-
植物种群的空间分布格局是指种群在水平空间上的配置和分布状况[1],除了种群自身特性和环境条件因素与其形成密切相关外[2],种间关系也是促使其形成的主要动力之一[3],在判断植物种间关系时,生态学家们通常会运用种间联结性分析来探究物种之间的内在联系[4]。此外,生态位的重叠程度在一定程度上能够反映物种联结关系以及空间配置关系[5-6]。对植物种间关系及空间分布格局的研究,有助于认识种群与生境的相互关系、空间资源获取能力与生态适应对策,预测群落消长动态,是深入了解维持树木物种共存机制,并了解产生空间格局的过程的重要手段[7-9],对于正确认识群落的组成、功能及演替规律具有重要意义。次生林是中国森林资源的主体,它既保持着原始森林的物种组成成分与生境,又与原始森林在结构组成、林木生长、生产力、林分环境和生态功能等诸多方面有着显著的不同,原始林退化导致的次生林面积扩大将引起森林生态系统中生物多样性的下降[10]。如何恢复和保护次生林群落的物种多样性成为生态学家面临的重要问题。而对森林木本植物的空间分布格局及种间关系的研究有助于揭示群落结构的形成机制与潜在的生态学过程,对次生林的经营抚育具有一定指导意义[11]。以松林、松阔混交林和常绿阔叶林中幼龄林为主体的天然次生林是浙江省建德市的森林资源主体,主要由被过度干扰破坏的天然林地逐渐恢复、演替而来[12]。次生林中仍保有原始森林的部分物种,但不同类型次生林在群落结构、林木年龄组成、植物生产力及生境等方面都存在显著差异[13]。本研究对浙江建德的次生林群落进行每木调查,分析主要树种间的相互关系及空间分布格局特征,以增强对该区域次生林群落结构特征和空间分布格局的认识,促进区域生物多样性保护与木本植物资源的可持续利用,预测群落的演替方向并探索其驱动力来源,进而为该区域次生林群落的恢复、改造及抚育经营提供依据,更好发挥其生态社会效益。
-
研究区位于浙江省建德市新安江林场(29°29′N,119°16′E),属亚热带北缘季风气候,温暖湿润,四季分明,年平均气温为16.9 ℃,最冷月平均气温为4.7 ℃,最热月平均气温为29.2 ℃,年均降水量为1 504.0 mm。据《中国植被》区划,该地区森林植被属亚热带常绿阔叶林北部亚地带,地带性植被为常绿阔叶林。主要森林植被类型有常绿阔叶林、落叶阔叶林、常绿落叶阔叶混交林、针阔混交林等[14]。
-
在实地踏查的基础上,在浙江建德典型常绿阔叶林、松阔混交林和松林群落中分别设置面积为100 m×100 m的样地(表1),用木桩、塑料带进行围封标记。将每块样地划分为25小块(20 m×20 m),并以此为基本单位对乔木层进行每木调查。记录样地群落类型、海拔、坡度、坡向、土壤等环境因子;记录样方中胸径≥5 cm的木本植物的基础数据,包括种名、树高、胸径、冠幅及其相对应的坐标[15-16]。
表 1 样地基本信息
Table 1. Basic information of sample plots
样地类型 海拔/m 纬度(N) 经度(E) 坡度/(°) 坡向 土壤类型 地点 常绿阔叶林 172 29°40′ 119°23′ 44 西 红壤 杨村桥镇徐坑村 松阔混交林 165 29°28′ 119°12′ 38 南 红壤 新安江林场朱家埠林区 松林 90 29°21′ 119°09′ 33 东 红壤 新安江林场朱家埠林区 -
重要值(IV)计算[17]:IV=(相对多度+相对显著度+相对频度)/3×100%。
-
采用Pianka重叠指数计算物种间的生态位重叠系数,公式[18]如下:
$${O_{ik}}{\rm{ = }}\mathop \sum \limits_{j = 1}^w \left( {{P_{i\!j}}{P_{k\!j}}} \right) \div \sqrt {{{\left( {\mathop \sum \limits_{j = 1}^w {P_{i\!j}}} \right)}^2}{{\left( {\mathop \sum \limits_{j = 1}^w {P_{k\!j}}} \right)}^2}} \text{。}$$ 其中:Oik为种i和种k的生态位重叠系数[1];w为划分的资源位总数;Pij和Pkj分别是种i和种k在资源位j中的重要值占该物种在整个资源中总重要值的比例。Oik的值域为[0,1],当2个种对群落中所有的资源都不存在共享状态时,该种对之间生态位完全不重叠,其值为0;当2个种对群落中所有资源利用完全重叠时,该种对的生态位重叠程度为1,达到最大状态。
-
Ripley’s K(r)函数是进行种内空间分布格局分析的基础函数,公式如下[19]:
$$ K\left( r \right) = \frac{A}{{{n^2}}}\sum\limits_{p = 1}^n {\sum\limits_q^n {e_{pq}^{ - 1}} } {I_r}{\rm{(}}{u_{pq}}{\rm{)}}\text{。} $$ 其中:r为分析的空间尺度(m),A为样方面积(m2),n为植物种个体数,upq表示点p和点q之间的距离(m);Ir(upq)为指示函数,当upq≤r时,Ir(upq)=1,当upq>r时,Ir(upq)=0;epq为权重值,用于边缘校正。为了更直观地解释实际的空间格局,通常用Ripley’s L(r)函数表示:
$$L\left( r \right) = \sqrt {\frac{{K\left( r \right)}}{\text{π} }} {\rm{ - }}r\text{。}$$ 当L(r)=0,种群分布类型为随机分布,对种群的聚集分布研究基于随机分布的基础,以样地中的任意一点为圆心,r为半径画圆,如果在圆中出现的个体数多于随机状态下的个体数,那么表示该种群呈现聚集分布;当圆中出现的个体数少于随机分布状态下的个体数时,该种群呈现均匀分布[20-22]。采用Monte-Carlo模拟99%置信区间,进行结果偏离随机状态的显著性检验。若L(r)值位于置信区间之上,种群呈聚集分布,L(r)值位于置信区间之下,种群呈均匀分布,L(r)值位于置信区间之内,种群呈随机分布[23]。
-
种间空间分布格局基础函数计算公式[24]如下:
$${K_{12}}\left( r \right) = \frac{A}{{{n_1}{n_2}}}\sum\limits_{g = 1}^n {\sum\limits_f^n {w_{gf}^{ - 1}} } {I_r}({u_{gf}})\text{。}$$ 其中:n1和n2分别为种1和种2的个体数,f和g分别代表种1和种2的个体。同样,用L12(r)取代K12(r),公式为:
$${L_{12}}\left( r \right) = \sqrt {\frac{{{K_{12}}\left( r \right)}}{\text{π} }} {\rm{ - }}r\text{。}$$ 当L12(r)=0,表明2个种在r尺度下无关联;当L12(r)>0,表明两者为空间正关联;当L12(r)<0,表明两者为空间负相关。采用Monte-Carlo模拟99%置信区间,进行结果偏离随机状态的显著性检验。当L12(r)值位于置信区间之上,2个变量显著正相关;L12(r)值位于置信区间之下,2个变量显著负相关;L12(r)值位于置信区间之内,2个变量相互独立[23]。本研究根据实际样地面积,在参考同类研究及毗邻地区森林群落空间格局研究的基础上[25-26],将格局分析的尺度限定为0~25.0 m。
-
采用方差比率法来测定各类型次生林群落中主要树种间的总体联结性,并利用统计量W来检验总体联结是否显著,计算公式[27]如下:
$${V_{\rm{R}}} = \frac{{\dfrac{1}{N}\displaystyle\sum\limits_{z = 1}^N {{{({T_z} - t)}^2}} }}{{\displaystyle\sum\limits_{i = 1}^S {(1 - {P_i})} }}\text{。}$$ 其中:VR为方差比率,N为样方总数,
$ T_z $ 为样方$ z $ 内出现的目标物种总数;t为样方中物种的平均数,S为总物种数,Pi为物种i的频度。以VR作为不同类型次生林中主要树种总体联结性指数,在独立性零假设条件下,VR期望值为1,即当VR=1时认为种间无联结;若VR<1则表示物种间存在正联结;若VR<1则表示物种间存在负联结。对于VR偏离1的显著程度采用统计量W来验证,W=VRN,若$W{\text{<}}$ ${\textit{χ}}_{0.95}^2\left( N \right)$ 或$W{\text{>}}{\textit{χ}} _{0.05}^2\left( N \right)$ 则说明种间总体联结性性显著,若${\textit{χ}} _{0.05}^2\left( N \right) {\text{>}}W {\text{>}} {\textit{χ}}_{0.95}^2\left( N \right)$ 则说明种间总体联结性不显著[28]。 -
