留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浙江建德楠木天然林群落种间联结动态

吴丹婷 吴初平 盛卫星 焦洁洁 江波 朱锦茹 袁位高

朱文见, 张慧, 王懿祥. 采伐对森林土壤呼吸影响的研究进展[J]. 浙江农林大学学报, 2021, 38(5): 1000-1011. DOI: 10.11833/j.issn.2095-0756.20210365
引用本文: 吴丹婷, 吴初平, 盛卫星, 等. 浙江建德楠木天然林群落种间联结动态[J]. 浙江农林大学学报, 2021, 38(4): 671-681. DOI: 10.11833/j.issn.2095-0756.20200565
ZHU Wenjian, ZHANG Hui, WANG Yixiang. Research progress on effects of cutting on forest soil respiration[J]. Journal of Zhejiang A&F University, 2021, 38(5): 1000-1011. DOI: 10.11833/j.issn.2095-0756.20210365
Citation: WU Danting, WU Chuping, SHENG Weixing, et al. Interspecific association dynamics of Nanmu natural forest in Jiande, Zhejiang Province[J]. Journal of Zhejiang A&F University, 2021, 38(4): 671-681. DOI: 10.11833/j.issn.2095-0756.20200565

浙江建德楠木天然林群落种间联结动态

DOI: 10.11833/j.issn.2095-0756.20200565
基金项目: 浙江省省院合作林业科技项目(2018SY08)
详细信息
    作者简介: 吴丹婷(ORCID: 0000-0002-2250-5179),从事森林生态学研究。E-mail: 649757937@qq.com
    通信作者: 袁位高(ORCID: 0000-0002-5794-1384),研究员,从事森林生态与经营研究。E-mail: zfaywg@126.com
  • 中图分类号: S718.5

Interspecific association dynamics of Nanmu natural forest in Jiande, Zhejiang Province

  • 摘要:   目的  以浙江省建德市寿昌林场绿荷塘林区内楠木优势程度不同的天然林作为研究对象,进行种间关系的分析,揭示楠木在天然林群落发育和演替过程中种间关联性动态变化规律。  方法  分别在2015和2019年,对2个楠木优势程度不同的天然林样地进行调查,基于2×2联列表,通过χ2检验、联结系数、共同出现百分率,研究调查样地内楠木在不同林分条件下,乔木层、灌木层、草本层的种间联结性。  结果  2015和2019年,天然楠木优势林样地乔木层总体种间关联性均呈显著正联结,灌木层和草本层种间总体关联性趋向于负联结;天然楠木伴生林乔木层、灌木层、草本层种间总体关联性趋向于负联结。在这2种天然林中,楠木在乔木层与其他树种之间的联结相对独立,在灌木层和草本层的种间竞争较为激烈,且均有楠木在垂直方向上表现出林分断层现象。  结论  在天然林中,将楠木作为目标树种进行管理与保护时,可采用间伐、择伐等抚育方法,保留与楠木有显著正关联的树种,伐除负关联的树种,缓和种间矛盾;疏伐上层高大乔木,增加林窗,以满足林分更新层对光照的需求,保护其更新层,以形成完整的垂直结构。图7表4参22
  • 全球土壤碳储量约为1 500 Pg,超过全球陆地植被碳储量和大气碳储量之和[1]。土壤呼吸年均释放80~95 Pg二氧化碳-碳(CO2-C)到大气中[2-3],是化石燃料燃烧产生二氧化碳排放量的11倍以上[4-5],是陆地生态系统第二大碳通量。全球范围内,森林在减缓气候变化方面发挥着重要的作用[6]。作为地下生态过程的土壤呼吸显著影响着陆地生态系统的碳循环[7],其通量过程已成为全球变化生态学研究的核心和焦点之一。一方面,大气中CO2等温室气体的增加是导致全球气候变化的主要原因。另外一方面,全球气候变化也会加速土壤呼吸速率,进一步增加CO2年排放量。CO2排放与全球气候变化的正反馈作用将放大全球气候变化对陆地生态系统的影响,因此备受学术界和各国政府关注[5, 8]。森林是陆地生态系统中最大的碳库,其面积约占陆地面积的1/3,对全球碳收支有着重要影响。森林土壤碳储量约占森林生态系统碳储量的2/3,约占全球土壤碳储量的39%[9-10]。森林土壤不仅是植被生长的基础,也是CO2的源、汇地之一,通过土壤呼吸排放到大气中的CO2是大气的重要碳源[11]。在碳中和背景下,被关注的重点是非自然变动引起的森林土壤呼吸的增加或减少,这种变化量才是森林生态系统的有效碳源或碳汇。森林生态系统中的人为干扰(如森林经营活动)能在很大程度上影响土壤CO2排放[12]。其中,森林采伐作为最重要的经营措施及干扰程度最大的人为干扰活动之一,通过改变植被组成、林内光照、凋落物质量、数量及土壤温湿度等进而影响着土壤CO2排放。学者们针对不同气候带的森林开展了多种采伐方式对土壤呼吸影响的研究,但是结论并不一致,存在很大的不确定性。科学认识采伐干扰下森林土壤CO2排放的特征,探讨减少土壤呼吸的森林经营措施对于增强森林的固碳减排功能具有重要的科学意义和实践价值。为此,本研究综述了不同采伐方式对森林土壤呼吸的影响及其机制,主要包括不同采伐方式处理下、不同森林类型对于森林土壤呼吸总量、土壤呼吸组分及其温度敏感性(Q10)的影响,并总结了采伐对土壤呼吸影响的调控因子,在此基础上,提出了该领域的研究前景,以期为中国选择合理的采伐方式,降低森林土壤CO2排放,2060年实现碳中和提供参考。

    土壤释放CO2的过程称为土壤呼吸,包括3个生物学过程和1个非生物学过程[13]。3个生物学过程分别是自养呼吸、土壤微生物异养呼吸和土壤动物异养呼吸。植物根系与根际呼吸产生的CO2排放,称为自养呼吸;微生物分解土壤有机质产生的CO2排放,称为土壤微生物异养呼吸;土壤动物呼吸产生的CO2排放,称为土壤动物异养呼吸[13]。非生物学过程是指土壤含碳矿物质化学氧化产生的CO2排放[13],其产生的CO2量远少于生物学过程而通常被忽略不计。

    土壤呼吸组分因其产生途径、产生部位和所利用碳源的不同有着不同的术语表达,且经常存在土壤呼吸组分术语混用的问题[14]。在分析森林采伐对土壤呼吸的影响时,可以以采伐影响土壤呼吸的产生途径、产生部位和碳源等某一方面为主进行分析。从土壤CO2排放的产生途径来分析,可以分为自养呼吸(autotrophic respiration)和异养呼吸(heterotrophic respiration)[8, 15]。从土壤CO2排放的产生部位来分析,可分为根际区、无根系影响的土壤和凋落物层3个部位[16]。从土壤CO2排放所利用的碳源来分析,可以分为土壤有机质源CO2和植物源CO2(包括凋落物源、死根源、活根源)[17-19]

    森林采伐是一种非常普遍的经营作业方式,一般分为针对成熟林或过熟林的皆伐、择伐和渐伐等主伐、针对中幼龄林的间伐以及针对防护林的更新采伐。皆伐是将伐区上的林木一次性全部伐除或几乎伐除(保留部分母树)的主伐方式。择伐、渐伐、间伐、更新采伐都是仅将伐区上的林木移除一部分,为方便叙述,本研究统一称它们为部分采伐。森林采伐要砍伐林分中的所有或部分林木,势必会降低冠层覆盖,去除林分或改变林分结构,影响各种环境因子,进而影响土壤呼吸。

    目前,关于皆伐影响土壤总呼吸的研究有很多,结果并不一致(表1),可以分为增加、不变、减少3种结论。通常认为皆伐短期内会增加土壤总呼吸[20]:锐齿栎Quercus aliena皆伐4个月后土壤总呼吸增加5%[21];挪威云杉Picea abies林皆伐后第2年土壤总呼吸增加29%,第3年增加52%[22];云杉Picea asperata林皆伐后2 a土壤总呼吸增加50%[23]。其主要原因有:①土壤温度升高提升了异养呼吸速率。林地皆伐后土壤受阳光直射,其温度会发生剧烈的变化[24],从而提升了土壤有机质的分解速率和土壤微生物异养呼吸[21],大量研究表明土壤温度提升可以解释85%~98%的土壤呼吸变化[25-29]。②土壤有机质增加。皆伐林地内残留的死根、凋落物和伐木残留物的丰富和矿化导致土壤呼吸在皆伐后几年内增加[23]。③土壤理化性质变化。皆伐会通过影响土壤理化性质,进而影响土壤呼吸。皆伐影响土壤氮含量,土壤氮能加速植物生长,影响土壤根呼吸,同时土壤氮也是土壤微生物的重要影响因子;皆伐还会影响土壤pH,土壤pH通过调控土壤中化学反应的进程和土壤酶活性来间接影响土壤呼吸[30]。还有研究表明皆伐会影响土壤全碳、全氮、碳氮比、速效氮磷钾和土壤容重等,而这些都是土壤呼吸的影响因子[31-35]

