  NAM conserved functional domain about NAC

    图  2  OfNAC转录因子氨基酸序列比对

    黑色区域表示序列一致,红色区域保守性稍弱,蓝色区域保守性较差。字母A、B、C、D、E下面的方框部分为OfNAC转录因子N端保守区5个保守亚结构域

    Figure  2  Sequence alignment of OfNAC transcription factor

    图  3  桂花OfNAC转录因子进化分析及保守基序分析

    Figure  3  Evolution analysis of 22 OfNAC transcription factors and analysis of conserved motif

    图  4  桂花OfNAC蛋白质跨膜结构预测

    Figure  4  Transmembrane structure prediction related to OfNAC protein

    图  5  桂花OfNAC与拟南芥、水稻的系统进化树

    标黄色阴影的是桂花OfNAC

    Figure  5  Phylogenetic tree of OfNAC, Arabidopsis thaliana and Oryza sativa

    图  6  22个OfNAC基因在不同花开放时期的表达结果

    Figure  6  Expression results of 22 OfNAC genes in different flower opening periods

    表  1  桂花OfNAC转录因子RT-PCR特异性引物

    Table  1.   Specific primers for RT-PCR of OfNAC in O. fragrans

    基因名称用于荧光定量的引物序列(5'→3')基因名称用于荧光定量的引物序列(5'→3')
    OfNAC100-1F:TGAACAAGATTGAGCCTTGGGOfNAC104F:TGCATTTTACATTGGTGAAGATGTC
    R:CCTTTCCTGTGGCTTTCCAGR:GCTCGTACACTTGACACACCA
    OfNAC53F:AGATTGTGGGGATGAAGAAAAOfNAC92F:TCCTAGTCGGAATGAAGAAAACTC
    R:CAACTCCATATCAGTAAGCCGR:ATGGCTTTCTAATCTGTATTCGTGC
    OfNTM1-9F:GGTTGCTCTAATGCCCACTTCOfNAC72-1F:GGAAAAGCCCCCAAAGGAAC
    R:CTGGTTCCGTAGCACGATACTR:CCCAATCATCCAACCTTGAGC
    OfNAC73F:AGGCAAGGATGGCCAAATTCOfNAC72-2F:ACGTAGGAAAAGCACCAAAAGG
    R:TTGTGCCATCTTGTTTCTCCR:AGCATCCAACCTTGCGCTTC
    OfNAC43F:AGGCTACTGGTCGTGATAAAGOfNAC29-1F:TTACAAGGGAAGGCCTCCAAAG
    R:GGGGTCATGAGTGTCGTCCR:TTGAGCCATTTTGCGTGTTAGG
    OfNAC91F:TCTACAAAGGTCGTGCTCCGOfNAC29-2F:CCCAAAGGGCGTCAAAACTG
    R:CCCTGACCAGGATAAGTGCCR:GCACACAATCATCCAACCTCA
    OfNAC50-X2F:TGGCAAAGGGTATTGGAAAGCOfNAC71F:CTATCGTGGAAGAGCACCACT
    R:TCGCCCACTATGGAAAACAAGR:TCCCTGAAATCTTGGGGTGTC
    OfNAC50F:AAGCAACTGGAAAGGATCGCOfNAC2F:TTGGGAATAAAGAAGGCTCTGGTG
    R:AATTCTGCATCGCAAAGCCTGR:ACACAACACCCAATCATCAAGCCTC
    OfNAC21/22F:GAAGGGAAGCCTGGTTGGAATOfNAC100-2F:TCAGAGGAAAAATCCTCGTCGG
    R:CCCAATCCTCCTTGACAGATGR:TTTGGGAGGTTGTGGATCGAG
    OfNAC56F:TCTATGGTGGAAAGCCTCCTOfNAC32F:AAGCCTTGGTTTTCTATGCCG
    R:CATCAAGCCTTAAAGAGCCCR:AAGCTGTTGTTCTTGTTTCGA
    OfNAC17-X2F:TCCTGTTGGGGTGAAGAAGAOfACTF:CCCAAGGCAAACAGAGAAAAAAT
    R:ATAGTCATCCTGTGCATCCTGCR:ACCCCATCACCAGAATCAAGAA
    OfNAC17F:TGGTCTTCCATAAAGGTCGTGC
    R:TTGTACAGAGCATAGCAATCCCGTG
    下载: 导出CSV