采用经Yates连续校正系数纠正的χ2统计量对种间联结性进行定性研究。公式[18]如下:
$${\textit{χ} ^2} = \frac{{N{{[ad - bc - 0.5N]}^2}}}{{(a + b)(b + d)(a + c)(c + d)}}\text{。}$$ 其中,N为取样总数,
$ a $ 为2物种均出现的样方数,b、c分别为2个种单独出现的样方数,d为2物种均不出现的样方数。当$ ad-bc=0 $ 时,2个种相互独立;$ ad-bc{\text{>}}0 $ 时,2个种之间呈正联结;$ ad- $ bc<0时,2个种之间呈负联结。${\textit{χ}}^{2}$ <3.841时,表示种间联结性不显著;当3.841<${\textit{χ}}^{2}$ <6.635时,表示种间联结性显著;当${\textit{χ}}^{2}$ >6.635时,表示种间联结性极显著[17]。为避免出现分母为0无法计算分析的状况,把a、b、c、d凡是为0的都加权为1[29-30]。 -
本研究以多度作为Spearman秩相关系数的数量指标,对种对间的线性关系做定量分析,计算公式[31]如下:
$$r\left( {i,k} \right) = 1 - \frac{{6\displaystyle\sum\limits_{z = 1}^N {{{\left( {{x_{iz}} - {{\bar x}_i}} \right)}^2}} {{\left( {{x_{kz}} - {{\bar x}_k}} \right)}^2}}}{{{N^3} - N}}\text{。}$$ 其中,
$ r\left(i,k\right) $ 是种$ i $ 和种$ k $ 在样方$ z $ 中的Spearman秩相关系数;$ N $ 为样方总数;$ {x}_{iz} $ 和$ {x}_{kz} $ 分别是种$ i $ 和种$ k $ 在样方$ z $ 中的秩;$ {\bar{x}}_{i} $ 和$ {\bar{x}}_{k} $ 分别是种$ i $ 和种$ k $ 在所有样方中多度的平均值。$ r\left(i,\;k\right) $ 的值域为[−1, 1],正值表示正相关,负值表示负相关。 -
根据重要值大于5%选出各植被类型主要树种。常绿阔叶林中主要树种是青冈Cyclobalanopsis glauca、石栎Lithocarpus glaber、苦槠Castanopsis sclerophylla及木荷Schima superba等4种;松阔混交林的主要树种分别是马尾松Pinus massoniana、苦槠、杉木Cunninghamia lanceolata、檵木Loropetalum chinense、石栎等5种;松林的主要树种分别是马尾松、杉木、苦槠、化香Platycarya strobilacea、枫香Liquidambar formosana等5种。
-
从表2可以看出:在常绿阔叶林中,主要树种之间生态位重叠程度最高的是木荷-石栎(0.861 4)、其次是苦槠-青冈(0.615 4),最低的是苦槠-木荷(0.377 2);在松阔混交林中,重叠程度最高的是檵木-苦槠(0.801 8),其次是马尾松-石栎(0.753 1),最低的是石栎-杉木(0.340 9);在松林中,重叠程度最高的是枫香-化香(0.757 5),其次是枫香-苦槠(0.720 1),最低的是苦槠-马尾松(0.442 7)。
表 2 不同森林类型主要树种生态位重叠数值矩阵
Table 2. Niche overlap of dominant tree species of different forest types
常绿阔叶林 松阔混交林 松林 树种 苦槠 木荷 青冈 树种 檵木 苦槠 马尾松 石栎 树种 枫香 化香树 苦槠 马尾松 木荷 0.377 2 苦槠 0.801 8 化香 0.757 5 青冈 0.615 4 0.518 2 马尾松 0.631 2 0.632 4 苦槠 0.720 1 0.625 8 石栎 0.421 9 0.861 4 0.473 3 石栎 0.451 3 0.458 4 0.753 1 马尾松 0.676 9 0.567 6 0.442 7 杉木 0.393 7 0.521 8 0.646 2 0.340 9 杉木 0.466 2 0.470 7 0.600 1 0.567 5 -
在所有研究样地中,主要树种在0~25.0 m的尺度内均表现为显著的聚集分布(P<0.05)(图1~3)。
图 1 常绿阔叶林主要树种空间分布格局
Figure 1. Spatial distribution pattern of dominant tree species in evergreen broad-leaved forest
-
常绿阔叶林主要树种空间分布格局特征如下(图4):青冈-石栎在0~25.0 m尺度上均呈现负相关,其中6.0~10.0 m、15.0~17.0 m尺度上负相关达到显著(P<0.05);青冈-木荷在0~25.0 m尺度上均为负相关,其中8.0~14.0 m尺度范围内达到显著(P<0.05);石栎-木荷在0~25.0 m尺度上均呈现显著的正相关(P<0.05)。其他种对的空间关联性则以不显著相关为主。
图 4 常绿阔叶林主要树种间空间分布格局图
Figure 4. Spatial distribution pattern of dominant tree species in evergreen broad-leaved forest
松阔混交林主要树种空间分布格局特征如下(图5):马尾松-石栎在0~25.0 m尺度上呈现正相关,10.0~25.0 m尺度内达到显著(P<0.05);苦槠-石栎在0~20.0 m尺度范围内为正相关,其中7.0~8.0 m尺度上达到显著(P<0.05),而在20.0~25.0 m尺度范围内呈现不显著负相关。其他种对的空间关联性以不显著相关或无关联为主。
图 5 松阔混交林主要树种间空间分布格局图
Figure 5. Spatial distribution pattern of dominant tree species in mason pine and broad-leaved mixed forest
松林主要树种间空间分布格局特征如下(图6):马尾松-化香在0~25.0 m尺度上为负相关,其中4.0 m时达到显著(P<0.05);杉木-苦槠在0~25.0 m尺度范围内为正相关,其中15.0~25.0 m尺度上达到显著(P<0.05);杉木-化香在0~25.0 m尺度范围内为负相关,其中7.5~17.0 m尺度上达到显著(P<0.05);化香-枫香在0~25.0 m尺度范围内表现为正相关,其中12.0~13.0 m尺度上达到显著(P<0.05)。除此之外其他种对的空间关联性表现为不显著相关或无关联。
-
各类型次生林的方差比率(表3)结果表明:3种类型次生林主要树种的总体关联性均为不显著正关联。
表 3 不同森林类型主要树种的总体关联性
Table 3. Overall interspecific associations among dominant tree species of different forest types
样地类型 方差比率 W ${\; \textit{χ}^{2}_{0.95}(N)} $,${ \; \textit{χ}^{2}_{0.05}(N)} $ 结果 常绿阔叶林 1.389 34.722 14.611, 37.652 不显著正关联 松阔混交林 1.397 34.930 14.611, 37.652 不显著正关联 松林 1.199 29.966 14.611, 37.652 不显著正关联 -
χ2检验结果表明(表4):样地中所有类型次生林的主要树种种对均呈不显著的正联结(χ2<3.841,
$ ad-bc $ >0)。表 4 不同森林类型的种间联结χ2统计量矩阵
Table 4. Value of χ2 of different forest types
常绿阔叶林 松阔混交林 松林 树种 苦槠 木荷 青冈 树种 檵木 苦槠 马尾松 杉木 树种 枫香 化香 马尾松 杉木 木荷 0.001 苦槠 1.223 化香 0.179 青冈 0.230 0.092 马尾松 1.103 1.103 马尾松 0.230 1.103 石栎 0.039 0.001 0.230 杉木 0.001 0.001 0.010 杉木 0.020 0.179 0.230 石栎 0.089 0.089 0.069 0.110 苦槠 2.214 0.069 0.038 0.368 -