    表 1  土壤呼吸及其组分对皆伐的响应
    Table 1  Response of soil respiration and its components to clear cutting
    地点气候带皆伐更新
    方式
    剩余物
    处理方式
    伐后时
    间/a
    观察时间森林类型总呼吸/
    %
    自养呼吸/
    %
    异养呼吸/
    %
    Q10/%参考文献
    中国福建省 亚热带 1 5 cm以上收集,
    以下归堆清理
    5~6 整年 杉阔混交林 −37 −48 −34 −17 [37]
    中国黑龙江省 温带  1 1 生长季 白桦沼泽 −6 [58]
    中国吉林省 温带  1 主干移除
    枝叶未清
    12~13 生长季 阔叶红松林 −25 −35 [72]
    美国加利福尼亚州 温带  1 1~2 整年 云杉林 −29 [38]
    中国甘肃省 暖温带 1 1 4个月后整年 锐齿栎 5 [21]
    俄罗斯莫斯科州 温带  1 凋落物保留
    剩余物保留
    1~2 生长季 云杉林 50
    50
    [23]
    芬兰 温带  1 保留 1 整年 挪威云杉 −16 16
    17
    25
    [22]
    2 整年 29
    3 整年 52
    美国密苏里州 热带  主干移除 2~4 整年 栎-山核桃林 −18 [73]
    全移除 −17
    芬兰 温带  1 全部移除 1 整年 苏格兰松 23 [64]
    2 整年 −16
    3 整年 −20
    加拿大魁北克省 寒带  1 6~7 整年 黑云杉 16 [74]
    2 9
    加拿大新斯科舍省 温带  3 3~4 整年 混合杉木林 −1 [43]
    中国浙江省 亚热带 1 25~26 整年 杉木林 17 −15 [75]
    瑞典乌普萨拉省 温带  4 树干树桩收获
    树冠枝条保留
    21~22 整年 苏格兰松
    挪威云杉
    −10 [65]
    五大湖流域 温带  1 生长季 糖枫 −7 [57]
    日本 温带  4 保留竹类 1~3 整年 寒温带针阔
    混交林
    17 [76]
    日本 温带  4 保留竹类 1~10 整年 寒温带针阔
    混交林
    61 [77]
    马来西亚 热带  1 树干收获,
    其余保留
    1~2 5个月 重红婆罗双林
    龙脑香林
    不变
    不变
    [44]
    韩国 温带  4 1 整年 红松林 41 [78]
    中国浙江省 亚热带 1 移除 1 整年 杉木林 −15 −20 [79]
    5 火烧 −27 −27
    中国浙江省 亚热带 1 保留 2 整年 杉木林 13 −10 [79]
    1 保留且翻土 32 −11
    中国浙江省 亚热带 1 保留 3 整年 杉木林 16 −10 [79]
    1 保留且翻土 30 −12
    英国英格兰 温带  1 1 整年 云杉 −22 [80]
    2 −42
    3 −30
    4 −10
    马来西亚 热带  1 1~9 隔4周测2周 阔叶混交林 13 [81]
    日本 亚热带 1 清除 2 每年5−10月 天然混交林 16 14 [82]
    3 11 33
    4 20 48
    5 5 57
    6 5 67
    7 20 29
    8 4 38
      说明:皆伐更新方式中1表示皆伐后自然恢复,2表示皆伐后翻土,3表示皆伐后喷洒除草剂,4表示皆伐后人工种植,5表示皆伐后火烧。     栎Quercus spp.,山核桃Carya spp.,黑云杉Picea mariana,重红婆罗双Shorea spp.,龙脑香Dipterocarpus spp.,红松      Pinus koraiensis。空白表示无此项观测记录
    下载: 导出CSV 
    | 显示表格

    也有少数研究认为,皆伐造成的根呼吸降低大于采伐造成的异养呼吸增加,因此皆伐造成土壤总呼吸的降低[36]。杉阔混交林皆伐第5年土壤呼吸减少48%[37]。云杉林皆伐1 a后土壤呼吸减少29%[38]。皆伐减少土壤呼吸的原因主要有:①皆伐后土壤自养呼吸显著下降。根呼吸占土壤呼吸的50%[39],皆伐迹地植被活根的减少会导致土壤自养呼吸速率下降[40],当自养呼吸下降幅度大于异养呼吸的增加幅度时土壤总呼吸速率表现为降低[21]。②皆伐后采伐剩余物的清除方式。皆伐后火烧或清除采伐剩余物、清理凋落物等都会减少土壤有机质输入,从而减少碳输入[41],微生物的异养呼吸会在一段时间后消耗掉大量的土壤碳[42],减少皆伐迹地土壤碳含量,进而降低土壤呼吸。③皆伐迹地植被恢复的时间不同。从皆伐后立即开展研究到皆伐后若干年开展研究,观察到的皆伐迹地恢复阶段不统一,导致相同气候和人为干扰措施可能因为不同植被恢复阶段而得到不同的研究结论。

    还有研究发现皆伐对土壤呼吸无显著影响。例如:杉木Cunninghamia lanceolata林皆伐后第25年土壤呼吸未发生明显变化[43]。杨玉盛等[25]发现杉木林皆伐后土壤呼吸的变化不显著。皆伐后土壤呼吸变化不大的原因可能有:①土壤异养呼吸的增加弥补了根呼吸的减少导致了土壤总呼吸基本不变。皆伐后根系呼吸的下降和物质输入的消失可降低土壤自养呼吸,而采伐剩余物的分解增加及新近死亡的根系分解可能促进土壤异养呼吸,两方面综合作用可能导致土壤总呼吸的不变[25]。也有研究表明,皆伐后土壤微生物呼吸的增加与根呼吸的减少相抵消,从而使得土壤总呼吸未发生明显变化[44-45]。②研究区微地形的影响和地下潜在因素众多,尤其是皆伐后林区排水能力的变化影响地下水位,进一步影响微生物活性,本应增加的土壤微生物呼吸未发生明显变化,导致土壤呼吸未发生明显变化[43]

    综上可见,皆伐对土壤呼吸影响的效果因皆伐措施的不同、森林类型的不同和伐后恢复时间的不同呈现显著的时空和地域异质性[46-47]

    部分采伐对森林土壤呼吸影响的研究相对于皆伐较少[48]。部分采伐收获了部分林木,对林分及其土壤的干扰程度相比皆伐较低。从目前的研究情况(表2)来看,部分采伐对土壤呼吸影响的研究结果也不一致,有增加[49-50],减少[36, 51]和基本不变[52-54]共3类。有关部分采伐对土壤呼吸影响的研究常聚焦于不同采伐强度的影响上。如马尾松Pinus massoniana林间伐15%和间伐70%后1 a内土壤呼吸分别为保持不变和增加17%[55];杉阔混交林间伐35%、49%和68%第5年土壤呼吸分别增加15%、增加16%和减少10%[37]。毛竹Phyllostachys edulis林择伐24%第3~8个月土壤呼吸减少16%[56]。糖枫Acer saccharum林间伐35%第5~10个月土壤呼吸减少19%[57]。白桦Betula platyphylla沼泽林渐伐45%第8~13个月土壤呼吸减少15%[58]

    表 2  土壤呼吸及其组分对部分采伐的响应
    Table 2  Response of soil respiration and its components to partial cutting
    地点气候带部分采伐
    强度/%
    剩余物
    处理方式
    伐后时
    间/a
    观察时间森林类型总呼吸/
    %
    自养呼吸/
    %
    异养呼吸/
    %
    Q10/%参考文献
    中国湖北省 亚热带 除灌 清理 1 整年 马尾松林 −17 −17 −18 [56]
    15 移除树干 −14 11
    70 移除树干 17 11 22
    中国山西省 温带  20 清除 1 生长季 油松人工林 −4 18 −6 6 [69]
    30 23 64 19 −30
    40 52 290 30 −13
    中国湖北省 亚热带 24 1 生长季 毛竹林 −16 28 −29 9 [56]
    中国福建省 亚热带 35 5 cm以上收集,
    以下归堆
    5~6 整年 杉阔混交林 15 14 15 52 [37]
    49 16 13 17 34
    68 −10 −5 −12 −1
    中国黑龙江省 温带  45 1 生长季 白桦沼泽 −15 [58]
    中国陕西省 温带  15 清除采伐剩余物 3~4 生长季 华北落叶松 −5 47 [84]
    35 16 3
    50 −3 15
    中国陕西 温带  12 1~4 生长季 华北落叶松 [28]
    32 17
    47
    斯洛文尼亚 温带  50
    100
    1~3 生长季 山毛榉林 47
    69
    [85]
    中国黑龙江省 温带  20 堆腐 1~4 生长季 针阔混交林 23 [59]
    39 22
    52 24
    62 27
    71 22
    挪威 寒带  41 32~33 夏季 挪威云杉 13 [86]
    55 17
    加拿大安大略省 温带  50 2 生长季 耐寒阔叶林 54 [57]
    爱尔兰 温带  42 1~2 整年 云杉 13 [87]
    日本 亚热带 50 2~4 整年 日本雪松林 46 [88]
    加拿大安大略省 温带  28 1 生长季 杉阔混交林 17 −25 [50]
    2 18 −6
    3 16 19
    中国湖北省 亚热带 23 手工除草为对照
    除草剂除草为处理
    1 整年 毛竹林 −7 20 −13 3 [83]
    斯洛文尼亚 温带  50 1~3 生长季 云杉林/冷杉林 26 [85]
    100 48
    中国湖北省 亚热带 15 清除 1~3 全年 马尾松林 29 14 39 [89]
    70 42 19 59
      说明:日本雪松Cryptomeria japonica。空白表示无此项观测记录;−表示减少
    下载: 导出CSV 
    | 显示表格

    部分采伐增加土壤呼吸的原因有:①部分采伐减小了森林郁闭度,林下光照强度增加导致土壤温度增加,促进土壤有机质分解,从而增加土壤异养呼吸,同时也促进植物根系的生长,增加土壤自养呼吸[49];②部分采伐后采伐剩余物例如木屑和树枝树叶等进入土壤,为土壤微生物活动提供底物,增加土壤异养呼吸[59]。部分采伐降低土壤呼吸可以归因为:①部分采伐时整株植物被移除,凋落物减少,碳底物供应下降导致土壤呼吸减弱[56]。②部分采伐后乔木层减少,树木蒸腾作用减弱,地下水位上升,土壤孔隙减少,导致土壤呼吸减小[58]。部分采伐对土壤呼吸无显著影响可能是因为:①部分采伐提高了土壤异养呼吸,但又同时降低了根呼吸,综合作用下部分采伐对土壤呼吸无影响[55]。②部分采伐后林地凋落物储量、有机碳储量、土壤总孔隙度及细根生物量仍能维持较高的水平,与对照相比土壤呼吸未发生显著变化[37]