    表  2  桂花OfNAC蛋白质理化性质及二级结构分析

    Table  2.   Physicochemical properties and secondary structure analysis of OfNAC of O. fragrans

    序列名称氨基酸序列长度/aa相对分子量电点碱正酸负不稳定系数脂溶性指数总平均疏水值亚细胞定位
    位置预测值/%
    OfNAC100-134538986.118.69403640.0661.01−0.574细胞核61.54
    OfNAC5355862807.474.60518838.8769.37−0.564内质网42.42
    OfNTM1-960668053.75.63718651.4962.43−0.725细胞核76.92
    OfNAC7330033768.958.79393438.2169.47−0.754细胞核76.92
    OfNAC4339945513.665.77435546.3163.26−0.752细胞核69.23
    OfNAC9160967741.524.98638652.8371.07−0.593细胞核76.92
    OfNAC50-X238943765.295.29465847.8369.43−0.629叶绿体58.33
    OfNAC5039944952.525.35466150.4567.69−0.652叶绿体46.15
    OfNAC21/2229633613.156.54333451.2666.52−0.570细胞核71.43
    OfNAC5632235946.518.62373439.4864.81−0.725细胞核92.30
    OfNAC17-X257364828.714.87639140.6077.70−0.530细胞核53.85
    OfNAC1760668408.124.85609746.7974.62−0.571细胞核30.77
    OfNAC10418621498.774.59193146.9668.60−0.695细胞核84.61
    OfNAC9232536813.716.47404229.2771.35−0.579细胞核38.46
    OfNAC72-133938289.938.64403740.1464.96−0.671细胞核84.61
    OfNAC72-234238848.468.64423940.0461.64−0.762细胞核100
    OfNAC29-128032538.567.71363542.9661.96−0.816细胞核52.50
    OfNAC29-227531330.369.33352633.8161.35−0.741细胞核100
    OfNAC7130334864.615.42334351.8953.37−0.795细胞核85.71
    OfNAC229634249.556.09353850.0166.22−0.735细胞核69.23
    OfNAC100-233437778.86.51384043.1067.96−0.540细胞核85.71
    OfNAC3226330253.458.45383543.9169.32−0.635细胞核61.54
      说明:不稳定系数大于40为不稳定序列,小于40为稳定序列
    下载: 导出CSV