据图7可知:在常绿阔叶林中,呈负相关的种对有苦槠-木荷、木荷-青冈和青冈-石栎等3对,其中木荷-青冈和青冈-石栎种对的负相关达极显著(P<0.01);呈正相关的有苦槠-青冈、苦槠-石栎和木荷-石栎等3对,其中木荷-石栎种对的正相关达到极显著(P<0.01)。在松阔混交林中,呈现负相关的种对有檵木-杉木、檵木-石栎2对;其余8对均呈正相关,其中马尾松-石栎的正相关达极显著(P<0.01)。在松林中,呈现负相关的种对有枫香-杉木、化香-马尾松、化香-杉木、化香-苦槠和马尾松-苦槠等5对,其中化香-杉木的负相关达显著(P<0.05);其余5对呈正相关,其中枫香-苦槠的正相关达显著(P<0.05)。
-
森林在向顶级群落演替的过程中,植物种内空间分布格局一般会由聚集分布渐渐过渡为随机分布[12],而在本研究中,0~25.0 m尺度上不同类型次生林的主要树种均呈显著(P<0.05)聚集分布,这说明样地群落还未进入演替成熟期。物种自身的生物学特性是造成群落演替过程中物种聚集分布的主要原因,即相同物种对环境等条件有着相似的需求[32]。样地群落种间生态位重叠程度也能佐证其所处的演替阶段,顶级群落中树种间的生态位重叠程度一般处在较低的水平,即树种间的竞争并不活跃,这是因为经过长时间演替后,群落趋于稳定,内部树种间达到了一种相对平衡的状态[33-34],主要树种间的生态位重叠程度仍普遍较高,群落整体呈正关联,正相关种对仍有较高占比。这反映了群落中的主要树种具有相似的环境需求和生态适应性,由此造成了样地中主要树种的聚集分布。此外,种子的扩散限制和生境异质性也被认为是影响物种分布的主要因素[20],样地中主要树种的种子传播方式以重力传播为主,种子传播距离有限,多聚集在母树周围,离母树越远种子越少,这也导致了树种的聚集分布。在松林中,马尾松和杉木作为建群早期先锋种最先入侵林地,在光竞争中占据优势,对光的有效利用是形成林分空间格局的主要决定因素[35],因而马尾松和杉木与群落中其他优势树种多呈负空间关联。枫香幼树稍耐荫,所以与群落中其他优势树种多呈正空间关联。在松阔混交林中,主要树种间空间关联显著程度较低,这或许与群落中的针叶树种同群落中其他较晚发育起来的常绿阔叶树种产生了垂直分层现象有关,这种垂直分层现象能够减轻群落内的光竞争,进而影响群落内的树种空间分布格局。马尾松和杉木作为早期先锋树种入侵林地后,逐渐改善了立地条件,为其他树种进入群落创造了条件,使得松林能够向松阔混交林方向演替。随后由于马尾松和杉木生物学特性在垂直结构上与其他树种产生了分层现象,加之密度制约和扩散限制等因素[12]共同作用,群落中的常绿阔叶树种逐渐获得更多的环境资源并对针叶树种和落叶阔叶树种的幼苗更新产生负作用,松阔混交林逐渐向常绿阔叶林演替。这种演替机制与XIANG等[9]的研究结果一致,即在不发生干扰的情况下,次生林群落中的不耐荫落叶树种将逐渐被耐荫的常绿阔叶树种所取代。
通过比较不同森林类型主要树种组成可以发现:3类森林群落的主要树种组成存在差异,落叶阔叶树种枫香和化香仅出现在松林主要树种中,而松阔混交林中已经没有落叶树种,但出现了常绿阔叶树种石栎和檵木。在常绿阔叶林中,主要树种则由木荷及青冈、石栎和苦槠等3种壳斗科Fagaceae树种组成。树种组成的变化是群落演替的结果,森林经营管理可根据此对松林和松阔混交林进行适当抚育,伐除部分针叶树种及清理林内枯立木,改善林分内的光照条件,促进常绿阔叶树种的生长。在常绿阔叶林中,则可通过修枝来改善林内光照条件,也可通过为森林土壤施加养分来改善目标树种的营养状况,通过人为栽种苗木等手段来加快木荷、石栎等目标树种的更新、生长和郁闭,促进森林群落向顶级群落发展并促进生物多样性的恢复。
本研究通过方差比率法、χ2检验和Spearman秩相关系数检验,对不同类型次生林群落种间的联结性和相关性进行了分析。其中,χ2检验结果是由种对的二元数据转换计算而来,反映的是物种能否共存和共存的概率,不能表达低显著度种对的内在相关性情况和强度。Spearman秩相关系数属定量检验方法,能够在一定程度上检验种对数量关系上的变化,对种对间的相关性及其显著性水平更为敏感。Spearman秩相关系数属定量检验与定性的方差比率法、χ2检验结合使用能够更全面地反映物种的种间关系[36]。
-
通过测度常绿阔叶林、松阔混交林和松林群落中主要树种的生态位重叠程度、空间分布格局和种间联结分析可以发现:本研究各群落乔木层主要树种在空间分布格局中独立性相对较强,物种间虽存在比较相似的环境资源需求,但种间联结关系比较松散,群落演替尚未进入成熟期。此外也可以看出:树种间的空间分布格局、联结性与种群的生态位重叠之间存在密切关联。一般情况下,群落内优势树种种间正联结性越强,其生态位重叠程度越高,种间负联结性越强,生态位重叠程度越低[37]。样地群落的总体关联性检验结果显示:各群落种间总体关联性呈不显著的正相关。χ2检验发现:多数种对都呈不显著的正联结,这与各群落物种生态位重叠程度的分析结果基本吻合。各群落主要树种间的Spearman秩相关分析结果与种间空间关联性结果也有比较一致的表现,这也说明植物种间关系对植物种群空间分布格局的形成有重要意义。本研究可为进一步揭示物种自身生物特性、环境条件及种间关系等综合作用下的种群空间分布格局形成机制提供依据,但群落中植物种间关系及空间分布格局是处在动态变化过程中的,本研究结果仅反映某一特定时间节点的群落状态,有待长期的群落动态监测研究。
Spatial distribution patterns and interspecific relationship of dominant tree species in the tree layer of typical natural secondary forest communities in Jiande, Zhejiang Province
-
摘要:
目的 探究天然次生林群落主要乔木树种空间分布格局及种间关系,为区域次生林群落的恢复、改造及抚育经营提供科学依据。 方法 于浙江建德典型的天然常绿阔叶次生林、松阔混交次生林和松林次生林3类群落中分别设置面积为1 hm2 (100 m×100 m)的样地,在每木调查基础上,运用Pianka生态位重叠指数、点格局分析方法、方差比率法(VR)、χ2检验和Spearman秩相关系数对各群落乔木层主要树种进行空间分布格局和种间关系的分析。 结果 ①样地中各次生林群落主要树种在所有尺度上呈现聚集分布;②在0~25.0 m尺度内,各群落空间关联性以不显著相关关系为主,负相关种对数多于正相关种对数;③各群落主要树种种间总体关联性及χ2检验种间联结性均以不显著的正联结为主,Spearman秩相关分析显示种对间以不显著相关关系为主,与主要树种空间关联性分析结果及生态位重叠程度较吻合。 结论 样地中各群落乔木层主要树种在各自分布格局中独立性相对较强,物种间虽存在比较相似的环境资源需求,但种间联结关系比较松散,群落演替尚未进入成熟期。图7表4参37 Abstract:Objective To investigate the spatial distribution pattern and interspecific relationship of dominant tree species in the tree layer of natural secondary forest communities, and to provide a scientific basis for the restoration, rehabilitation and reforestation management of the secondary forest community in the region. Method This paper set up 1 hm2 (100 m×100 m) sample plot in each type of typical natural secondary forest communities (evergreen braod-leaved secondary forest, mason pine and broad-leaved mixed secondary forest and secondary forest of mason pine) in Jiande, Zhejiang Province. Based on the tally, the Pianka niche overlap index, point pattern analysis method, variance ratio method (VR), χ2-test and Spearman rank correlation coefficient were used to analyze the spatial distribution pattern and