    总体上,部分采伐对土壤湿度、细根生物量和土壤碳储量(包括土壤总碳含量、土壤有机碳和微生物量碳)无显著影响。但是部分采伐会导致凋落物等显著减少,土壤温度升高,土壤总呼吸上升。轻度和中度部分采伐显著增加土壤呼吸,尤其是在植被恢复的早期阶段(≤2 a)[60]

    虽然近些年来对土壤呼吸组分的研究大幅度增加(表1表2),但是与采伐对森林土壤呼吸影响的研究相比,采伐对土壤呼吸组分影响的研究要少得多。土壤自养呼吸和土壤异养呼吸受到土壤温度、土壤湿度和细根生物量等一系列因素的影响[44]

    皆伐导致细根大量死亡,土壤自养呼吸显著下降[37]。皆伐后森林乔木层消失,太阳直射地表导致土壤温度升高,地表水分加速蒸发[61]。地表温度的上升促进了枯枝落叶层和表层土壤有机质的分解[29];皆伐带来的新鲜采伐剩余物为土壤微生物提供了大量的碳源[62],以上2点原因导致了皆伐后土壤异养呼吸增加[63]。但此部分碳源分解较快,长时间土壤异养呼吸下降会导致土壤异养呼吸短时间内增加长时间内减少,其他研究也佐证了这一结论。例如苏格兰松Pinus sylvestris皆伐第1年土壤异养呼吸增加23%,第2年减少16%,第3年减少20%[64]。这是因为皆伐时产生的碎木屑进入土壤,增加了土壤微生物呼吸的底物,导致了土壤异养呼吸的增加,但是这部分底物很少,在第2年和第3年时底物分解殆尽,土壤异养呼吸下降。杉阔混交林皆伐第5年土壤自养呼吸减少48%,土壤异养呼吸减少34%[37]。这是因为皆伐收获了林木,植物根大量死亡,土壤自养呼吸显著下降,同时皆伐后林地凋落物、土壤总孔隙度和土壤有机质都出现了明显的下降,土壤异养呼吸显著下降。苏格兰松和挪威云杉在皆伐第22年土壤异养呼吸减少10%[65]。而这可能是因为此研究采用挖掘机收获伐桩,比起用带有刀片的推土机,对土壤的扰动更小,不同收获方式导致土壤呼吸的变化不同。

    总体来看,与对照组相比,皆伐破坏了森林地上植被,导致根系死亡,土壤自养呼吸下降;皆伐后保留采伐剩余物短时间内土壤异养呼吸增加,长时间后则土壤异养呼吸会下降。这是因为保留采伐剩余物为土壤微生物呼吸和土壤动物呼吸提供了碳源,但是这种碳源易分解,短时间内会释放大量CO2,长时间后则易分解有机质减少,土壤异养呼吸下降。同时皆伐砍伐灌木、清除草本和根系分解可能补偿根系和根际呼吸的减少[66]

    部分采伐主要通过以下两方面影响土壤呼吸组分:①不同的采伐剩余物处理方法对土壤微生物底物的供应不同,影响土壤微生物呼吸,从而影响土壤异养呼吸。②部分采伐强度不同,对植物根的破坏程度不同,对土壤自养呼吸的影响也不同。例如,马尾松林间伐15%和70%在1 a内(仅移除树干)土壤自养呼吸分别减少14%和增加11%,土壤异养呼吸分别增加11%和22%。这是因为15%间伐清除了林下灌木和部分林下树种,这些植被细根比例大且分布较浅,清除后可能会显著降低表层土壤根系生物量,导致土壤自养呼吸减少[55];70%间伐导致地上植被减少,但是充足的养分会促进剩余植被的生长,导致根系生物量增加,进而增加根呼吸,原本应减少的根呼吸无显著变化[55];2种强度的采伐后林地残留的伐根死亡为土壤异养呼吸增加了底物,同时活立木的减少改变了林木微环境,为土壤微生物活动创造了适宜的条件,导致土壤异养呼吸增加[67-68]。油松Pinus tabulaeformis人工林择伐20%、30%和40%第2~7个月(采伐剩余物清除)土壤自养呼吸分别增加18%、64%和290%,土壤异养呼吸分别减少6%、增加19%和增加30%[69]。此研究中随着林分密度的递减,林地总活根量密度增大,而总活根量在一定程度上决定根呼吸,故随采伐强度增加,土壤自养呼吸越强。随着采伐强度的增加,进入土壤的枯枝落叶增加,而枯枝落叶层的覆盖对土壤CO2的排放有一定的阻碍[70],故对照组异养呼吸低于处理组。毛竹林间伐24%第3~8个月土壤异养呼吸增加28%,土壤自养呼吸减少29%[56]。这是因为采伐后林地表面温度升高,地上碳供应减少,根基分泌物减少,导致土壤有机碳分解增加,土壤矿质呼吸增加,而根呼吸的下降可能是因为底物供应的下降[71]。杉阔混交林择伐35%、49%和68%第5年(采伐剩余物长度5 cm以上收集以下归堆清理)土壤自养呼吸分别增加14%、增加13%和减少5%,土壤异养呼吸分别增加15%、增加17%和减少12%[37],而这些差异在统计学上并不显著。这是因为择伐后林地凋落物储量、土壤总孔隙度、有机碳储量、有机质和细根生物量仍维持在较高的水平,土壤呼吸组分未发生显著变化。

    可以看出,部分采伐对土壤呼吸组分的影响会随着采伐剩余物处理方式的不同而发生显著的变化,保留采伐剩余物短时间内通常会增加土壤异养呼吸;同时林分根系的生长也会随着伐后恢复的程度而得到增强,伐后恢复时间越久,部分采伐对土壤呼吸组分的影响越小。

    土壤温度是影响土壤呼吸的重要环境因子,土壤呼吸的温度敏感性用Q10来表示,是指土壤呼吸随温度每升高10 ℃所增加的倍数。Q10值不仅随地理位置、森林生态系统的不同而不同,也会受到人为干扰活动如采伐的影响。

    皆伐对土壤呼吸温度敏感性的影响主要取决于皆伐迹地植被恢复的时间。例如欧洲云杉皆伐1~3 a Q10连年上升,第1年增加16%,第2年增加17%,第3年增加25%[22],阔叶红松林皆伐13 a后生长季Q10减少35%[72],但杉木林皆伐1~3 a无论是移除还是保留采伐剩余物Q10皆下降[79]。而杉阔混交林皆伐5 a后Q10减少17%[37]。由于皆伐后采伐剩余物管理方式的不同,进入土壤的易分解有机质有多有少,短期内Q10也表现出不同的变化规律,但长期后因为皆伐迹地植被的恢复,土壤温度敏感性基本呈现下降的趋势。

    部分采伐对土壤温度敏感性的影响主要取决于部分采伐的强度,但是不同研究的结果并不统一。低强度部分采伐下,短时间内Q10通常增加,毛竹林23%间伐1 a后Q10增加3%[83],油松人工林20%间伐1 a后生长季Q10增加6%[69],毛竹林24%间伐1 a后生长季Q10增加9%[56],杉阔混交林35%和49%间伐5~6 a内Q10分别增加52%和34%[37],华北落叶松15%间伐3~4 a内生长季Q10增加47%[84]。但是也有结果相反的研究,例如杉阔混交林28%间伐1、2 a后Q10分别减少25%和6%,这和此研究中夏季降雨量减小有关。高强度采伐后Q10的变化并不统一,例如油松人工林40%间伐1 a后生长季Q10减少13%[69],杉阔混交林间伐68% 5~6 a内Q10减少1%[37],华北落叶松50%间伐3~4 a Q10增加15%[74]。这可能是因为高强度部分采伐后林窗面积增大,其他植物荫蔽林窗的能力受到当地气候等因素的影响。从以上研究中可以看出,一部分研究结果呈现轻度、中度部分采伐短时间内Q10增加的趋势,随着植被的恢复,Q10也逐渐接近对照林。但是也有部分研究受到其它因素例如降雨量变化的影响,结果与上述研究相反。

    总体上皆伐会破坏森林植被,造成植物根系大量死亡,土壤自养呼吸降低,同时皆伐将更多的枯枝落叶带入土壤,加上死亡的植物根系,土壤异养呼吸增加。两者共同作用决定了土壤总呼吸的变化,如果皆伐后对皆伐迹地进行清理,土壤总呼吸往往会下降,如果皆伐迹地内采伐剩余物较多,土壤总呼吸可能会先上升后下降。与皆伐相比,部分采伐对森林的干扰程度不同,一定强度的部分采伐可能会增加土壤总呼吸,随着部分采伐强度的增大,土壤呼吸的变化接近皆伐迹地内土壤呼吸的变化。

    森林土壤呼吸是陆地生态系统碳循环的重要组成部分,在全球气候变化中起着重要的作用。皆伐或部分采伐作为重要的人为干扰经营措施,对森林林冠、覆盖率、枝叶雨水截流、土壤温度、土壤湿度等土壤理化性质和土壤呼吸有着显著的影响。森林不同强度部分采伐对伐后植被不同恢复阶段土壤呼吸和土壤碳储量的影响尚不清晰,建议加强土壤呼吸组分对部分采伐强度响应的长期研究。除此之外,森林采伐和林下除灌、除草、定期打枝等其他经营措施的交互作用以及全球大气CO2浓度上升等全球变化因子对区域森林变化也应纳入考量中。

  • 图  1  样地设置

    Figure  1  Sample plots for shrub layer survey

    图  2  楠木优势林样地乔木层主要树种种间关联半矩阵图

    Figure  2  Semi-matrix of inter-specific correlations of the tree layer of plot A

    图  3  楠木优势林样地灌木层主要树种种间关联半矩阵图

    Figure  3  Semi-matrix of inter-specific correlations of the shrub layer of plot A

    图  4  楠木优势林样地草本层主要树种种间关联半矩阵图

    Figure  4  Semi-matrix of inter-specific correlations of the herb layer of plot A

    图  5  楠木伴生林样地乔木层主要树种种间关联半矩阵图

    Figure  5  Semi-matrix of inter-specific correlations of the tree layer of plot B

