留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浙江省公益林生物多样性和立地对生物量的影响

金超 李领寰 吴初平 姚良锦 朱锦茹 袁位高 江波 焦洁洁

金超, 李领寰, 吴初平, 姚良锦, 朱锦茹, 袁位高, 江波, 焦洁洁. 浙江省公益林生物多样性和立地对生物量的影响[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200696
引用本文: 金超, 李领寰, 吴初平, 姚良锦, 朱锦茹, 袁位高, 江波, 焦洁洁. 浙江省公益林生物多样性和立地对生物量的影响[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200696
JIN Chao, LI Linghuan, WU Chuping, YAO Liangjin, ZHU Jinru, YUAN Weigao, JIANG Bo, JIAO Jiejie. Impact of biodiversity and site factors on biomass of public welfare forests in Zhejiang Province[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200696
Citation: JIN Chao, LI Linghuan, WU Chuping, YAO Liangjin, ZHU Jinru, YUAN Weigao, JIANG Bo, JIAO Jiejie. Impact of biodiversity and site factors on biomass of public welfare forests in Zhejiang Province[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200696

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

浙江省公益林生物多样性和立地对生物量的影响

doi: 10.11833/j.issn.2095-0756.20200696
基金项目: 浙江省省属科研院所扶持专项(2019F065-6)
详细信息
    作者简介: 金超(ORCID: 0000-0002-5615-1145),从事森林群落生态学研究。E-mail: superking_jin@163.com
    通信作者: 焦洁洁(ORCID: 0000-0001-7840-5284),助理研究员,从事森林经营技术研究。E-mail: 705241632@qq.com
  • 中图分类号: S718.5

Impact of biodiversity and site factors on biomass of public welfare forests in Zhejiang Province

  • 摘要:   目的  探究浙江省公益林生物多样性和立地因子对生物量的影响,研究公益林群落结构的稳定性。  方法  依托浙江省3个县的公益林调查数据,探索10个土壤和地形因子(土壤吸湿水、土壤pH、土壤有机质、土壤速效氮、土壤速效磷、土壤速效钾、海拔、坡度、坡向和土壤厚度)以及生物多样性(物种丰富度和谱系多样性)对3种森林类型(针叶林、针阔混交林和阔叶林)生物量的影响。  结果  谱系多样性较物种丰富度能更好地区分森林类型,其中阔叶林和混交林有较高的生物多样性,针叶林则拥有高生物量。仅考虑单独因子的作用,谱系多样性(P=0.041)和物种丰富度(P<0.001)在阔叶林中与生物量呈显著正相关;而考虑环境因子的效应时,物种丰富度、谱系多样性、土壤速效氮、土壤厚度和土壤吸湿水对阔叶林中的生物量具有显著影响(P<0.05),土壤厚度和土壤酸碱度对针叶林的生物量具有显著影响(P<0.05)。谱系多样性会因为环境因子的影响而和生物量呈负相关。  结论  生物多样性和环境因素共同影响浙江公益林的生物量。在未来公益林的经营中,应对不同森林类型采取相应的措施,增加针阔混交林和针叶林中的土壤肥力,改善阔叶林的物种结构,以期更好地维持和提升公益林的生态系统功能。图2表2参44
  • 图  1  3种森林类型中谱系多样性、物种丰富度和生物量差异(平均值±标准差)

    Figure  1  Phylogenetic diversity, species richness and biomass per plot in three forest types ($ \overline x \pm D_{{\rm{s}}} $)

    图  2  公益林3种森林类型谱系多样性、物种丰富度与生物量的关系

    Figure  2  Relationship between phylogenetic diversity, species richness and above-ground biomass within each forest type

    表  1  公益林3种森林类型样方概况

    Table  1.   Summary of three forest types of welfare forests

    森林类型样方数/个优势树种物种数/种林龄范围/a
    针叶林  49杉木、马尾松Pinus massoniana610~50
    针阔混交林69杉木、马尾松、木荷和青冈960~52
    阔叶林  79石栎Lithocarpus glaber、青冈、白栎Quercus fabri和苦槠Castanopsis sclerophylla890~60
    下载: 导出CSV