interspecific relationship of the dominant tree species in each community. Result (1) The dominant tree species in each type of secondary forest community showed an aggregate distribution on all scales; (2) In the 0−25.0 m scale, the spatial correlation of each community is dominated by insignificant correlations, and the number of species pairs showing negative correlation is more than the number of species pairs showing positive correlation; (3) The overall correlations between the dominant tree species of each community and the interspecific associations obtained by the χ2-test were mainly non-significant positive associations. Spearman rank correlation analysis results showed that the non-significant correlations were mainly among the species pairs in each community. The results of spatial correlation analysis and niche overlap of the dominant tree species in each community are in good agreement. Conclusion The above results show that the dominant tree species of each community are relatively independent in their respective distribution patterns. Although there are similar environmental resource requirements between species, the inter-species linkages are basically loose, and the community succession has not yet entered the mature stage. [Ch, 7 fig. 4 tab. 37 ref.] -
全球气候变化是人类目前面临的最为严峻的挑战,威胁着人类的生存和发展。自工业化时期以来,由于人口大幅增加和经济快速增长,造成了大量人为温室气体排放,成为全球气候变暖的主要诱因。世界气象组织(WMO)最新数据显示,2020年大气二氧化碳(CO2)质量分数高达410 mg·kg−1,比工业革命前增长60%。联合国政府间气候变化专门委员会(IPCC)第6次评估报告指出:从未来20 a的平均气温变化来看,全球升温预计将达1.5 ℃。目前,应对气候变化已成为全球共识,减少温室气体排放是缓解全球气候变暖的有效途径[1]。在此背景下,中国政府在2020年第75届联合国大会上向世界承诺,力争于2030年前实现CO2排放达到峰值,努力争取2060年前实现碳中和。碳达峰碳中和(“双碳”)是一场广泛而深刻的经济社会系统性变革,碳达峰碳中和目标纳入中国生态文明建设整体布局,上升为国家战略。种植业是实现碳达峰碳中和目标的重要领域之一。与其他行业不同,种植业既是重要的温室气体排放源,又有着巨大的固碳增汇潜力,推进种植业领域减排增汇将在实现碳达峰碳中和目标进程中发挥举足轻重的作用[2−3]。本研究针对种植业碳达峰碳中和目标的实现途径进行梳理总结,并提出进一步的见解,从而为种植业助力国家实现碳达峰碳中和目标提供理论支撑和科学建议。
1. 种植业碳源、碳汇特征
种植业生态系统不仅是碳源同时也是碳汇。一方面,种植业生产活动会导致包括CO2、氧化亚氮(N2O)和甲烷(CH4)在内的温室气体排放,这部分温室气体约占全球碳排放总量的25%[4−5]。另一方面,种植业中的农田、森林和草地等生态系统通过光合作用进行生物固碳,每年固碳量能抵消全球30%的人为碳排放量[6−7]。可见种植业减排增汇是应对全球气候变暖,实现碳达峰碳中和目标不可或缺的重要组成部分。
1.1 种植业是重要的温室气体排放源
种植业是非二氧化碳温室气体(N2O和CH4)的主要排放源,在100 a时间尺度上,N2O和CH4的全球增温潜势分别是CO2的298和34倍[8]。全球人为温室气体排放量在过去几十年显著增加,其中种植业N2O排放占全球人为N2O排放总量的60%以上[9],种植业CH4排放贡献了全球人为CH4排放量的10%左右[10]。
N2O是硝化和反硝化作用的主要产物。硝化作用是指还原态氮[铵离子(NH4 +)、氨气(NH3)和有机氮(RNH2)]在微生物作用下变为氧化态氮[硝酸根(NO3 −)和亚硝酸根(NO2 −)]的过程。N2O是还原态氮在硝化微生物作用下被氧化为氧化态氮过程中产生的副产物。通常情况下,反硝化作用是指在厌氧条件下,NO3 −或NO2 −被硝化微生物还原为一氧化氮(NO)和N2O,然后进一步被还原为氮气(N2)的过程。反硝化过程是将自然界的活性氮转变为惰性氮的过程,因此反硝化过程对维持大气氮素平衡具有很重要的意义。农田土壤是最大的N2O排放源。过量施用氮肥造成土壤N2O排放增加,是导致大气N2O质量分数上升的主要因素。由于过量施用氮肥导致的土壤N2O排放量约为3.3 Tg·a−1,占全球人为N2O排放总量的65%[8]。同时,土壤N2O排放受土壤水分状况的影响,淹水稻田在中期烤田期会强烈刺激N2O的排放。近年来,随着全球水资源短缺以及节水灌溉措施的快速发展,节水灌溉稻田成为农业N2O新的排放源[11−12]。此外,农作物秸秆不完全焚烧也会产生N2O,但数量极少。
CH4主要在厌氧环境条件下产生,它的种植业排放源主要包括:一是长期处于淹水条件下的稻田,土壤中的产甲烷菌利用有机物料(如根系分泌物、动植物残体以及有机肥等)产生CH4,进而排放到大气中[13−14]。稻田CH4排放量受到土壤水肥管理措施以及土壤有机质的影响。在一定范围内,稻田淹水高度越大,土壤中有机质越多,CH4排放量越大。二是作物秸秆不完全焚烧也会产生CH4。
除了上述直接排放,种植业生产过程中还会有大量的间接碳排放。农作物种植过程中使用的农机、农药、化肥和农膜等农业投入品在制造过程中也会排放大量温室气体[15−16]。有研究报道:农用柴油、农药、化肥和农膜等农业生产资料引起的间接排放占中国农业温室气体排放总量的34%[17]。根据《中国农村统计年鉴》,1990年以来,中国农用柴油、农药、化肥和农膜等的投入量分别上升了115%、131%、137%和440%,由此导致农业间接温室气体排放量以年均2%的速度增长[18]。
1.2 种植业具有巨大的碳汇潜力
种植业碳汇主要指农田土壤碳汇。土壤碳库是地球陆地生态系统中最大的碳库,其碳储量约为陆地植被碳库或大气碳库的2~4倍[19]。土壤具体是如何固碳的呢?土壤固定的碳最初都来源于大气。首先,植物通过光合作用将大气中CO2转化为有机物质,然后有机物质内的碳通过根系分泌物、死亡的根系以及枝叶凋落物进入土壤,并在土壤微生物的作用下,转化为土壤有机质储存于土壤中,形成土壤碳库。简单来说,土壤可以通过植物来吸收、转化、储存大气中的CO2。《第二次气候变化国家评估报告》指出:中国土壤碳库碳储量约为103 Pg。土壤碳库的微弱变化都有可能引起大气CO2浓度的巨大变化,从而影响全球气候变化。目前,中国农业发展水平较低,农田土壤固碳增汇潜力巨大。中国总耕地面积大约为1.3 亿hm2,土壤碳库尤其是主要农业区表层土壤有机碳质量分数较低。根据《2019年全国耕地质量等级情况公报》,全国耕地质量平均等级为4.76等,中低等级耕地占2/3以上,耕作层变浅、土壤退化以及耕地质量普遍较低是中国农业耕地的现状。全国耕地平均有机碳质量分数低于世界平均值30%以上,低于欧美等发达国家和地区50%以上[20]。美国著名土壤学家LAL[21]研究发现:美国土壤每年固碳潜力为7.5~20.8 Gg,中国农田土壤固碳潜力为22.0~37.0 Tg。在所有的碳中和负碳技术中,土壤固碳被公认为是成本最低、最具有潜力、最易实现和操作的,能有效冲抵能源、交通、工业等领域的碳排放。因此,只要技术合理,农田土壤固碳增汇潜力巨大,是实现中国碳达峰碳中和目标的重要支撑。