    图  6  楠木伴生林样地灌木层主要树种种间关联半矩阵图

    Figure  6  Semi-matrix of inter-specific correlations of the shrub layer of plot B

    图  7  楠木伴生林样地草本层主要树种种间关联半矩阵图

    Figure  7  Semi-matrix of inter-specific correlations of the herb layer of plot B

    表  1  2015和2019年绿荷塘林区A、B样地主要乔木物种及其重要值

    Table  1.   Dominant species and importance value of the tree layer of plot A and plot B in 2015 and 2019

    楠木优势林(样地A)楠木伴生林(样地B)
    编号物种2015年2019年2015年2019年
    重要值/
    %
    个体密度/
    (株·m−2)
    重要值/
    %
    个体密度/
    (株·m−2)
    重要值/
    %
    个体密度/
    (株·m−2)
    重要值/
    %
    个体密度/
    (株·m−2)
    1刨花润楠 Machilus pauhoi46.9816247.93161
    2紫楠 Phoebe sheareri22.8610422.68 98 1.69 8 1.75 8
    3秀丽锥 Castanopsis jucunda 8.64 24 8.12 22 2.92 23 2.92 20
    4甜槠 Castanopsis eyrei 3.59 9 3.48 816.6414517.14143
    5青冈 Cyclobalanopsis glauca 3.12 8 3.19 816.6718316.93170
    6红楠 Machilus thunbergii 2.38 5 2.43 5 5.83 50 6.05 50
    7黄檀 Dalbergia hupeana 2.06 4 1.59 3
    8薄叶润楠 Machilus leptophylla 2.65 7 2.70 7 8.51 90 9.05 85
    9樟树 Cinnamomum camphora 1.45 2 1.47 2
    10栾树 Koelreuteria paniculata 1.14 2 1.17 2
    11石栎 Lithocarpus glaber 1.03 1 1.05 116.4516516.18148
    12赤杨叶 Alniphyllum fortunei 5.21 45 4.56 38
    13花榈木 Ormosia henryi 1.01 5 1.05 5
    14冬青 Ilex chinensis 1.02 5 1.06 5
    15杉木 Cunninghamia lanceolata 9.7916510.13160
    16厚皮香 Ternstroemia gymnanthera 3.08 35 3.23 35
    17苦槠 Castanopsis sclerophylla 1.90 8 1.98 8
    18八角枫 Alangium chinense 1.00 5 1.03 5
    19老鼠矢 Symplocos stellaris 0.99 5 1.02 5
    20檫木 Sassafras tzumu 1.22 10 0.70 3
    下载: 导出CSV

    表  2  2015和2019年绿荷塘林区A、B样地灌木层物种及其重要值

    Table  2.   Species and importance value of the shrub layer of plot A and plot B in 2015 and 2019

    编号物种 重要值/% 编号物种重要值/%
    样地A样地B样地A样地B
    2015年2019年2015年2019年2015年2019年2015年2019年
    1菝葜 Smilax china 1.4519毛花连蕊茶 Camellia fraterna15.04
    2薄叶润楠 Machilus leptophylla10.9020刨花润楠 Machilus pauhoi 7.18 7.02
    3Camellia sinensis 1.6110.8421青冈 Cyclobalanopsis glauca13.29 1.3127.80
    4赤楠 Syzygium buxifolium 4.6522山矾 Symplocos sumuntia 7.03 2.44
    5赤杨叶 Alniphyllum fortunei 2.7523杉木 Cunninghamia lanceolata 4.16
    6豆腐柴 Premna microphylla 2.4724石斑木 Rhaphiolepis indica 1.36
    7杜茎山 Maesa japonica 6.7825石栎 Lithocarpus glaber 2.8913.33
    8格药柃 Eurya muricata25.59 1.8726甜槠 Castanopsis eyrei 6.80
    9枸杞 Lycium chinense 1.6627乌药 Lindera aggregata10.19 3.05
    10红楠 Machilus thunbergii 4.5028秀丽锥Castanopsis jucunda29.23 4.12 5.50 7.37
    11厚皮香 Ternstroemia gymnanthera 6.27 3.4029野桐 Mallotus japonicus 3.65 0.89
    12花榈木 Ormosia henryi 1.0630油茶 Camellia oleifera25.6010.05 5.50
    13黄檀 Dalbergia hupeana6.1131油桐 Vernicia fordii 0.89
    14檵木 Loropetalum chinense6.11 7.24 1.6132浙江楠 Phoebe chekiangensis13.69 4.05
    15荚蒾 Viburnum dilatatum 0.8933栀子 Gardenia jasminoides 4.12 3.03
    16矩形叶鼠刺 Itea oblonga 6.51 6.86 3.7034朱砂根 Ardisia crenata 4.38
    17老鸦糊 Callicarpa giraldii 1.2435紫楠 Phoebe sheareri12.4715.25
    18毛冬青 Ilex pubescens 1.19
    下载: 导出CSV

    表  3  2015和2019年绿荷塘林区A、B样地草本层物种及其重要值

    Table  3.   Species and importance value of the herb layer of plot A and plot B in 2015 and 2019

    编号物种 重要值/% 编号物种重要值/%
    样地A样地B样地A样地B
    2015年2019年2015年2019年2015年2019年2015年2019年
    1白结香 Edgeworthia albiflora 5.319鳞毛蕨 Dryopteris sp.22.11
    2薄叶润楠 Machilus leptophylla26.96 4.5010蔓赤车 Pellionia scabra 3.95
    3狗脊蕨 Woodwardia unigemmata25.8411刨花润楠 Machilus pauhoi46.0412.54
    4寒莓 Rubus buergeri 0.80 1.3731.2212三穗薹草Carex tristachya 5.0516.9714.26
    5红楠 Machilus thunbergii 1.03 5.9213细柄薯蓣Dioscorea tenuipes 1.09
    6Pteridium aquilinum var. latiusculum 5.3814.77 2.6035.3114鱼腥草Houttuynia cordata 0.95
    7紫萁 Osmunda japonica10.5215苎麻Boehmeria nivea16.9515.42
    8里白 Hicriopteris glauca 5.5116紫楠Phoebe sheareri 2.9222.02
    下载: 导出CSV

    表  4  绿荷塘林区A、B样地2015和2019年种间总体关联性

    Table  4.   Overall associations of plot A and plot B in 2015 and 2019

    样地层次年份方差比率检验统计量临界值结果
    楠木优势林(样地A)乔木层20151.6942.30[14.61, 37.65]显著正联结 
    20191.6942.25[14.61, 37.65]显著正联结 
    灌木层20150.45 4.05 [3.33, 16.92]不显著负联结
    20190.78 7.02 [3.33, 16.92]不显著负联结
    草本层20151.3035.18[16.15, 40.11]不显著正联结
    20190.22 5.98[16.15, 40.11]显著负联结 
    楠木伴生林(样地B)乔木层20151.1211.16 [3.94, 18.31]不显著正联结
    20190.99 9.88 [3.94, 18.31]不显著负联结
    灌木层20151.22 6.09 [1.15, 11.07]不显著正联结
    20190.41 2.05 [1.15, 11.07]不显著负联结
    草本层20150.8011.99 [7.26, 25.00]不显著负联结
    20190.24 3.57 [7.26, 25.00]显著负联结 
    下载: 导出CSV
  • [1] VENTER O, SANDERSON E W, MAGRACH A, et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation [J]. Nat Commun, 2016, 7(1): 1 − 11.
    [2] 刘世荣, 马姜明, 缪宁. 中国天然林保护、生态恢复与可持续经营的理论与技术[J]. 生态学报, 2015, 35(1): 212 − 218.

    LIU Shirong, MA Jiangming, MIAO Ning. Achievements in natural forest protection, ecological restoration, and sustainable management in China [J]. Acta Ecol Sin, 2015, 35(1): 212 − 218.
    [3] ROXBURGH S H, CHESSON P. A new method for detecting species associations with spatially autocorrelated data [J]. Ecology, 1998, 79(6): 2180 − 2192.
    [4] 周先叶, 王伯荪, 李鸣光, 等. 广东黑石顶自然保护区森林次生演替过程中群落的种间联结性分析[J]. 植物生态学报, 2000, 24(3): 332 − 339.

    ZHOU Xianye, WANG Bosun, LI Mingguang, et al. An analysis of in terspecific associanons in secondary succession forest communities in Heishiding Natural Reserve Guamgdong Province [J]. Acta Phytoecol Sin, 2000, 24(3): 332 − 339.
    [5] 彭舜磊, 闫小婷, 齐光, 等. 伏牛山栓皮栎群落优势种群种间关联动态分析[J]. 森林与环境学报, 2018, 38(3): 326 − 333.

    PENG Shunlei, YAN Xiaoting, QI Guang, et al. Interspecific association dynamic changes among the dominant species of Quercus variabilis community in Funiushan National Nature Reserve [J]. J For Environ, 2018, 38(3): 326 − 333.
    [6] 王乃江, 张文辉, 陆元昌, 等. 陕西子午岭森林植物群落种间联结性[J]. 生态学报, 2010, 30(1): 67 − 78.

    WANG Naijiang, ZHANG Wenhui, LU Yuanchang, et al. Interspecific association among the plants communities in the forest at Ziwuling Area in Shaanxi Province [J]. Acta Ecol Sin, 2010, 30(1): 67 − 78.
    [7] 叶森土, 金超, 吴初平, 等. 浙江松阳县生态公益林群落分类排序及优势种种间关联分析[J]. 浙江农林大学学报, 2020, 37(4): 693 − 701.

    YE Sentu, JIN Chao, WU Chuping, et al. Classification, ordination and correlation analysis of dominant species of ecological non-commercial forests in Songyang, Zhejiang [J]. J Zhejiang A&F Univ, 2020, 37(4): 693 − 701.
    [8] 洪利兴, 杜国坚. 杭州市郊黄梅坞林区天然紫楠林的群落结构与生长规律研究[J]. 浙江林业科技, 1989, 9(4): 22 − 33.