    表  2  不同森林类型的生物量与生物多样性、环境因子之间的关系

    Table  2.   Relationship between total above-ground biomass (AGB) and biodiversity, environmental factors within each forest type

    森林类型解释因子估计系数标准误Z显著度
    阔叶林截距   1.849 80.426 54.337<0.001***
    谱系多样性−0.001 00.000 4−2.4130.016*
    物种丰富度0.164 80.040 34.084<0.001***
    土壤速效氮0.002 90.001 32.1900.029*
    土壤厚度 0.010 80.004 52.3660.018*
    土壤吸湿水0.424 80.137 6−3.1600.002*
    混交林截距   1.701 20.253 96.700<0.001***
    土壤厚度 0.008 50.005 11.6790.093
    针叶林截距   3.965 40.940 74.216<0.001***
    土壤厚度 0.014 90.004 53.325<0.001***
    土壤酸碱度−0.458 10.184 7−2.4810.013*
    坡度   −0.011 20.006 3−1.7750.076
      说明:*P<0.05, **P<0.01, ***P<0.001;Z值为用于检验相应估计值为0的假设(零假设)的Wald统计量
    下载: 导出CSV
  • [1] CHASE J M, BLOWES S A, KNIGHT T M, et al. Ecosystem decay exacerbates biodiversity loss with habitat loss [J]. Nature, 2020, 584: 238 − 243. doi:  10.1038/s41586-020-2531-2
    [2] FAO. China-Global Forest Resources Assessment 2015-Country Report [EB/OL]. [2021-04-11]http://www.fao.org/documents/card/en/c/a6afe3a7-0fb6-4920-bb18-ae3465c2f0a9/.
    [3] WU Chuping, VELLEND M, YUAN Weiguo, et al. Patterns and determinants of plant biodiversity in non-commercial forests of eastern China[J]. PloS One, 2017, 12(11). doi: 10.1371/journal.pone.0188409.
    [4] 沈爱华, 袁位高, 张骏, 等. 浙江省生态公益林物种多样性时空格局研究[J]. 浙江林业科技, 2014, 34(1): 1 − 6. doi:  10.3969/j.issn.1001-3776.2014.01.001

    SHEN Aihua, YUAN Weigao, ZHANG Jun, et al. Spatial-temporal patterns of species diversity in ecological forests of Zhejiang [J]. J Zhejiang For Sci Tech, 2014, 34(1): 1 − 6. doi:  10.3969/j.issn.1001-3776.2014.01.001
    [5] 钱逸凡, 伊力塔, 钭培民, 等. 浙江缙云公益林生物量及固碳释氧效益[J]. 浙江农林大学学报, 2012, 29(2): 257 − 264. doi:  10.3969/j.issn.2095-0756.2012.02.016