2. 种植业减排增汇途径
2.1 种植业减排途径与措施
2.1.1 农田土壤N2O减排
农田土壤N2O减排可采用减少氮肥施用、优化施肥模式、使用新型肥料(如全元生物有机肥、生物质炭基肥)和抑制剂(如缓控释肥、硝化抑制剂)、提高水肥耦合等措施,在增加作物产量的同时,有效减少N2O排放,提高氮肥利用效率,降低肥料投入成本,实现增产与减排协同。李玥等[22]指出:合理施氮是农田土壤N2O减排的关键,并提出“4R”的施肥理念,即正确的施肥量、正确的肥料类型与配比、正确的施肥时间和正确的施肥方法。尽管有机肥施用存在增加土壤N2O排放的风险[23],但在合理施氮情况下利用有机肥部分替代化学氮肥既可以提高土壤肥力,改善土壤性状,又可以通过减少土壤氮底物有效性而降低农田土壤N2O排放[24−25]。生物质炭基肥是将生物质炭与氮磷钾肥按照特定比例混合后造粒包膜制成,可以替代普通化肥施用,同时增施了有机质。大田试验研究表明:生物质炭基肥替代化学肥料可有效减少农田N2O排放17%~64%[26],部分试验结果还显示可减少稻田CH4排放[27−28]。硝化抑制剂可以通过降低硝化速率实现农田土壤N2O减排。目前市面上常见的硝化抑制剂有3,4-二甲基磷酸盐(DMPP)、双氰胺(DCD)和四氮本啶(nitrapyin)等。施用硝化抑制剂可降低38%的农田土壤N2O排放,但不同地区土壤和硝化抑制剂种类的减排效果存在显著差异[29]。研究表明:施用硝化抑制剂可分别降低旱作农田和稻田N2O排放46%和32%[30−31]。为了农田N2O减排,在考虑肥料施用的同时也要关注土壤水分状况,不同水分条件对土壤N2O排放影响较大。李金秋等[32]通过田间试验发现:施肥和水分管理均显著影响双季稻田N2O排放,常规灌溉和尿素施用增加稻田N2O排放,而常规灌溉管理和有机肥配施化肥模式,既能保证水稻产量,又能实现减氮和减排效果,是当地值得参考的水肥管理模式。因此,今后的农田N2O减排也要综合考虑多方面因素,制定和开展减排措施。
2.1.2 稻田CH4减排
稻田CH4减排可采用中期排水烤田、控制灌溉以及湿润灌溉等节水灌溉水分管理措施来实现[33−35]。节水灌溉在减少稻田CH4排放的同时,可能会刺激土壤N2O排放。作物秸秆还田和有机肥施用可减少土壤N2O排放,但外源有机物质的添加会加剧CH4排放。因此,只有将优化施肥模式与节水灌溉措施相结合,才有可能减少稻田综合温室气体排放。就水旱轮作农田生态系统而言,如水稻Oryza sativa-小麦Triticum aestivum轮作、水稻-油菜Brassica napus轮作,可采取在旱作生长季施用有机肥或秸秆还田,既可以提高土壤碳库储量,又可以避免有机物质的添加造成的稻田CH4排放[36]。有研究表明:施用CH4抑制剂、生物质炭或生物质炭基肥等新型肥料,可作为降低稻田CH4排放的有效手段,是种植业固碳减排协同技术的发展新方向[37−38]。同时,还可利用先进的作物遗传育种手段,选育推广高产、优质、低碳水稻品种,降低水稻单产CH4排放强度。
2.1.3 种植业间接碳排放减排
针对种植业生产造成的间接碳排放,实施化石能源消耗减量措施,主要包括对种植业生产中机械设备进行更新改造,加快老旧农机报废更新力度,推广先进适用的低碳节能农机装备,推广新能源技术,优化农机装备结构,加快绿色、智能、复式、高效农机化技术装备普及应用,降低化石能源消耗和CO2排放[39−40]。以粮食和重要农产品生产所需农机为重点,推进节能减排。实施更为严格的农机排放标准,减少废气排放。因地制宜发展复式、高效农机装备和电动农机装备,培育壮大新型农机服务组织,提供高效便捷的农机作业服务,减少种子、化肥、农药、水资源用量,提升作业效率,降低能源消耗。加快侧深施肥、精准施药、节水灌溉、高性能免耕播种等机械装备推广应用,大力示范推广节种、节水、节能、节肥、节药的农机化技术。实施农机报废更新补贴政策,加大能耗高、排放高、损失大、安全性能低的老旧农机淘汰力度。
2.2 种植业固碳增汇途径与措施
2.2.1 有机肥施用和秸秆还田
一方面,施用有机肥可以促进作物根系发育,在微生物的作用下能固定更多的CO2,且土壤团聚体稳定性显著增强,可以减少土壤中碳的损失。另一方面,有机肥施用可以提高土壤有机质质量分数。土壤有机质既有易被微生物利用的不稳定态,又包括与土壤健康密切相关的稳定态的可以长期储存碳的腐殖质。有机肥的类型、用量、配施等都会影响土壤固碳效果[41]。研究表明:长期施用有机肥可显著提高双季稻田碳汇效应与经济效益,绿肥紫云英Astragalus sinicus与猪粪和秸秆配施,稻田生态系统碳汇效益与经济效益较单施绿肥紫云英优势更明显。有机肥和无机肥配施可以增加土壤有机碳的积累。有机农业生态系统土壤有机碳比常规生态系统高20%,在前15 a土壤碳存储速率最高。秸秆还田是通过秸秆粉碎抛撒、机械还田,配套应用调氮促腐技术,将碳保留在土壤中,增加土壤有机质,减少化肥施用量,具有减肥增产、固碳、降污多重效果[42]。
2.2.2 大力推广保护性耕作
保护性耕作是对农田采用少耕、免耕或地表微型改造,结合覆盖、轮作、农药病虫害防除等措施,确保耕地可持续利用的综合性土壤管理技术体系。保护性耕作可以减少对土壤的扰动,降低土壤侵蚀,促进蓄水保墒,提高表层土壤有机碳质量分数,增强土壤固碳增汇能力[43]。相比自然植被,农业种植导致土壤有机碳显著降低,农田表层土壤的有机碳储量较草地和林地土壤分别降低45%和52%,这是由于农业耕作显著加速了不稳定颗粒有机质的周转,减少了稳定有机碳组分的形成,从而导致土壤有机碳库储量明显下降[44]。另外,土壤翻耕会破坏土壤团聚体结构、加速有机质分解,风和水的侵蚀增强,导致暴露和侵蚀的土壤中的碳以温室气体的形式排放到大气中。犁耕的碳排放量是免耕的14倍,即使采用保护性耕作机具,碳损失量也达到免耕的4倍[45]。因此,从常规深耕转向少耕或免耕可改善土壤结构、减少碳排放,增加土壤有机碳储量。在秸秆还田的基础上,免耕可显著提高表层土壤有机碳质量分数。
2.2.3 种植业废弃物热解炭化还田
中国种植业废弃物资源化利用仍处于起步阶段,农作物秸秆资源化利用是种植业废弃物资源化工作的重大挑战。目前,中国种植业废弃物常见的利用方式主要包括农作物秸秆还田和好氧堆肥还田。这些利用方式虽然可以小幅度增加土壤碳库,但是其生产或应用环节同样会造成大量温室气体排放[46]。因此,种植业废弃物的利用应基于种植业增汇和减排双重考虑。与秸秆直接还田和好氧堆肥等方式相比,废弃物热解炭化既充分保留了废弃物中的有机质和各种养分,又实现废弃物的多元、清洁和安全利用。热解炭化的主要产物生物炭质是一种富含稳定有机质和矿质养分的多组分固体炭质,具有稳定、疏松多孔且环境友好的特点[47]。利用不同性质的种植业废弃物热解炭化,可充分挖掘其养分、炭质和结构的优势,创造清洁高效、安全卫生和功能丰富的炭基产品。种植业废弃物热解炭化后还田,可以将作物光合作用固定的碳返还并长期保存于土壤,补充土壤有机碳和养分的同时能有效改善土壤结构,平衡土壤酸碱度,提升土壤缓冲性和保肥蓄水能力,为土壤固碳增汇和种植业绿色发展提供了新路径[37]。2017年,秸秆炭化还田被列入国家十大秸秆处理模式之一。2020—2021年,秸秆炭化还田入围农业农村部重大引领性技术榜单。
3. 碳标签与碳交易
实现种植业碳中和不仅需要上述传统的技术创新途径,还需要依靠新兴的经济金融手段——碳标签与碳交易。在全球绿色低碳发展的环境和经济背景下,世界农业也已进入可持续发展的低碳农业经济时代,碳标签、碳足迹和碳交易这些新兴概念应运而生。碳足迹是产品在整个生命周期内的温室气体排放总量,一般用CO2当量形式表达[48]。将碳足迹展现于产品标签之上,即碳标签。碳标签既是碳足迹的延伸也是碳足迹的载体。碳标签的主要作用是呈现产品或服务对全球变化影响的信息,把产品或服务从生产到消耗整个生命周期过程中的碳足迹在产品标签上用量化的数值标示出来。消费者可通过产品碳标签了解产品整个生命周期中的碳排放信息,引导消费者选购更加低碳绿色的产品和服务,促使企业采用各种减排措施减少碳排放,从而促进低碳社会的发展[49]。碳标签制度将自下而上地推动中国碳减排工作由强制到自愿的转变。这一新工具的产生运作必然推动中国向低碳经济发展。产品碳足迹计算是农产品碳标签制度推行的关键,作为企业应适应国际规则,积极发展低碳经济;作为消费者应培养低碳意识,养成环境友好型消费习惯;作为政府应积极扶持,助力企业产品向低碳化和标签化发展。目前应结合国家碳中和战略目标,加快推进特色农产品碳标签制度进程,促进低碳种植业的发展,助推种植业碳中和。