    HONG Lixing, DU Guojian. The structure of the natural forest of Phoebe sheareri in Wangmeiwu forest district of Hangzhou suburb and it’s law of growth [J]. J Zhejiang For Sci Technol, 1989, 9(4): 22 − 33.
    [9] 高浩杰, 高平仕, 王国明. 舟山群岛红楠林种内和种间竞争研究[J]. 植物研究, 2017, 37(3): 440 − 446.

    GAO Haojie, GAO Pingshi, WANG Guoming. Intraspecific and interspecific competition of Machilus thunbergii forest in Zhoushan Islands [J]. Bull Bot Res, 2017, 37(3): 440 − 446.
    [10] SCHLUTER D. A variance test for detecting species associations, with some example applications [J]. Ecology, 1984, 65(3): 998 − 1005.
    [11] 张金屯. 数量生态学[M]. 北京: 科学出版社, 2004.
    [12] 张倩媚, 陈北光, 周国逸. 鼎湖山主要林型优势树种种间联结性的计算方法研究[J]. 华南农业大学学报, 2006, 27(1): 79 − 83.

    ZHANG Qianmei, CHEN Beiguang, ZHOU Guoyi, et al. Interspecific association of the dominant species in two typical communities in Dinghushan, South China [J]. J South China Agric Univ, 2006, 27(1): 79 − 83.
    [13] 郭志华, 卓正大, 陈洁, 等. 庐山常绿阔叶、落叶阔叶混交林乔木种群种间联结性研究[J]. 植物生态学报, 1997, 21(5): 3 − 41.

    GUO Zhihua, ZHUO Zhengda, CHEN Jie, et al. Interspecific association of trees in mixed evergreen and deciduous broadleaved forest in Lushan Mountain [J]. Acta Phytoecol Sin, 1997, 21(5): 3 − 41.
    [14] 王伯荪, 彭少麟. 南亚热带常绿阔叶林种间联结测定技术研究(Ⅰ)种间联结测式的探讨与修正[J]. 植物生态学与地植物学丛刊, 1985, 9(4): 274 − 285.

    WANG Bosun, PENG Shaolin. Studies on the measuring techniques of interspecific association of lower-subtropical evergreen-broadleaved forests (Ⅰ) the exploration and the revision on the measuring formulas of interspecific association [J]. Acta Phytoecol et Geobotan Sin, 1985, 9(4): 274 − 285.
    [15] PULLIAM R K R. Island biogeography: effect of geographical isolation on species composition [J]. Ecology, 1993, 74(4): 977 − 981.
    [16] 易敏, 赖猛, 张露, 等. 人工林刨花楠木材主要特性的径向变异及其对气象因子的响应[J]. 应用生态学报, 2018, 29(11): 3677 − 3684.

    YI Min, LAI Meng, ZHANG Lu, et al. Radical variation of main wood properties and its relationship to climatic factors of Machilus pauhoi plantation [J]. Chin J Appl Ecol, 2018, 29(11): 3677 − 3684.
    [17] 任晴, 袁位高, 吴初平, 等. 浙江省红楠生境地群落数量分类和环境解析[J]. 生态学报, 2020, 40(15): 1 − 11.

    REN Qing, YUAN Weigao, WU Chuping, et al. Community quantitative classification and environmental analysis of the Machilus thunbergii habitat in Zhejiang Province [J]. Acta Ecol Sin, 2020, 40(15): 1 − 11.
    [18] 陈模芳, 韦小丽, 张怡. 紫楠实生幼苗的光合生理特性[J]. 贵州农业科学, 2013, 41(10): 55 − 58.

    CHEN Mofang, WEI Xiaoli, ZHANG Yi. Study on photosynthetic physiology characteristics of young Phoebe sheareri seedling [J]. Guizhou Agric Sci, 2013, 41(10): 55 − 58.
    [19] 刘全勇, 卢锟, 李泽, 等. 水分胁迫对刨花润楠幼苗生长及光合特性的影响[J]. 中南林业科技大学学报, 2016, 36(9): 29 − 35.

    LIU Quanyong, LU Kun, LI Ze, et al. Effects of water stress on photosynthetic physiological characteristics of Machilus pauhoi seedlings [J]. J Cent South Univ For Technol, 2016, 36(9): 29 − 35.
    [20] CHAI Zongzheng, SUN Caili, WANG Dexiang, et al. Interspecific associations of dominant tree populations in a virgin old-growth oak forest in the Qinling Mountains, China[J]. Bot Stud, 2016, 57(1): 23. doi. 10.1186/s40529-016-0139-5.
    [21] 石福习, 赵成章, 高福元, 等. 祁连山北坡自然恢复林地灌木层物种多样性及种间关联动态[J]. 生态学杂志, 2012, 31(9): 2177 − 2183.

    SHI Fuxi, ZHAO Chengzhang, GAO Fuyuan, et al. Dynamics of species diversity and inter-specific association in shrub layer of naturally restored woodland on northern slope of Qilian Moutains [J]. Chin J Ecol, 2012, 31(9): 2177 − 2183.
    [22] 娄彦景, 赵魁义. 三江平原毛苔草群落近30年演替过程中的种间联结性分析[J]. 生态学杂志, 2008, 27(4): 509 − 513.

    LOU Yanjing, ZHAO Kuiyi. Analysis of inter-specific association of Carex lasiocarpa community in recent 30-year succession in Sanjiang Plain [J]. Chin J Ecol, 2008, 27(4): 509 − 513.
  • [1] 李琨, 胡兆贵, 张茂付, 甘燕玲, 李苏春, 刘芳, 林海萍.  巾子峰国家森林公园常绿阔叶林木本植物优势种的生态位和种间联结性 . 浙江农林大学学报, 2025, 42(1): 45-54. doi: 10.11833/j.issn.2095-0756.20240307
    [2] 黄浩, 吴文骁, 吕江波, 徐永宏, 范建忠, 吴家森.  浙江建德楠木林优势树种生态位及种间联结性 . 浙江农林大学学报, 2025, 42(2): 329-338. doi: 10.11833/j.issn.2095-0756.20240378
    [3] 玉宝.  兴安落叶松天然林自然整枝特征及其影响因子 . 浙江农林大学学报, 2023, 40(1): 209-216. doi: 10.11833/j.issn.2095-0756.20220220
    [4] 金亚宁, 管增艳, 石松林, 许倩, 贾龙玉, 曹吉鑫, 陈圣宾, 李景吉, 王国严, 彭培好.  川西云杉人工林与天然林群落空间分布格局及种间关联性 . 浙江农林大学学报, 2022, 39(3): 495-504. doi: 10.11833/j.issn.2095-0756.20210433
    [5] 詹小豪, 王旭航, 叶诺楠, 吴初平, 袁位高, 伊力塔.  浙江建德典型天然次生林群落主要乔木树种空间分布格局及种间关系 . 浙江农林大学学报, 2021, 38(4): 659-670. doi: 10.11833/j.issn.2095-0756.20200586
    [6] 胡胜科, 刘畅, 魏普杰, 李梦希, 胡蝶.  湖北省远安县野生楠木群落特征 . 浙江农林大学学报, 2020, 37(4): 702-709. doi: 10.11833/j.issn.2095-0756.20190428
    [7] 叶森土, 金超, 吴初平, 杨堂亮, 江波, 袁位高, 黄玉洁, 焦洁洁, 孙杰杰.  浙江松阳县生态公益林群落分类排序及优势种种间关联分析 . 浙江农林大学学报, 2020, 37(4): 693-701. doi: 10.11833/j.issn.2095-0756.20190514
    [8] 汪洋, 闵水发, 江雄波, 郑德国, 宋丛文, 章定青, 付秋生, 陈文学.  红椿天然林优树选择 . 浙江农林大学学报, 2016, 33(5): 841-848. doi: 10.11833/j.issn.2095-0756.2016.05.016
    [9] 商侃侃.  浙江天目山孑遗植物群落主要种群的种间关系 . 浙江农林大学学报, 2013, 30(2): 206-214. doi: 10.11833/j.issn.2095-0756.2013.02.008
    [10] 王群, 张金池, 田月亮, 叶立新, 刘胜龙.  浙江凤阳山天然混交林林分空间结构分析 . 浙江农林大学学报, 2012, 29(6): 875-882. doi: 10.11833/j.issn.2095-0756.2012.06.011
    [11] 杨春玉, 刘绍飞, 喻理飞.  喀斯特森林恢复过程中优势乔木树种种间联结性分析 . 浙江农林大学学报, 2010, 27(1): 44-50. doi: 10.11833/j.issn.2095-0756.2010.01.007
    [12] 哀建国, 翁国杭, 董蔚.  石垟森林公园常绿阔叶林主要种群的种间联结性 . 浙江农林大学学报, 2008, 25(3): 324-330.
    [13] 陶正明, 顾雪萍, 钱奇霞, 钟全林.  江西省吉水县天然林区域类型划分 . 浙江农林大学学报, 2005, 22(2): 144-150.
    [14] 刘春华.  福建青冈天然林和人工林群落特征及生长的比较 . 浙江农林大学学报, 2005, 22(1): 56-60.
    [15] 彭建松, 柴勇, 孟广涛, 方向京, 李贵祥, 和丽萍.  云南金沙江流域云南松天然林林隙特征 . 浙江农林大学学报, 2005, 22(1): 50-55.
    [16] 余树全, 李翠环, 姜礼元, 谢吉全.  千岛湖天然次生林群落生态学研究 . 浙江农林大学学报, 2002, 19(2): 138-142.
    [17] 姜培坤, 钱新标, 余树全, 李生荣, 姜维瑞, 姜礼元.  千岛湖地区天然次生林地枯落物与土壤状况的调查分析 . 浙江农林大学学报, 1999, 16(3): 260-264.
    [18] 林金国, 许春锦, 陈慈禄, 张文富.  格氏栲人工林和天然林木材物理力学性质的比较 . 浙江农林大学学报, 1999, 16(4): 397-400.
    [19] 陈美高.  天然米槠林皆伐炼山后栽人工林植物区系组成变化* . 浙江农林大学学报, 1997, 14(2): 147-150.
    [20] 林开敏, 林国清, 张沈龙, 俞立烜.  天然阔叶林与杉木连栽林地土壤肥力的差异* . 浙江农林大学学报, 1995, 12(2): 221-225.
  • 期刊类型引用(1)