    QIAN Yifan, Yilita, DOU Peimin, et al. Biomass and carbon fixation with oxygen release benefits in an ecological service forest of Jinyun County, China [J]. J Zhejiang A&F Univ, 2012, 29(2): 257 − 264. doi:  10.3969/j.issn.2095-0756.2012.02.016
    [6] BROSE U, HILLEBRAND H. Biodiversity and ecosystem functioning in dynamic landscapes[J]. Philos Trans Royal Soc B Biol Sci, 2016, 371(1694). doi: 10.1098/rstb.2015.0267.
    [7] EVANS E W. Biodiversity, ecosystem functioning, and classical biological control [J]. Appl Entomol Zool, 2016, 51(2): 173 − 184. doi:  10.1007/s13355-016-0401-z
    [8] LOREAU M, NAEEM S, INCHAUSTI P, et al. Biodiversity and ecosystem functioning: current knowledge and future challenges [J]. Science, 2001, 294(5543): 804 − 808. doi:  10.1126/science.1064088
    [9] SUTHERLAND W J, FRECKLETON R P, CHARLES H, et al. Identification of 100 fundamental ecological questions [J]. J Ecol, 2013, 101(1): 58 − 67. doi:  10.1111/1365-2745.12025
    [10] CAVENDER-BARES J, KOZAK K H, FINE P V A, et al. The merging of community ecology and phylogenetic biology [J]. Ecol Lett, 2009, 12(7): 693 − 715. doi:  10.1111/j.1461-0248.2009.01314.x
    [11] LASKY J R, URIARTE M, BOUKILI V, et al. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession [J]. Ecol Lett, 2014, 17(9): 1158 − 1167. doi:  10.1111/ele.12322
    [12] CADOTTE M W. Experimental evidence that evolutionarily diverse assemblages result in higher productivity [J]. Proc Natl Acad Sci, 2013, 110(22): 8996 − 9000. doi:  10.1073/pnas.1301685110
    [13] LARUE E A, CHAMBERS S M, EMERY N C. Eco-evolutionary dynamics in restored communities and ecosystems [J]. Restoration Ecol, 2017, 25(1): 19 − 26. doi:  10.1111/rec.12458
    [14] DAVIES T J, URBAN M, RAYFIELD B, et al. Deconstructing the relationships between phylogenetic diversity and ecology: a case study on ecosystem functioning [J]. Ecology, 2016, 97(9): 2212 − 2222. doi:  10.1002/ecy.1507
    [15] SANTOS A M C, CIANCIARUSO M, BARBOSA A M, et al. Current climate, but also long-term climate changes and human impacts, determine the geographic distribution of European mammal diversity [J]. Global Ecol Biogeogr, 2020, 29(10): 1758 − 1769. doi:  10.1111/geb.13148
    [16] 王立竹, 于晓鹏, 管杰然, 等. 浙江缙云县公益林群落植物多样性及生物量动态分析[J]. 生态科学, 2018, 37(4): 147 − 153.

    WANG Lizhu, YU Xiaopeng, GUAN Jieran, et al. Plant diversity and biomass dynamics of the public-welfare forest in Jinyun County, Zhejiang Province [J]. Ecol Sci, 2018, 37(4): 147 − 153.
    [17] RUIZ-BENITO P, RATCLIFFE S, ZAVALA M A, et al. Climate- and successional-related changes in functional composition of European forests are strongly driven by tree mortality [J]. Global Change Biol, 2017, 23(10): 4162 − 4176. doi:  10.1111/gcb.13728
    [18] ALI A, YAN Enrong, CHANG S X, et al. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests [J]. Sci Total Environ, 2017, 574: 654 − 662. doi:  10.1016/j.scitotenv.2016.09.022
    [19] BECKNELL J M, POWERS J S. Stand age and soils as drivers of plant functional traits and aboveground biomass in secondary tropical dry forest [J]. Can J For Res, 2014, 44(6): 604 − 613. doi:  10.1139/cjfr-2013-0331
    [20] PEÑA-CLAROS M, POORTER L, ALARCON A, et al. Soil effects on forest structure and diversity in a moist and a dry tropical forest [J]. Biotropica, 2012, 44(3): 276 − 283. doi:  10.1111/j.1744-7429.2011.00813.x
    [21] van der SANDE M, PEÑA-CLAROS M, ASCARRUNZ N L, et al. Abiotic and biotic drivers of biomass change in a Neotropical forest [J]. J Ecol, 2017, 105(5): 1223 − 1234. doi:  10.1111/1365-2745.12756
    [22] COOMES D A, KUNSTLER G, CANHAM C D, et al. A greater range of shade-tolerance niches in nutrient-rich forests: an explanation for positive richness-productivity relationships? [J]. J Ecol, 2009, 97(4): 705 − 717. doi:  10.1111/j.1365-2745.2009.01507.x
    [23] 闫东锋, 郭丹丹, 吴桂藏, 等. 栎类天然次生林不同组分及土壤碳氮分布对森林抚育的响应[J]. 浙江农林大学学报, 2017, 34(2): 215 − 224. doi:  10.11833/j.issn.2095-0756.2017.02.003

    YAN Dongfeng, GUO Dandan, WU Guizang, et al. Carbon and nitrogen distribution with forest tending in a natural secondary oak forest [J]. J Zhejiang A&F Univ, 2017, 34(2): 215 − 224. doi:  10.11833/j.issn.2095-0756.2017.02.003
    [24] 王涛, 万晓华, 程蕾, 等. 杉木采伐迹地营造阔叶树种对土壤微生物生态化学计量特征的影响[J]. 应用生态学报, 2020, 31(11): 3851 − 3858.