碳交易以可持续发展为核心,以配额交易及核证自愿减排量(CCER)交易为主要内容,充分利用市场经济对绿色发展所发挥的重要作用,不同类型企业根据自身碳排放情况对规定的碳排放配额进行配置,或用于自身发展需要,或用于市场交易,最终形成宏观和微观相结合的有重点、多层次碳排放交易格局。现阶段,中国碳交易机制具有全国交易系统与试点地区交易所相结合、行业要求与排量要求相结合、排放配额与自愿减排量相结合等特点。中国碳交易市场已有长足发展,但目前种植业碳交易特别是农田土壤碳汇交易尚处于起步阶段。在实现种植业碳中和战略目标的过程中,碳交易是不可或缺的一部分。应积极推动形成政府主导、社会参与、市场化运作的种植业碳交易体系,在保障国家粮食安全与重要农产品有效供给的同时,降低碳排放、增加碳汇,并使农民在碳排放交易中的得到更多红利,最终形成与资源环境承载力相匹配,与生产生活生态相协调的种植业低碳发展新格局。
4. 政策建议
实施种植业碳达峰碳中和要以全面推进乡村振兴、加快农业农村现代化为引领,以绿色低碳科技创新为支撑,以降低温室气体排放强度、提高农田土壤固碳增汇能力、实施农业废弃物资源化利用为抓手,全面提升农业综合生产能力,建立完善监测评估体系,完善政策保障机制,加快形成资源节约型和环境友好型的农业产业结构、生产方式和空间格局。
第一,追求种植业碳达峰碳中和战略目标必须以保障粮食安全为前提。中国是人口大国,粮食安全具有重大意义,所以必须充分认识到种植业减排增汇必须以保障国家粮食安全和重要农产品有效供给为前提,科学确定减排增汇途径,合理设定碳排放峰值。种植业领域的特殊性要求不能舍弃粮食产量去偏面追求种植业减排增汇。在稳步推进田间减排的同时,要努力挖掘种植业生产过程中节能减排的潜力,大力推广先进环保节能新农具,通过提高种植业生产环节的智能化、精准化水平,降低农业投入品的使用量,从而降低能源消耗。
第二,重点围绕农作物秸秆资源化利用,加快推进种植业废弃物热解炭化还田。全球气候变化背景下中国种植业面临耕地质量与农产品安全的巨大挑战,数十亿吨的种植业废弃物处置与资源化利用任务艰巨。在应对气候变化挑战时,应充分挖掘种植业废弃物资源,政府提供技术和资金扶持,发展以热解炭化为基础的生物质技术与产业,满足国家绿色可持续农业发展与种植业减排增汇需求。未来需要积极开发创新热解炭化装备、炭基肥料、炭基材料等技术方法,推动炭基集成技术与产业模式的大规模推广,提高种植业生产者的参与积极性,不断释放种植业助力碳中和的潜力。
第三,加快技术创新,加强创新能力保障。在国家碳达峰碳中和的战略目标背景下,需要更大力度的技术创新。支持部分基础条件好、特色鲜明的综合性高校和行业高校,先行建设一批碳达峰碳中和领域新学院、新学科和新专业,鼓励自然科学与社会科学的交叉融合研究,培养碳达峰碳中和战略复合型人才。推动高校参与或组建碳达峰碳中和相关的国家重点实验室和国家技术创新中心,引导高等学校建设一批高水平国家科研平台。鼓励高校实施碳中和交叉学科人才培养专项计划,大力支持跨学院、跨学科组建科研和人才培养团队,以大团队、大项目支撑高质量本科生和研究生多层次培养。鼓励高校加强碳达峰碳中和领域高素质师资队伍建设。加大碳达峰碳中和领域课程、教材等教学资源建设力度。同时出台针对农业碳达峰碳中和的法律法规,制定相应的技术标准,组织和建立研究机构和研究平台,投入资金和科研力量,加快技术创新,研发颠覆性技术,探索区域化的整体解决方案。
第四,充分发挥政策驱动作用,加快建设种植业碳交易市场,充分挖掘种植业减排增汇的经济价值,着力提升市场内生动力。目前,种植业碳金融市场建设缓慢,与工业行业日趋成熟的碳排放核算方法相比,低碳种植业领域仍缺乏具有权威性、一致性、可操作性的碳排放核算方法。通过构建完善种植业碳标签评估标准和种植业碳排放核算方法,强化种植业碳补贴等方式,加强对种植业碳减排的政策引导,推动数字科技在金融支持种植业碳减排领域中的创新应用。在推进种植业碳交易市场扩大的过程中,政府应做好统一碳市场的顶层设计,以防止不良竞争,保证政策的可执行性及有效性;构建种植业低碳发展政策体系,制定低碳种植业发展的正负面清单,探索种植业生态产品价值实现机制,优化、创设包括法律法规、规范标准、生态补偿、监测预警、财政税收、金融信贷等多种类型政策工具,为中国种植业低碳发展提供长效规制、约束与激励。
-
表 1 样地基本信息
Table 1. Basic information of sample plots
样地类型 海拔/m 纬度(N) 经度(E) 坡度/(°) 坡向 土壤类型 地点 常绿阔叶林 172 29°40′ 119°23′ 44 西 红壤 杨村桥镇徐坑村 松阔混交林 165 29°28′ 119°12′ 38 南 红壤 新安江林场朱家埠林区 松林 90 29°21′ 119°09′ 33 东 红壤 新安江林场朱家埠林区 表 2 不同森林类型主要树种生态位重叠数值矩阵
Table 2. Niche overlap of dominant tree species of different forest types
常绿阔叶林 松阔混交林 松林 树种 苦槠 木荷 青冈 树种 檵木 苦槠 马尾松 石栎 树种 枫香 化香树 苦槠 马尾松 木荷 0.377 2 苦槠 0.801 8 化香 0.757 5 青冈 0.615 4 0.518 2 马尾松 0.631 2 0.632 4 苦槠 0.720 1 0.625 8 石栎 0.421 9 0.861 4 0.473 3 石栎 0.451 3 0.458 4 0.753 1 马尾松 0.676 9 0.567 6 0.442 7 杉木 0.393 7 0.521 8 0.646 2 0.340 9 杉木 0.466 2 0.470 7 0.600 1 0.567 5 表 3 不同森林类型主要树种的总体关联性
Table 3. Overall interspecific associations among dominant tree species of different forest types
样地类型 方差比率 W ${\; \textit{χ}^{2}_{0.95}(N)} $,${ \; \textit{χ}^{2}_{0.05}(N)} $ 结果 常绿阔叶林 1.389 34.722 14.611, 37.652 不显著正关联 松阔混交林 1.397 34.930 14.611, 37.652 不显著正关联 松林 1.199 29.966 14.611, 37.652 不显著正关联 表 4 不同森林类型的种间联结χ2统计量矩阵
Table 4. Value of χ2 of different forest types
常绿阔叶林 松阔混交林 松林 树种 苦槠 木荷 青冈 树种 檵木 苦槠 马尾松 杉木 树种 枫香 化香 马尾松 杉木 木荷 0.001 苦槠 1.223 化香 0.179 青冈 0.230 0.092 马尾松 1.103 1.103 马尾松 0.230 1.103 石栎 0.039 0.001 0.230 杉木 0.001 0.001 0.010 杉木 0.020 0.179 0.230 石栎 0.089 0.089 0.069 0.110 苦槠 2.214 0.069 0.038 0.368 -
[1] 王本洋, 余世孝. 种群分布格局的多尺度分析[J]. 植物生态学报, 2005, 29(2): 235 − 241. WANG Benyang, YU Shixiao. Multi-scale analyses of population distribution patterns [J]. Acta Phytoecol Sin, 2005, 29(2): 235 − 241. [2] STERNER R W, RIBIC C A, SCHATZ G E. Testing for life historical changes in spatial patterns of 4 tropical tree species [J]. J Ecol, 1986, 74(3): 621 − 633. [3] 赵艳云, 刘京涛, 陆兆华. 渤海湾贝壳堤湿地芦苇种群与蒙古蒿种群空间分布格局和种间关系[J]. 湿地科学, 2017, 15(2): 187 − 193. ZHAO Yanyun, LIU Jingtao, LU Zhaohua. Spatial pattern and interspecific relationship of Phragmites australis and Artemisia mongolica populations in Chenier Wetlands in Bohai Bay [J]. Wetland Sci, 2017, 15(2): 187 − 193. [4] 史浩伯, 陈亚宁, 李卫红, 等. 塔里木河下游植被种间关系与稳定性分析[J]. 