    表  3  桂花OfNAC蛋白质理化性质及二级结构分析

    Table  3.   Secondary structure analysis of OfNAC of O. fragrans

    序列名称二级结构占比序列名称二级结构占比
    α-螺旋/%β-螺旋/%延伸/%无规则卷曲/%α-螺旋/%β-螺旋/%延伸/%无规则卷曲/%
    OfNAC100-115.073.1914.7866.96 OfNAC1724.592.8112.7159.90
    OfNAC5321.333.7614.5260.39OfNAC10418.823.7615.5961.83
    OfNTM1-923.273.149.7463.86OfNAC9214.153.6915.6966.46
    OfNAC7313.003.6720.0063.33OfNAC72-117.993.5416.2262.24
    OfNAC4321.554.2614.2959.90OfNAC72-216.963.5116.0863.45
    OfNAC9120.362.6310.5166.50OfNAC29-13.213.5717.8655.36
    OfNAC50-X231.115.9112.3450.64OfNAC29-215.644.3616.7363.27
    OfNAC5027.825.0110.5356.64OfNAC7116.174.9514.5264.36
    OfNAC21/2217.233.0415.2064.53OfNAC221.624.0511.8262.50
    OfNAC5616.153.1115.8464.91OfNAC100-216.473.5914.0765.87
    OfNAC17-X225.832.9712.9158.29OfNAC3217.112.6612.9367.30
    下载: 导出CSV
  • [1] OLSEN A N, ERNST H A, LEGGIO L L, et al. NAC transcription factors: structurally distinct, functionally diverse [J]. Trends Plant Sci, 2005, 10(2): 79 − 87. doi:  10.1016/j.tplants.2004.12.010
    [2] HIBARA K, TAKADA S, TASAKA M. CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation [J]. Plant J, 2004, 36(5): 687 − 696.
    [3] ZHANG Qian, LUO Fang, ZHONG Yu, et al. Modulation of NAC transcription factor NST1 activity by XYLEM NAC DOMAIN1 regulates secondary cell wall formation in Arabidopsis [J]. J Exp Bot, 2019, 71(4): 1449 − 1458.
    [4] PITAKSARINGKARN W, MATSUOKA K, ASAHINA M, et al. XTH20 and XTH19 regulated by ANAC071 under auxin flow are involved in cell proliferation in incised Arabidopsis inflorescence stems [J]. Plant J, 2014, 80(4): 604 − 614. doi:  10.1111/tpj.12654
    [5] KANEDA T, TAGA Y, TAKAI R, et al. The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death [J]. The EMBO J, 2009, 28(7): 926 − 936. doi:  10.1038/emboj.2009.39
    [6] JEONG J S, KIM Y S, BAEK K H, et al. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions [J]. Plant Physiol, 2010, 153(1): 185 − 197. doi:  10.1104/pp.110.154773
    [7] CHEN Xu, LU Songchong, WANG Yaofeng, et al. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice [J]. Plant J, 2015, 82(2): 302 − 314. doi:  10.1111/tpj.12819
    [8] LIU Yuanlong, KE Lili, WU Guizhi, et al. miR3954 is a trigger of phasiRNAs that affects flowering time in citrus [J]. Plant J, 2017, 92(2): 263 − 275. doi:  10.1111/tpj.13650
    [9] TRUPKINSA, ASTIGUETA F, BAIGORRIA A H, et al. Identification and expression analysis of NAC transcription factors potentially involved in leaf and petal senescence in Petunia hybrid[J]. Plant Science, 2019, 287: 110195. doi:  10.1016/j.plantsci.2019.110195.
    [10] JIANG Guoxiang, LI Zhiwei, SONG Yunbo, et al. LcNAC13 physically interacts with LcR1MYB1 to coregulate anthocyanin biosynthesis-related genes during litchi fruit ripening[J]. Biomolecules, 2019, 9(4): 135. doi:  10.3390/biom9040135.
    [11] van DOORN W G, van MEETEREN U. Flower opening and closure: a review [J]. J Exp Bot, 2003, 54(389): 1801 − 1812. doi:  10.1093/jxb/erg213
    [12] van DOORN W G, KAMDEE C. Flower opening and closure: an update [J]. J Exp Bot, 2014, 65(20): 5749 − 5757. doi:  10.1093/jxb/eru327
    [13] IRISH V F. The Arabidopsis petal: a model for plant organogenesis [J]. Trends Plant Sci, 2008, 13(8): 430 − 436. doi:  10.1016/j.tplants.2008.05.006
    [14] ZONIA L, MUNNIK T. Life under pressure: hydrostatic pressure in cell growth and function [J]. Trends Plant Sci, 2007, 12(3): 90 − 97. doi:  10.1016/j.tplants.2007.01.006
    [15] SABLOWSKI R, MEYEROWITZ E M. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA [J]. Cell, 1998, 92(1): 93 − 103. doi:  10.1016/S0092-8674(00)80902-2
    [16] JIANG Xinqiang, ZHANG Changqing, LÜ Peitao, et al. RhNAC3, a stress-associated NAC transcription factor, has a role in dehydration tolerance through regulating osmotic stress-related genes in rose petals [J]. Plant Biotechnol J, 2014, 12(1): 38 − 48. doi:  10.1111/pbi.12114
    [17] 王英, 张超, 付建新, 等. 桂花花芽分化和花开放研究进展[J]. 浙江农林大学学报, 2016, 33(2): 340 − 347. doi:  10.11833/j.issn.2095-0756.2016.02.021

    WANG Ying, ZHANG Chao, FU Jianxin, et al. Progress on flower bud differentiation and flower opening in Osmanthus fragrans [J]. J Zhejiang A&F Univ, 2016, 33(2): 340 − 347. doi:  10.11833/j.issn.2095-0756.2016.02.021
    [18] ZHANG Chao, WANG Yiguang, FU Jianxin, et al. Transcriptomic analysis and carotenogenic gene expression related to petal coloration in Osmanthus fragrans‘Yanhong Gui’ [J]. Trees-Struct Funct, 2016, 30(4): 1207 − 1223. doi:  10.1007/s00468-016-1359-8
    [19] CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Mol Plant, 2020, 13(8): 1194 − 1202. doi:  10.1016/j.molp.2020.06.009
    [20] 付建新, 张超, 王艺光, 等. 桂花组织基因表达中荧光定量PCR内参基因的筛选[J]. 浙江农林大学学报, 2016, 33(5): 727 − 733. doi:  10.11833/j.issn.2095-0756.2016.05.001