    WANG Tao, WANG Xiaohua, CHENG Lei, et al. Effects of broadleavedtree species on soil microbial stoichiometry in clear-cut patches of Cunninghamia lanceolata plantation [J]. Chin J Appl Ecol, 2020, 31(11): 3851 − 3858.
    [25] KHALIL M, GIBSON D J, BAER S G. Phylogenetic diversity reveals hidden patterns related to population source and species pools during restoration [J]. J Appl Ecol, 2017, 54(1): 91 − 101. doi:  10.1111/1365-2664.12743
    [26] 袁位高. 浙江省生态公益林主要群落结构的比较研究[D]. 北京: 中国林业科学研究院, 2009.

    YUAN Weigao. Comparative Studies on Structure of Main Forest Type of Ecological Service Forest in Zhejiang Province[D]. Beijing: Chinese Academy of Forestry, 2009.
    [27] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [28] The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG Ⅲ [J]. Bot J Linn Soc, 2009, 161(2): 105 − 121. doi:  10.1111/j.1095-8339.2009.00996.x
    [29] ZANNE A E, TANK D C, CORNWELL W K, et al. Three keys to the radiation of angiosperms into freezing environments [J]. Nature, 2014, 506(7486): 89 − 92. doi:  10.1038/nature12872
    [30] OKSANEN J, BLANCHET F G, FRIENDLY M, et al. Package “vegan”: Community Ecology Package. R package version 2.5–6, 2019[CP/OL]. [2020-11-12]http://CARN.R-project.org/package=vegan.
    [31] FAITH D P. Conservation evaluation and phylogenetic diversity [J]. Biol Conserv, 1992, 61(1): 1 − 10. doi:  10.1016/0006-3207(92)91201-3
    [32] TUCKER C M, CADOTTE M W, CARVALHO S B, et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology [J]. Biol Rev, 2017, 92(2): 698 − 715. doi:  10.1111/brv.12252
    [33] HELMUS M R, BLAND T J, WILLIAMS C K, et al. Phylogenetic measures of biodiversity [J]. Am Nat, 2007, 169(3): 68 − 83. doi:  10.1086/511334
    [34] KEMBEL S W, COWAN P D, HELMUS M R, et al. Picante: R tools for integrating phylogenies and ecology [J]. Bioinformatics, 2010, 26(11): 1463 − 1464. doi:  10.1093/bioinformatics/btq166
    [35] 袁位高, 江波, 葛永金, 等. 浙江省重点公益林生物量模型研究[J]. 浙江林业科技, 2009, 29(2): 1 − 5. doi:  10.3969/j.issn.1001-3776.2009.02.001

    YUAN Weigao, JIANG Bo, GE Yongjin, et al. Study on biomass model of key ecological forest in Zhejiang Province [J]. J Zhejiang For Sci Tech, 2009, 29(2): 1 − 5. doi:  10.3969/j.issn.1001-3776.2009.02.001
    [36] HAIR J F, ANDERSON R E, TATHAM R L, et al. Multi-variate Data Analysis[M]. 5th ed. New Jersey: Prentice Hall, 1998.
    [37] BURNHAM K P, ANDERSON D R. Model Selection and Multi-model Inference: A Practical Information Theoretic Approach[M]. New York: Springer, 2010.
    [38] SATDICHANH M, MA H X, YAN K, et al. Phylogenetic diversity correlated with above‐ground biomass production during forest succession: evidence from tropical forests in Southeast Asia [J]. J Ecol, 2019, 107(3): 1419 − 1432. doi:  10.1111/1365-2745.13112
    [39] 吴初平, 韩文娟, 江波, 等. 浙江定海次生林内物种丰富度与生物量和生产力关系的环境依赖性[J]. 生物多样性, 2018, 26(6): 545 − 553. doi:  10.17520/biods.2017320