干旱区研究, 2020, 37(1): 220 − 226. SHI Haobo, CHEN Yaning, LI Weihong, et al. Interspecific association and stability of vegetation in the lower reaches of the Tarim River [J]. Arid Zone Res, 2020, 37(1): 220 − 226. [5] 李丘霖, 宗秀虹, 邓洪平, 等. 赤水桫椤群落乔木层优势物种生态位与种间联结性研究[J]. 西北植物学报, 2017, 37(7): 1422 − 1428. LI Qiulin, ZONG Xiuhong, DENG Hongping, et al. Niche and interspecific of dominant species in tree layer of Chishui Alsophila spinulosa community [J]. Acta Bot Boreali-Occident Sin, 2017, 37(7): 1422 − 1428. [6] 涂洪润, 李娇凤, 杨丽婷, 等. 桂林岩溶石山青冈群落主要乔木树种的种间关联[J]. 应用生态学报, 2019, 30(1): 67 − 76. TU Hongrun, LI Jiaofeng, YANG Liting, et al. Interspecific associations of the main tree populations of the Cyclobalanopsis glauca community in karst hills of Guilin, southwest China [J]. Chin J Appl Ecol, 2019, 30(1): 67 − 76. [7] HE Fangliang, DUNCAN R P. Density-dependent effects on tree survival in an old-growth Douglas fir forest [J]. J Ecol, 2000, 88(4): 676 − 688. [8] JOHN R, DALLING J W, HARMS K E, et al. Soil nutrients influence spatial distributions of tropical tree species [J]. Proc Nat Acad Sci USA, 2007, 104(3): 864 − 869. [9] XIANG Wenhua, LI Shaohui, LEI Xiangdong, et al. Secondary forest floristic composition, structure, and spatial pattern in subtropical China [J]. J For Res, 2013, 18: 111 − 120. [10] 朱教君. 次生林经营基础研究进展[J]. 应用生态学报, 2002, 13(12): 1689 − 1694. ZHU Jiaojun. A review on fundamental studies of secondary forest management [J]. Chin J Appl Ecol, 2002, 13(12): 1689 − 1694. [11] 汤孟平. 森林空间经营理论与实践[M]. 北京: 中国林业出版社, 2007. [12] 吴初平, 袁位高, 盛卫星, 等. 浙江省典型天然次生林主要树种空间分布格局及其关联性[J]. 生态学报, 2018, 38(2): 537 − 549. WU Chuping, YUAN Weigao, SHENG Weixing, et al. Spatial distribution patterns and associations of tree species in typical natural secondary forest communities in Zhejiang Province [J]. Acta Ecol Sin, 2018, 38(2): 537 − 549. [13] 罗佳, 张灿明, 牛艳东, 等. 森林生态系统大样地定位研究综述[J]. 湖南林业科技, 2013, 40(4): 79 − 81. LUO Jia, ZHANG Canming, NIU Yandong, et al. The research review on large, long-term plot location of forest ecosystem [J]. Hunan For Sci Technol, 2013, 40(4): 79 − 81. [14] 蔡飞, 陈爱丽, 陈启瑺, 等. 浙江建德青冈常绿阔叶林种群结构和动态的研究[J]. 林业科学研究, 1998, 11(1): 99 − 106. CAI Fei, CHEN Aili, CHEN Qichang, et al. Study on the structure and dynamics of populations of Cyclobalanopsis glauca in Jiande County, Zhejiang Province [J]. For Res, 1998, 11(1): 99 − 106. [15] CONDIT R. Research in large, long-term tropical forest plots [J]. Trends Ecol Evol, 1995, 10(1): 18 − 22. [16] 白雪娇, 邓莉萍, 李露露, 等. 辽东山区次生林木本植物空间分布[J]. 生态学报, 2015, 35(1): 98 − 105. BAI Xuejiao, DENG Liping, LI Lulu, et al. Distribution patterns of woody plants in a secondary forest in the montane region of eastern Liaoning Province, China [J]. Acta Ecol Sin, 2015, 35(1): 98 − 105. [17] 宋永昌. 植被生态学[M]. 上海: 华东师范大学出版社, 2007. [18] PIANKA E R. The structure of lizard communities [J]. Ann Rev Ecol Syst, 1973, 4(1): 53 − 74. [19] 张金屯. 植物种群空间分布的点格局分析[J]. 植物生态学报, 1998, 22(4): 344 − 349. ZHANG Jintun. Analysis of spatial point pattern for plant species [J]. Chin J Plant Ecol, 1998, 22(4): 344 − 349. [20] CONDIT R, ASHTON P S, BAKER P, et al. Spatial patterns in the distribution of tropical tree species [J]. Science, 2000, 288(5470): 1414 − 1418. [21] HE Fangliang, LEGENDRE P, LAFRANKIE J V. Distribution patterns of tree species in a Malaysian tropical rain forest [J]. J Veg Sci, 2010, 8(1): 105 − 114. [22] LAN Guoyu, GETZIN S, WIEGAND T, et al. Spatial distribution and interspecific associations of tree species in a tropical seasonal rain forest of China [J]. PLoS One, 2012, 7(9): e46074. doi: 10.1371/journal.pone.0046074. [23] HIGUCHI P, SILVA A C, LOUZADA J N C, et al. Spatial patterns of a tropical tree species growing under an eucalyptus plantation in South-East Brazil [J]. Brazil J Biol, 2010, 70(2): 271 − 277. [24] 岳永杰, 余新晓, 秦富仓, 等. 北京雾灵山保护区蒙椴林空间点格局分析[J]. 