    1. 吴宁, 肖瑞, 许艳萍, 杜官本, 李晓平, 孙飞. 生长期和植株性别对工业大麻秆“三大素”的影响. 浙江农林大学学报. 2015(05): 776-782 . 本站查看

    其他类型引用(0)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200565

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/4/671

图(7) / 表(4)
计量
  • 文章访问数:  1484
  • HTML全文浏览量:  283
  • PDF下载量:  62
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-09-01
  • 修回日期:  2021-03-25
  • 网络出版日期:  2021-08-09
  • 刊出日期:  2021-08-20

浙江建德楠木天然林群落种间联结动态

doi: 10.11833/j.issn.2095-0756.20200565
    基金项目:  浙江省省院合作林业科技项目(2018SY08)
    作者简介:

    吴丹婷(ORCID: 0000-0002-2250-5179),从事森林生态学研究。E-mail: 649757937@qq.com

    通信作者: 袁位高(ORCID: 0000-0002-5794-1384),研究员,从事森林生态与经营研究。E-mail: zfaywg@126.com
  • 中图分类号: S718.5

摘要:   目的  以浙江省建德市寿昌林场绿荷塘林区内楠木优势程度不同的天然林作为研究对象,进行种间关系的分析,揭示楠木在天然林群落发育和演替过程中种间关联性动态变化规律。  方法  分别在2015和2019年,对2个楠木优势程度不同的天然林样地进行调查,基于2×2联列表,通过χ2检验、联结系数、共同出现百分率,研究调查样地内楠木在不同林分条件下,乔木层、灌木层、草本层的种间联结性。  结果  2015和2019年,天然楠木优势林样地乔木层总体种间关联性均呈显著正联结,灌木层和草本层种间总体关联性趋向于负联结;天然楠木伴生林乔木层、灌木层、草本层种间总体关联性趋向于负联结。在这2种天然林中,楠木在乔木层与其他树种之间的联结相对独立,在灌木层和草本层的种间竞争较为激烈,且均有楠木在垂直方向上表现出林分断层现象。  结论  在天然林中,将楠木作为目标树种进行管理与保护时,可采用间伐、择伐等抚育方法,保留与楠木有显著正关联的树种,伐除负关联的树种,缓和种间矛盾;疏伐上层高大乔木,增加林窗,以满足林分更新层对光照的需求,保护其更新层,以形成完整的垂直结构。图7表4参22

English Abstract

朱文见, 张慧, 王懿祥. 采伐对森林土壤呼吸影响的研究进展[J]. 浙江农林大学学报, 2021, 38(5): 1000-1011. DOI: 10.11833/j.issn.2095-0756.20210365
引用本文: 吴丹婷, 吴初平, 盛卫星, 等. 浙江建德楠木天然林群落种间联结动态[J]. 浙江农林大学学报, 2021, 38(4): 671-681. DOI: 10.11833/j.issn.2095-0756.20200565
ZHU Wenjian, ZHANG Hui, WANG Yixiang. Research progress on effects of cutting on forest soil respiration[J]. Journal of Zhejiang A&F University, 2021, 38(5): 1000-1011. DOI: 10.11833/j.issn.2095-0756.20210365
Citation: WU Danting, WU Chuping, SHENG Weixing, et al. Interspecific association dynamics of Nanmu natural forest in Jiande, Zhejiang Province[J]. Journal of Zhejiang A&F University, 2021, 38(4): 671-681. DOI: 10.11833/j.issn.2095-0756.20200565
  • 楠木是一类珍贵用材树种,包括樟科Lauraceae润楠属Machilus和楠属Phoebe植物及一些近缘类群,部分种类为国家二级重点保护野生植物。长期的人为破坏[1],以及其自身天然更新不良等因素,中国楠木数量锐减。楠木零星散生于各类天然林,少有成片分布。天然林保护是在一定的生命周期和范畴内,为使资源继续顺应生态循环生长,同时能够保持资源价值不断提高的情况下,对各种森林资源进行持续的利用[2]。种间联结是植物群落重要的数量和结构特征之一,群落的种间关系能反映群落的稳定性。种间关系一般被划分为正联结、负联结和无关联。正联结是由于物种选择相同的生境或者2种物种相互依赖形成的,负联结是由于2种物种存在资源上的竞争或者根系中存在物理或化学因素的相互影响而形成的[3]。随着演替,森林群落结构趋于复杂和稳定[4],群落内物种种间关系越来越复杂,生态位分化越合理,种间关系趋于正联结[5]。但森林群落的演替并不是一味向着正关联的方向进行的[6]。对群落种间联结的相关研究展现的多是种间竞争的结果或群落的现状[7],关于群落种间联结的动态报道较少。目前,有关楠木的相关研究多在生态生理特征方面,如木材、育苗、叶片特征,而关于群落结构、种间关系等的相关研究较多的针对红楠Machilus thunbergii和紫楠Phoebe sheareri群落[8-9],缺少楠木天然林群落动态特征和种间关系研究。浙江省建德市寿昌林场绿荷塘林区内存有亚洲最大的天然楠木林,其主要种类有红楠、紫楠、刨花润楠Machilus pauhoi、薄叶润楠Machilus leptophylla等,是研究天然林群落楠木发育和演替的理想场所。本研究分别以楠木作为优势树种和伴生树种的天然林样地作为对象,对调查样地内的楠木在不同林分条件下的乔木层、灌木层、草本层种间联结性进行了定量分析,揭示它们在天然林群落发育和演替过程中种间关联性动态变化规律,为楠木天然林的科学管理提供理论依据。

    • 研究区位于浙江省建德市寿昌林场绿荷塘林区内(29°25′45″~29°27′01″N,119°08′45″~119°11′0″E),属千里岗山脉,地貌为低山丘陵,坡度为25°~45°,海拔200~700 m,顶峰海拔804 m。该林区面积约450 hm2,分布约370 hm2的天然常绿阔叶林,有木本植物30科300余种。该地区属亚热带季风气候,温暖湿润,四季分明,雨量充足。年平均气温为17.6 ℃,极端最低温−13.9 ℃,极端最高温42.2 ℃。年降水量1 700 mm,集中在4−6月,平均相对湿度为82%,年日照时数为1 762 h,全年无霜期265 d。土壤以黄壤为主,局部为侵蚀性红壤。土层厚度30~80 cm,呈酸性。

      图1所示:在以楠木为优势种的林内建立100 m×100 m样地(A),并在相距1.35 km生境相似的地区,在以楠木为伴生种的林内建立样地(B),由于场地限制,样地面积为100 m×40 m。2013年对楠木优势林(样地A)进行了1次割灌处理,对非目标树种的灌木进行伐除。对楠木伴生林样地B未采取任何经营管理措施。

      图  1  样地设置

      Figure 1.  Sample plots for shrub layer survey

      参照中国林业科学研究院多功能森林经营样地监测方法开展样地植被调查工作。将每个样地划分为20 m×20 m的乔木样方,标定所有样方内胸径≥5.0 cm的乔木。每个样地按照图1的方法在涂黑的乔木样方右下角设置1个5 m×5 m 的灌木层小样方,记录胸径<5.0 cm,树高≥1.5 m 的木本植物,记录树种名称、胸径、树高。在每个灌木层小样方沿对角线设置3个1 m×1 m的草本层小样方,对树高<1.5 m的幼苗和草本植物进行调查,调查指标包括植物种类、盖度、丛(株)数、平均高度等。为了方便计算,将楠木幼树划分至灌木层,幼苗划分至草本层。

      利用2015和2019年的2次群落调查数据,分析群落乔木层、灌木层、草本层主要物种的种间关系。

    • 采用SCHLUTER[10]提出的方差比率法($ V_{\rm{R}} $)检验群落物种间的总体关联性。

      $$ {V}_{{\rm{R}}}={S}_{{\rm{w}}}^{2}/{\delta }_{{\rm{w}}}^{2}\text{。} $$ (1)

      式(1)中:VR为方差比率;总样方物种数方差$S_{\rm{w}}^2 = \dfrac{1}{N}\displaystyle\sum\limits_{j = 1}^N {{{({T_j} - t)}^2}}$$ t=\left({T}_{1}+{T}_{2}+{ \cdots +T}_{N}\right)/N $$ N $为总样方数,t为样方物种数平均值,$ {T}_{j} $为第$ j $个样方物种数;总物种频度方差${\delta }_{{\rm{w}}}^{2}=\displaystyle\sum\limits_{i=1}^{S}{P}_{i}(1-{P}_{i})$$ S $为总的物种数,$ {P}_{i} $为第$ i $个物种出现的样方数($ {n}_{i} $)占总样方数($ N $)的比例,$ {P}_{i}={n}_{i}/N $$ {n}_{i} $为物种$ i $出现的样方数。在独立零假设下,VR期望值为1,表示群落种间整体无关联,VR>1表示整体正联结,VR<1表示整体负联结。采用统计量$ \omega $($ \omega =V_{\rm{R}} N $)检验$ V_{\rm{R}} $偏离1的显著性,当${\textit{χ}}_{0.95}^{2}\left(N\right) \text{<} \omega \text{<}$$ {\textit{χ}}_{0.05}^{2}\left(N\right) $时,认为整体关联不显著[11]

    • 根据物种在样方内是否出现的二元数据矩阵作为原始数据,以χ2检验为基础,结合联结系数(AC)和共同出现百分率(PC)对群落进行种间联结分析。$ a $为2个物种都出现的样方数,$ b $$ c $为只出现1个物种的样方数,$ d $为2个物种都不出现的样方数,在计算χ2及联结系数时,为避免$ a $$ c $$ d $为0,导致χ2及联结系数无法比较关联程度的情况,把$ a $$ c $$ d $为0的数值都加权为1[12]χ2统计量能比较客观准确地判断种对联结的显著性,而共同出现百分率和联结系数却能体现出χ2检验不显著种对的联结性及其大小,同时共同出现百分率还能较准确地反映物种间正联结性的强弱[13]