    FU Jianxin, ZHANG Chao, WANG Yiguang, et al. Reference gene selection for quantitativereal-time polymerase chain reaction(qRT-PCR) normalization in the gene expression of sweet osmanthus tissues [J]. J Zhejiang A&F Univ, 2016, 33(5): 727 − 733. doi:  10.11833/j.issn.2095-0756.2016.05.001
    [21] SOUER E, van HOUWELINGEN A, KLOOS D, et al. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries [J]. Cell, 1997, 85(2): 159 − 170.
    [22] NURUZZAMAN M, MANIMEKALAI R, AKHTER S, et al. Genome-wide analysis of NAC transcription factor family in rice [J]. Gene, 2010, 465(1/2): 30 − 44.
    [23] LIU Xingwang, WANG Ting, BARTHOLOMEW E, et al. Comprehensive analysis of NAC transcription factors and their expression during fruit spine development in cucumber (Cucumis sativus L.)[J]. Hortic Resh, 2018, 5(1): 31. doi:  10.1038/s41438-018-0036-z.
    [24] MIN Xueyang, JIN Xiaoyu, ZHANG Zhengshe, et al. Genome-wide identification of NAC transcription factor family and functional analysis of the abiotic stress-responsive genes in Medicago sativa L. [J]. J Plant Growth Regul, 2020, 39(1): 324 − 337. doi:  10.1007/s00344-019-09984-z
    [25] KIM S M, KIM S G, KIM Y S, et al. Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation [J]. Nucl Acids Res, 2007, 35(1): 203 − 213. doi:  10.1093/nar/gkl1068
    [26] FANG Yujie, YOU Jun, XIE Kabin, et al. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice [J]. Mol Genet Genomics, 2008, 280(6): 547 − 563. doi:  10.1007/s00438-008-0386-6
    [27] KIM S G, LEE A K, YOON H K, et al. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination [J]. Plant J, 2008, 55(1): 77 − 88. doi:  10.1111/j.1365-313X.2008.03493.x
    [28] 李建琴, 张娟, 王学臣, 等. 膜系留转录因子ANAC089在拟南芥开花诱导过程中起负调控作用[J]. 中国科学: 生命科学, 2010, 53(11): 1299 − 1306. doi:  10.1007/s11427-010-4085-2

    LI Jianqing, ZHANG Juan, WANG Xuechen, et al. A membrane-tethered transcription factor ANAC089 negatively regulates floral initiation in Arabidopsis thaliana [J]. Sci China Life Sci, 2010, 53(11): 1299 − 1306. doi:  10.1007/s11427-010-4085-2
    [29] BALAZADEH S, SIDDIQUI H, ALLU A D, et al. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence [J]. Plant J, 2010, 62(2): 250 − 264. doi:  10.1111/j.1365-313X.2010.04151.x
    [30] PEI Haixia, MA Nan, TIAN Ji, et al. An NAC transcription factor controls ethylene-regulated cell expansion in flower petals [J]. Plant Physiol, 2013, 163(2): 775 − 791. doi:  10.1104/pp.113.223388
    [31] 罗云, 张超, 付建新, 等. 桂花扩展蛋白基因家族的鉴定和表达分析[J]. 农业生物技术学报, 2017, 25(8): 1289 − 1299.