林业资源管理, 2009, 38(2): 49 − 54. YUE Yongjie, YU Xinxiao, QIN Fucang, et al. Spatial-point-pattern analysis of Mongolian linden in Beijing Wulingshan Nature Reserve [J]. For Resour Manage, 2009, 38(2): 49 − 54. [25] 董雪, 杜昕, 孙志虎, 等. 生境梯度影响下的天然红松种群空间格局与种内关联[J]. 生态学报, 2020, 40(15): 5239 − 5246. DONG Xue, DU Xin, SUN Zhihu, et al. Spatial pattern and intraspecific association of natural Korean pine population under the influence of habitat gradient [J]. Acta Ecol Sin, 2020, 40(15): 5239 − 5246. [26] 赵明水, 庞春梅, 杨淑贞, 等. 浙江天目山交让木种群空间点格局分析[J]. 浙江大学学报(理学版), 2015, 42(1): 47 − 53. ZHAO Mingshui, PANG Chunmei, YANG Shuzhen, et al. Spatial patterns of Daphniphyllum macropodum in Tianmu Mountain, Zhejiang Province [J]. J Zhejiang Univ Sci Ed, 2015, 42(1): 47 − 53. [27] SCHULTER D. Avariance test for detecting species association, with some example applications [J]. Ecology, 1984, 65(3): 998 − 1005. [28] 武秀娟. 芦芽山阴坡典型天然次生林群落的种间联结性[J]. 西北林学院学报, 2020, 35(1): 54 − 61. WU Xiujuan. Interspecific association of the plant communities in natural secondary forests on north slope of Luya Mountain [J]. J Northwest For Univ, 2020, 35(1): 54 − 61. [29] 王伯荪, 彭少麟. 南亚热带常绿阔叶林种间联结测定技术研究(Ⅰ)种间联结测式的探讨与修正[J]. 植物生态学报, 1985, 9(4): 274 − 279. WANG Bosun, PENG Shaolin. Studies on the measuring techniques of interspecific association of lower-subtropical evergreen-broadleaved forests (Ⅰ) The exploration and the revision on the measuring formulas of interspecific association [J]. Chin J Plant Ecol, 1985, 9(4): 274 − 279. [30] 黄祥童, 王绍先, 黄炳军, 等. 珍稀植物对开蕨与其伴生物种的联结性及群落稳定性[J]. 生态学报, 2015, 35(1): 80 − 90. HUANG Xiangtong, WANG Shaoxian, HUANG Bingjun, et al. Analyses of community stability and inter-specific associations between the rare plant Phyllitis scolopendrium and its associated species [J]. Acta Ecol Sin, 2015, 35(1): 80 − 90. [31] BISHARA A J, HITTNER J B. Testing the significance of a correlation with nonnormal data: comparison of Pearson, Spearman, transformation, and resampling approaches [J]. Psycholl Methods, 2012, 17(3): 399 − 417. [32] 韩有志, 王政权. 森林更新与空间异质性[J]. 应用生态学报, 2002, 13(5): 615 − 619. HAN Youzhi, WANG Zhengquan. Spatial heterogeneity and forest regeneration [J]. Chin J Appl Ecol, 2002, 13(5): 615 − 619. [33] BROENNIMANN O, FITZPATRICK M C, PEARMAN P B, et al. Measuring ecological niche overlap from occurrence and spatial environmental data [J]. Glob Ecol Biogeogr, 2012, 21(4): 481 − 497. [34] GONZALEZ A, LOREAU M. The causes and consequences of compensatory dynamics in ecological communities [J]. Ann Rev Ecol Evol Syst, 2009, 40(1): 393 − 414. [35] JIA Guodong, YU Xinxiao, FAN Dengxing, et al. Mechanism underlying the spatial pattern formation of dominant tree species in a natural secondary forest [J]. PLoS One, 2016, 11(3): e0152596. doi: 10.1371/journal.pone.0152596. [36] 邓莉萍, 白雪娇, 李露露, 等. 辽东山区次生林优势木本植物种间联结与相关分析[J]. 生态学杂志, 2015, 34(6): 1473 − 1479. DENG Liping, BAI Xuejiao, LI Lulu, et al. Interspecific association and correlation among dominant woody plants of secondary forest in montane region of eastern Liaoning Province, China [J]. Chin J Ecol, 2015, 34(6): 1473 − 1479. [37] 胡楠, 范玉龙, 丁圣彦. 伏牛山森林生态系统灌木植物功能群分类[J]. 生态学报, 2009, 29(8): 4017 − 4025. HU Nan, FAN Yulong, DING Shengyan. Functional group classification of shrub species in the Funiu Mountain forest ecosystem [J]. Acta Ecol Sin, 2009, 29(8): 4017 − 4025. 期刊类型引用(5)
1. 杨聪,李燕琼. 四川省水稻碳排放量测算及减排对策. 农村经济与科技. 2024(13): 12-15 . 百度学术
2. 黄炜,张虹影,肖相泽,林朗,王诚. 当前农产品碳标识实施困境及推广路径探讨. 浙江农林大学学报. 2024(05): 909-918 . 本站查看
3. 李文寒,柳飞扬,张梦,顾蕾,周国模. 浙江省种植业碳排放时空演变规律及驱动因素分析. 浙江农林大学学报. 2024(05): 898-908 . 本站查看
4. 谈昕,汪祥忠,陈颖,吴萱,罗京,张琴,李艳宾,盛烨泉. 低共熔溶剂分离木质纤维组分的研究进展. 应用化工. 2024(10): 2468-2471 . 百度学术
5. 林旭,漆雁斌,谢纬. 四川种植业绿色发展趋势与影响因素. 中国农业气象. 2024(11): 1265-1275 . 百度学术
其他类型引用(3)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200586