    • 采用YATES连续矫正公式[14]

      $$ {\textit{χ} }^{2}=\frac{({\left|ad-bc\right|-0.5n)}^{2}n}{(a+b)(a+c)(b+d)(c+d)}\text{。} $$ (2)

      χ2$ {\text{<}} 3.841(P {\text{>}} 0.05) $表示种对间无联结性,2种间基本独立;若3.841≤χ2≤6.635(0.01≤P≤0.05) ,表示种对间联结性显著;若χ2$ {\text{>}} 6.635(P{\text{<}} 0.01) $,表示种对间联结性极显著。

    • $${\text{若}}ad {\text{≥}} bc,\;{\text{则}}{A_{\rm{C}}} = \frac{{ad - bc}}{{(a + d)(b + d)}}\text{;}$$ (3)
      $${\text{若}}bc {\text{>}} ad{\text{且}}d {\text{≥}} a,\;{\text{则}}{A_{\rm{C}}} = \frac{{ad - bc}}{{(a + b)(a + c)}}\text{;}$$ (4)
      $${\text{若}}bc {\text{>}} ad{\text{且}}d {\text{<}} a,\;{\text{则}}{A_{\rm{C}}} = \frac{{ad - bc}}{{(c + d)(b + d)}}\text{。}$$ (5)

      式(3)~(5)中:AC为联结系数,其值域为[−1, 1]。AC越接近1,物种间正关联越强;越接近−1;物种间负关联越强;为AC=0,则表明物种间完全独立。

    • $$ {P}_{{\rm{C}}}=\frac{a}{a+b+c}\text{。} $$ (6)

      式(6)中:PC为共同出现百分率,表示物种间的联结程度[15],可以避免联结系数受d影响太大而造成偏差。其值域为[0, 1],PC=0时,表明种对无关联;PC=1时,表明种对关联程度最紧密。

    • 2015和2019年,楠木优势林样地的乔木层均记录到18个种,隶属8科15属,无物种退出或进入;2015年灌木层记录到7个种,隶属5科7属,2019年记录到11个种,隶属8科10属,2个物种退出灌木层,6个物种进入灌木层;2015年草本层记录到12个种,隶属9科11属,2019年记录到5个种,隶属4科5属,7个物种退出草本层。

      2015年楠木伴生林样地的乔木层记录到27个种,隶属18科23属,2019年记录到25个种,隶属16科21属,2个物种退出乔木层;2015年灌木层记录到25个种,隶属17科24属,2019年记录到14个种,隶属为7科12属,17个物种退出灌木层,6个物种进入灌木层;2015年草本层记录到6个种,隶属6科6属,2019年记录到5个种,隶属4科4属,3个物种退出草本层,2个物种进入草本层。

    • 采用重要值[16]筛选群落乔木层的主要物种,只要某物种在2次群落调查中出现过1次,重要值≥1.0%,则把它认作群落中的主要物种。由表1可见:样地A有11个主要物种,2015年楠木个体占总个体数的84.76%,2019年占85.49%。样地B有16个主要物种,2015年楠木个体数占15.61%,2019年占16.10%。

      表 1  2015和2019年绿荷塘林区A、B样地主要乔木物种及其重要值

      Table 1.  Dominant species and importance value of the tree layer of plot A and plot B in 2015 and 2019

      楠木优势林(样地A)楠木伴生林(样地B)
      编号物种2015年2019年2015年2019年
      重要值/
      %
      个体密度/
      (株·m−2)
      重要值/
      %
      个体密度/
      (株·m−2)
      重要值/
      %
      个体密度/
      (株·m−2)
      重要值/
      %
      个体密度/
      (株·m−2)
      1刨花润楠 Machilus pauhoi46.9816247.93161
      2紫楠 Phoebe sheareri22.8610422.68 98 1.69 8 1.75 8
      3秀丽锥 Castanopsis jucunda 8.64 24 8.12 22 2.92 23 2.92 20
      4甜槠 Castanopsis eyrei 3.59 9 3.48 816.6414517.14143
      5青冈 Cyclobalanopsis glauca 3.12 8 3.19 816.6718316.93170
      6红楠 Machilus thunbergii 2.38 5 2.43 5 5.83 50 6.05 50
      7黄檀 Dalbergia hupeana 2.06 4 1.59 3
      8薄叶润楠 Machilus leptophylla 2.65 7 2.70 7 8.51 90 9.05 85
      9樟树 Cinnamomum camphora 1.45 2 1.47 2
      10栾树 Koelreuteria paniculata 1.14 2 1.17 2
      11石栎 Lithocarpus glaber 1.03 1 1.05 116.4516516.18148
      12赤杨叶 Alniphyllum fortunei 5.21 45 4.56 38
      13花榈木 Ormosia henryi 1.01 5 1.05 5
      14冬青 Ilex chinensis 1.02 5 1.06 5
      15杉木 Cunninghamia lanceolata 9.7916510.13160
      16厚皮香 Ternstroemia gymnanthera 3.08 35 3.23 35
      17苦槠 Castanopsis sclerophylla 1.90 8 1.98 8
      18八角枫 Alangium chinense 1.00 5 1.03 5
      19老鼠矢 Symplocos stellaris 0.99 5 1.02 5
      20檫木 Sassafras tzumu 1.22 10 0.70 3
    • 表2可见:样地A,2015年灌木层有7个树种,楠木个体数量占比16.13%,2019年有11个树种,楠木个体数量占比7.14%;样地B,2015年灌木层有25个物种,楠木个体数量占比18.35%,2019年有14个物种,楠木个体数量占比0.91%。

      表 2  2015和2019年绿荷塘林区A、B样地灌木层物种及其重要值

      Table 2.  Species and importance value of the shrub layer of plot A and plot B in 2015 and 2019

      编号物种 重要值/% 编号物种重要值/%
      样地A样地B样地A样地B
      2015年2019年2015年2019年2015年2019年2015年2019年
      1菝葜 Smilax china 1.4519毛花连蕊茶 Camellia fraterna15.04
      2薄叶润楠 Machilus leptophylla10.9020刨花润楠 Machilus pauhoi 7.18 7.02
      3Camellia sinensis 1.6110.8421青冈 Cyclobalanopsis glauca13.29 1.3127.80
      4赤楠 Syzygium buxifolium 4.6522山矾 Symplocos sumuntia 7.03 2.44
      5赤杨叶 Alniphyllum fortunei 2.7523杉木 Cunninghamia lanceolata 4.16
      6豆腐柴 Premna microphylla 2.4724石斑木 Rhaphiolepis indica 1.36
      7杜茎山 Maesa japonica 6.7825石栎 Lithocarpus glaber 2.8913.33
      8格药柃 Eurya muricata25.59 1.8726甜槠 Castanopsis eyrei 6.80
      9枸杞 Lycium chinense 1.6627乌药 Lindera aggregata10.19 3.05
      10红楠 Machilus thunbergii 4.5028秀丽锥Castanopsis jucunda29.23 4.12 5.50 7.37
      11厚皮香 Ternstroemia gymnanthera 6.27 3.4029野桐 Mallotus japonicus 3.65 0.89
      12花榈木 Ormosia henryi 1.0630油茶 Camellia oleifera25.6010.05 5.50
      13黄檀 Dalbergia hupeana6.1131油桐 Vernicia fordii 0.89
      14檵木 Loropetalum chinense6.11 7.24 1.6132浙江楠 Phoebe chekiangensis13.69 4.05
      15荚蒾 Viburnum dilatatum 0.8933栀子 Gardenia jasminoides 4.12 3.03
      16矩形叶鼠刺 Itea oblonga 6.51 6.86 3.7034朱砂根 Ardisia crenata 4.38
      17老鸦糊 Callicarpa giraldii 1.2435紫楠 Phoebe sheareri12.4715.25
      18毛冬青 Ilex pubescens 1.19
    • 表3可见:样地A,2015年草本层有12个物种,楠木个体数量占比1.23%;2019年有5个物种,楠木占比29.58%;样地B,2015年草本层有6个物种,楠木个体数量占比21.28%;2019年有5个物种,楠木占比5.54%。

      表 3  2015和2019年绿荷塘林区A、B样地草本层物种及其重要值

      Table 3.  Species and importance value of the herb layer of plot A and plot B in 2015 and 2019

      编号物种 重要值/% 编号物种重要值/%
      样地A样地B样地A样地B
      2015年2019年2015年2019年2015年2019年2015年2019年
      1白结香 Edgeworthia albiflora 5.319鳞毛蕨 Dryopteris sp.22.11
      2薄叶润楠 Machilus leptophylla26.96 4.5010蔓赤车 Pellionia scabra 3.95
      3狗脊蕨 Woodwardia unigemmata25.8411刨花润楠 Machilus pauhoi46.0412.54
      4寒莓 Rubus buergeri 0.80 1.3731.2212三穗薹草Carex tristachya 5.0516.9714.26
      5红楠 Machilus thunbergii 1.03 5.9213细柄薯蓣Dioscorea tenuipes 1.09
      6Pteridium aquilinum var. latiusculum 5.3814.77 2.6035.3114鱼腥草Houttuynia cordata 0.95
      7紫萁 Osmunda japonica10.5215苎麻Boehmeria nivea16.9515.42
      8里白 Hicriopteris glauca 5.5116紫楠Phoebe sheareri 2.9222.02
    • 根据表4可知:2015和2019年,楠木优势林样地乔木层种间总体关联性呈显著正联结;灌木层2015和2019年种间总体均呈不显著负联结;草本层2015年呈不显著正联结,2019年呈显著负联结,种间关系由正转负。说明乔木层物种结构相对稳定,灌木层种间关系松散,草本层结构遭到破坏。楠木伴生林样地乔木层2015年种间总体关联性呈不显著正联结,2019年呈不显著负联结;灌木层2015年种间呈不显著正联结,2019年呈不显著负联结;草本层2015呈不显著负联结,2019年呈显著负联结。乔木层和灌木层种间关系由正转负,说明群落稳定性遭到破坏;草本层种间关系松散,结构更加不稳定。