    LUO Yun, ZHANG Chao, FU Jianxin, et al. Identification and expression analysis of expansin gene family in Osmanthus fragrans [J]. J Agric Biotechnol, 2017, 25(8): 1289 − 1299.
    [32] DAI Fanwei, ZHANG Changqing, JIANG Xinqiang, et al. RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals [J]. Plant Physiol, 2012, 160(4): 2064 − 2082. doi:  10.1104/pp.112.207720
    [33] SÁNCHEZ-MONTESINO R, BOUZA-MORCILLO L, MARQUEZ J, et al. A regulatory module controlling GA-mediated endosperm cell expansion is critical for seed germination in Arabidopsis [J]. Mol Plant, 2019, 12(1): 71 − 85. doi:  10.1016/j.molp.2018.10.009
  • [1] 庞天虹, 钱婕妤, 付建新, 顾翠花, 张超.  桂花己糖激酶基因家族成员的序列及表达分析 . 浙江农林大学学报, 2021, 38(2): 225-234. doi: 10.11833/j.issn.2095-0756.20200370
    [2] 吴琪, 吴鸿飞, 周敏舒, 徐倩霞, 杨丽媛, 赵宏波, 董彬.  桂花OfFCA基因的克隆及在花芽分化时期的表达分析 . 浙江农林大学学报, 2020, 37(2): 195-200. doi: 10.11833/j.issn.2095-0756.2020.02.001
    [3] 王千千, 蒋琦妮, 付建新, 董彬, 赵宏波.  不同光周期和温度处理下桂花内参基因的筛选 . 浙江农林大学学报, 2019, 36(5): 928-934. doi: 10.11833/j.issn.2095-0756.2019.05.011
    [4] 蒋琦妮, 付建新, 张超, 董彬, 赵宏波.  桂花OfAP1基因的克隆及表达分析 . 浙江农林大学学报, 2019, 36(4): 664-669. doi: 10.11833/j.issn.2095-0756.2019.04.005
    [5] 刘玉成, 王艺光, 张超, 董彬, 付建新, 胡绍庆, 赵宏波.  桂花OfCCD1基因启动子克隆与表达特性 . 浙江农林大学学报, 2018, 35(4): 596-603. doi: 10.11833/j.issn.2095-0756.2018.04.003
    [6] 李军, 董彬, 张超, 付建新, 胡绍庆, 赵宏波.  桂花EST-SSR引物开发及在品种鉴定中的应用 . 浙江农林大学学报, 2018, 35(2): 306-313. doi: 10.11833/j.issn.2095-0756.2018.02.015
    [7] 李冰冰, 刘国峰, 魏书, 黄龙全, 张剑韵.  烟草NtPLR1基因克隆与表达分析 . 浙江农林大学学报, 2017, 34(4): 581-588. doi: 10.11833/j.issn.2095-0756.2017.04.003
    [8] 蔡宙霏, 陈雅奇, 许馨露, 王小东, 汪俊宇, 张汝民, 高岩.  4个桂花品种开花进程释放VOCs动态变化分析 . 浙江农林大学学报, 2017, 34(4): 608-619. doi: 10.11833/j.issn.2095-0756.2017.04.006
    [9] 付建新, 张超, 王艺光, 赵宏波.  桂花组织基因表达中荧光定量PCR内参基因的筛选 . 浙江农林大学学报, 2016, 33(5): 727-733. doi: 10.11833/j.issn.2095-0756.2016.05.001
    [10] 王英, 张超, 付建新, 赵宏波.  桂花花芽分化和花开放研究进展 . 浙江农林大学学报, 2016, 33(2): 340-347. doi: 10.11833/j.issn.2095-0756.2016.02.021
    [11] 庞景, 童再康, 黄华宏, 林二培, 刘琼瑶.  杉木纤维素合成酶基因CesA的克隆及表达分析 . 浙江农林大学学报, 2015, 32(1): 40-46. doi: 10.11833/j.issn.2095-0756.2015.01.006
    [12] 赵婷, 韩小娇, 刘明英, 乔桂荣, 蒋晶, 姜彦成, 卓仁英.  东南景天耐镉相关基因SaFer的克隆与功能初步分析 . 浙江农林大学学报, 2015, 32(1): 25-32. doi: 10.11833/j.issn.2095-0756.2015.01.004
    [13] 徐沂春, 胡绍庆, 赵宏波.  基于AFLP分子标记的不同类型野生桂花种群遗传结构分析 . 浙江农林大学学报, 2014, 31(2): 217-223. doi: 10.11833/j.issn.2095-0756.2014.02.009
    [14] 林富平, 周帅, 马楠, 张汝民, 高岩.  4个桂花品种叶片挥发物成分及其对空气微生物的影响 . 浙江农林大学学报, 2013, 30(1): 15-21. doi: 10.11833/j.issn.2095-0756.2013.01.003
    [15] 杨希宏, 黄有军, 陈芳芳, 黄坚钦.  山核桃FLOWERING LOCUS C同源基因鉴定与表达分析 . 浙江农林大学学报, 2013, 30(1): 1-8. doi: 10.11833/j.issn.2095-0756.2013.01.001
    [16] 杨秀莲, 郝其梅.  桂花种子休眠和萌发的初步研究 . 浙江农林大学学报, 2010, 27(2): 272-276. doi: 10.11833/j.issn.2095-0756.2010.02.018
    [17] 常炳华, 胡永红, 徐业根, 张秋兴, 张万里.  桂花花冠裂片表面的超微结构观察 . 浙江农林大学学报, 2007, 24(5): 533-537.
    [18] 周媛, 姚崇怀, 王彩云.  桂花切花品种筛选 . 浙江农林大学学报, 2006, 23(6): 660-663.
    [19] 胡绍庆, 宣子灿, 周煦浪, 吴光洪.  杭州市桂花品种的分类整理 . 浙江农林大学学报, 2006, 23(2): 179-187.
    [20] 吴光洪, 胡绍庆, 宣子灿, 向其柏.  桂花品种分类标准与应用 . 浙江农林大学学报, 2004, 21(3): 281-284.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200474