      表 4  绿荷塘林区A、B样地2015和2019年种间总体关联性

      Table 4.  Overall associations of plot A and plot B in 2015 and 2019

      样地层次年份方差比率检验统计量临界值结果
      楠木优势林(样地A)乔木层20151.6942.30[14.61, 37.65]显著正联结 
      20191.6942.25[14.61, 37.65]显著正联结 
      灌木层20150.45 4.05 [3.33, 16.92]不显著负联结
      20190.78 7.02 [3.33, 16.92]不显著负联结
      草本层20151.3035.18[16.15, 40.11]不显著正联结
      20190.22 5.98[16.15, 40.11]显著负联结 
      楠木伴生林(样地B)乔木层20151.1211.16 [3.94, 18.31]不显著正联结
      20190.99 9.88 [3.94, 18.31]不显著负联结
      灌木层20151.22 6.09 [1.15, 11.07]不显著正联结
      20190.41 2.05 [1.15, 11.07]不显著负联结
      草本层20150.8011.99 [7.26, 25.00]不显著负联结
      20190.24 3.57 [7.26, 25.00]显著负联结 
    • 图2可知:2015和2019年无主要树种退出乔木层,11个主要树种组成55个种对。χ2检验结果显示:2015年55个种对均表现为正关联,2019年55个种对均表现为不显著正关联。联结系数($ A_{\rm{C}} $)结果显示:正联结种对减少8对,负联结种对减少7对。共同出现百分率($ P_{\rm{C}} $)结果显示:2015和2019年,均有2个种对表现为极显著关联,1个种对表现为显著关联。可见,2015和2019年,乔木层中刨花润楠与其他树种负关联增强;红楠与甜槠的正联结减弱,与黄檀、紫楠正联结增强;薄叶润楠与乔木层其他树种的关联性相对稳定;紫楠与其他树种的正负关联比增大,与红楠、青冈、樟树正关联增强。

      图  2  楠木优势林样地乔木层主要树种种间关联半矩阵图

      Figure 2.  Semi-matrix of inter-specific correlations of the tree layer of plot A

      图3显示:灌木层2015年由7个主要树种组成21个种对,2019年由11个主要树种组成55个种对。χ2检验结果显示,2015年21个种对均呈不显著正关联,2019年55个种对均呈不显著正关联。联结系数结果中,2015年,11个种对呈显著正关联;1个种对呈显著负联结。2019年,8个种对呈极显著正关联,16个种对呈显著正关联;1个种对呈显著负关联。共同出现百分率结果显示,2015和2019年,均有1个种对呈不显著关联,其余种对呈无关联。以上结果表明:2015和2019年,灌木层的楠木主要为刨花润楠和紫楠。刨花润楠与其他灌木树种均表现为正关联,其中与檵木、秀丽锥的正联结加强;紫楠与其他灌木树种正关联性加强,但与檵木的联结性由正转负。

      图  3  楠木优势林样地灌木层主要树种种间关联半矩阵图

      Figure 3.  Semi-matrix of inter-specific correlations of the shrub layer of plot A

      图4可知:草本层中,2015年由12个主要树种组成66个种对,2019年由5个主要树种组成10个种对。χ2检验结果显示:2015年3个种对呈显著正关联,2019年10个种对均呈不显著正关联。联结系数结果中:2015年,13个种对呈显著正关联,18个种对呈显著负关联;2019年,5个种对呈显著正关联,3个呈显著负联结。共同出现百分率结果显示:2015年,2个种对呈极显著关联,1个种对呈显著关联;2019年,10个种对均呈不显著正关联。以上结果表明:2015−2019年,草本层的物种变化较大,2015年主要的楠木树种有红楠、刨花润楠、紫楠,2019年红楠退出草本层。刨花润楠与大部分草本层物种呈负联结,与苎麻、紫楠的负联结增强。紫楠与刨花润楠的负联结加强,与蕨和苎麻的正联结相对稳定。

      图  4  楠木优势林样地草本层主要树种种间关联半矩阵图

      Figure 4.  Semi-matrix of inter-specific correlations of the herb layer of plot A

    • 根据图5:2015和2019年,乔木层无主要树种退出,16个主要树种组成120个种对。χ2检验结果显示:2015年,115个种对呈不显著正关联,5个种对呈无关联;2019年,105个种对均呈不显著正关联,15个种对呈无关联。联结系数结果显示:正联结种对6对,负联结种对为44对。共同出现百分率结果显示:2015年,20个种对呈极显著关联,11个种对呈显著正关联;2019年,20个种对呈极显著关联,13个种对呈显著关联。可见,2015和2019年,乔木层中,红楠与其他树种之间的正负关联比大于1,且关联相对稳定;紫楠与其他树种之间的正负关联比增大;薄叶润楠与其他树种的正负关联比2015年大于1,2019年小于1,与秀丽锥、甜槠、老鼠矢、苦槠、花榈木、八角枫的负关联增强。

      图  5  楠木伴生林样地乔木层主要树种种间关联半矩阵图

      Figure 5.  Semi-matrix of inter-specific correlations of the tree layer of plot B

      根据图6:灌木层中,2015年由25个主要树种组成300个种对,2019年由14个主要树种组成91个种对。χ2检验结果显示:2015年46个种对呈显著正关联;2019年,105个种对均呈不显著正关联。联结系数结果显示:2015年161个种对呈显著正关联,62个种对呈显著负关联;2019年47个种对呈显著正关联,13个种对呈显著负关联。共同出现百分率结果显示:2015年,39个种对呈极显著关联;2019年,4个种对呈极显著关联。可见,2015和2019年,灌木层的树种变化较大,2015年灌木层的楠木树种主要为薄叶润楠,2019年主要为红楠。2015年,薄叶润楠与其他树种的正负关联比小于1。2019年,红楠与青冈、石栎、甜槠呈显著负关联,与其余树种呈正关联。

      图  6  楠木伴生林样地灌木层主要树种种间关联半矩阵图

      Figure 6.  Semi-matrix of inter-specific correlations of the shrub layer of plot B

      根据图7:草本层中,2015年由6个主要树种组成15个种对,2019年由5个主要树种组成10个种对。χ2检验结果显示:2015年15个种对均呈不显著正关联;2019年,10个种对均呈不显著正关联。联结系数结果中:2015年6个种对呈显著正关联,1个种对呈显著负关联;2019年8个种对呈显著正关联,2个种对呈显著负关联。共同出现百分率结果显示:2015和2019年所有种对均呈无关联。表明2015和2019年薄叶润楠幼苗与草本层其他的植物正负关联比增加;2019年红楠进入草本层,与其他植物均呈正联结。

      图  7  楠木伴生林样地草本层主要树种种间关联半矩阵图

      Figure 7.  Semi-matrix of inter-specific correlations of the herb layer of plot B

    • 经总体关联性检验、χ2检验、联结系数和共同出现百分率的分析,研究区楠木优势林样地和伴生林样地的乔木层、灌木层、草本层均处于不稳定阶段。在天然楠木优势林样地中,薄叶润楠与乔木层其他树种之间的关联性相对稳定,但缺少更新层。红楠在乔木层与其他树种之间的关联性相对稳定,但在灌木层和草本层出现了更新不良的状况,这可能由于其幼苗的存活率依赖于充足的阳光所造成的[17]。紫楠在乔木层与其他树种的正关联关系加强,拥有良好的更新层,可能是由于其幼苗的光补偿点较低,对弱光的利用能力较强,在光强弱的环境下更有利于正常生长[18]。刨花润楠拥有完整的更新层,作为乔木层的优势种,与其他树种负联结增强,其幼苗能在光照强度较弱的环境下正常生长,但在草本层与其他物种之间的负联结明显,可能是由于其幼苗抗旱能力较差,与其他物种竞争土壤水分导致的[19]

      在楠木伴生林样地中,薄叶润楠作为乔木层的优势树种之一,与其他物种负联结增强,在灌木层和草本层也表现出更新不良的状况。红楠在乔木层与其他物种正联结增强,少形成负联结,在进入灌木层和草本层后也与其他物种的呈正联结,可见红楠能够和大多数物种稳定共存,具有良好的更新能力。紫楠在乔木层与其他树种正关联增强,但是缺少更新层。此前也有研究表明:在常绿阔叶林中优势树种的种内竞争比种间竞争激烈,种内竞争最激烈的优势树种与其他优势树种的种间竞争强度也是最高的[18],和其他物种在空间和资源上竞争激烈[20]

      通过对比2个样地内主要楠木树种与其他树种之间的联结性发现:在楠木优势林样地中形成负联结种对的物种,却在楠木伴生林样地中形成正联结种对。如2015年薄叶润楠与秀丽锥在天然楠木优势林呈负联结,但在天然楠木伴生林样地内呈正联结。这可能是由于群落生境的异质性和微环境的变化,使同一种植物在不同的林分具有不同的生态位,从而影响它与其他物种之间的关系[21]

      种对间的正关联主要是由于2个物种具有相似的环境需要、相似的生物学特征或相似的生态位;负联结主要是由于物种之间存在竞争,相互排斥。林分中下层的植物个体的生长和演替,除了受到土壤、水分等环境因子影响外,还要受到乔木层的影响,常绿阔叶林郁闭度较高,林下光照弱,可能会加剧林分中下层对光照的竞争,从而出现林分断层现象。林分各层次的正关联性越强,群落物种之间的互补性越强,能够更加充分地利用资源,增强群落的稳定性[22]。根据这2个群落种间联结动态变化的特点,在天然楠木林中,将楠木作为目标树种进行管理与保护时,可采用间伐、择伐等抚育方法,保留与楠木有显著正关联的树种,伐除负关联的树种,缓和种间矛盾;疏伐上层高大乔木,增加林窗,以满足林分更新层对光照的需求,保护其更新层,以形成完整的垂直结构。

参考文献 (22)

目录

/

返回文章
返回