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2021/3/1

计量
  • 文章访问数:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-21
  • 修回日期:  2020-12-30

桂花OfNAC转录因子鉴定及在花开放阶段的表达分析

doi: 10.11833/j.issn.2095-0756.20200474
    基金项目:  国家自然科学基金面上项目(32072615)
    作者简介:

    缪云锋,从事观赏植物遗传育种研究。E-mail: 1150827869@qq.com

    通信作者: 赵宏波,教授,博士,从事观赏植物遗传育种等研究。E-mail: zhaohb@zafu.edu.cn
  • 中图分类号: S718.3

摘要:   目的  研究OfNAC基因对桂花Osmanthus fragrans花开放的调控作用。  方法  从桂花品种‘堰虹桂’O. fragrans ‘Yanhonggui’转录组数据中,筛选获得相关OfNAC基因序列,分析预测其理化性质和结构,运用实时荧光定量PCR技术分析花开放过程的表达特性。  结果  筛选得到22条OfNAC序列。生物信息学分析发现:22条OfNAC转录因子均含有NAM结构域,氨基酸序列含有5个保守的亚结构域(A~E),其保守性由强到弱依次为C、A、D、B、E;二级结构中不同结构的占比由大到小表现为无规则卷曲、α-螺旋、延伸链、β-折叠;亚细胞定位及跨膜结构预测表明:OfNAC17、OfNAC17-X2、OfNAC53、OfNAC91、OfNTM1-9在膜上表达,其他OfNAC在细胞核内发挥功能。在桂花花开放进程中,OfNAC100-2、OfNAC43、OfNAC73相对表达量在铃梗期(S4)到达顶峰,在此之后相对表达降低; OfNAC43在铃梗期(S4)骤然升高,并且在此时期相对表达最大;OfNAC71、OfNAC29-1、OfNAC21/22从起始期(S1)呈缓慢上升趋势,在顶壳期 (S3) 到达最高,随后整体呈现下降趋势;OfNAC29-2在圆珠期(S2)相对表达量陡然上升,在铃梗期(S4)相对表达最低。  结论  推测OfNAC100-2、OfNAC43、OfNAC73、OfNAC71、OfNAC29-1、OfNAC21/22、OfNAC29-2等成员极有可能参与调控桂花的花开放。图6表3参33

English Abstract

缪云锋, 周丹, 董彬, 赵宏波. 桂花OfNAC转录因子鉴定及在花开放阶段的表达分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200474
引用本文: 缪云锋, 周丹, 董彬, 赵宏波. 桂花OfNAC转录因子鉴定及在花开放阶段的表达分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200474
MIAO Yunfeng, ZHOU Dan, DONG Bin, ZHAO Hongbo. Identification and expression analysis of OfNAC transcription factors in Osmanthus fragrans during flower opening stage[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200474
Citation: MIAO Yunfeng, ZHOU Dan, DONG Bin, ZHAO Hongbo. Identification and expression analysis of OfNAC transcription factors in Osmanthus fragrans during flower opening stage[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200474

返回顶部

目录

    /

    返回文章
    返回