    WU Chuping, HAN Wenjuan, JIANG Bo, et al. Relationships between species richness and biomass/productivity depend on environmental factors in secondary forests of Dinghai, Zhejiang Province [J]. Biodiversity Sci, 2018, 26(6): 545 − 553. doi:  10.17520/biods.2017320
    [40] OUYANG Suai, XIANG Wenhua, WANG Xiangping, et al. Significant effects of biodiversity on forest biomass during the succession of subtropical forest in south China [J]. For Ecol Manage, 2016, 372: 291 − 302. doi:  10.1016/j.foreco.2016.04.020
    [41] VENAIL P, GROSS K, OAKLEY T H, et al. Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies [J]. Funct Ecol, 2015, 29(5): 615 − 626. doi:  10.1111/1365-2435.12432
    [42] 车盈, 金光泽. 物种多样性和系统发育多样性对阔叶红松林生产力的影响[J]. 应用生态学报, 2019, 30(7): 2241 − 2248.

    CHE Ying, JIN Guangze. Effects of species diversity and phylogenetic diversity on productivity of a mixed broad- leaved-Korean pine forest [J]. Chin J Appl Ecol, 2019, 30(7): 2241 − 2248.
    [43] 侯嫚嫚, 李晓宇, 王均伟, 等. 长白山针阔混交林不同演替阶段群落系统发育和功能性状结构简[J]. 生态学报, 2017, 37(22): 7502 − 7513.

    HOU Manman, LI Xiaoyu, WANG Junwei, et al. Phylogenetic development and functional structures during successional stages of conifer and broad-leaved mixed forest communities in changbai mountains, China [J]. Acta Ecol Sin, 2017, 37(22): 7502 − 7513.
    [44] YUAN Zuoqiang, WANG Shaopeng, GAZOL A, et al. Multiple metrics of diversity have different effects on temperate forest functioning over succession [J]. Oecologia, 2016, 182(4): 1175 − 1185. doi:  10.1007/s00442-016-3737-8
  • [1] 李伟成, 郑彦超, 盛海燕, 楼毅, 于辉.  浙江庆元巾子峰国家森林公园植被群落的数量分类与排序 . 浙江农林大学学报, 2021, 38(3): 523-533. doi: 10.11833/j.issn.2095-0756.20200393
    [2] 韩泽民, 李源, 王熊, 菅永峰, 周靖靖, 佃袁勇, 黄光体.  不同演替程度下马尾松人工林生物多样性对生物量的影响 . 浙江农林大学学报, 2021, 38(2): 246-252. doi: 10.11833/j.issn.2095-0756.20200334
    [3] 曾洪, 陈聪琳, 喻静, 向琳, 孙一淼, 胡明玥, 郝建锋.  人为干扰对雅安苍坪山公园桉树人工林物种多样性和生物量的影响 . 浙江农林大学学报, 2021, 38(2): 253-261. doi: 10.11833/j.issn.20950756.20200312
    [4] 李智超, 张勇强, 厚凌宇, 宋立国, 孙启武.  杉木人工林土壤微生物对林分密度的响应 . 浙江农林大学学报, 2020, 37(1): 76-84. doi: 10.11833/j.issn.2095-0756.2020.01.010
    [5] 叶森土, 金超, 吴初平, 杨堂亮, 江波, 袁位高, 黄玉洁, 焦洁洁, 孙杰杰.  浙江松阳县生态公益林群落分类排序及优势种种间关联分析 . 浙江农林大学学报, 2020, 37(4): 693-701. doi: 10.11833/j.issn.2095-0756.20190514
    [6] 左政, 郑小贤.  不同干扰等级下常绿阔叶次生林林分结构及树种多样性 . 浙江农林大学学报, 2019, 36(1): 21-30. doi: 10.11833/j.issn.2095-0756.2019.01.004
    [7] 何荣晓, 杨帆, 崔明.  海口市城市森林结构及植物多样性指标相关性分析 . 浙江农林大学学报, 2019, 36(6): 1142-1150. doi: 10.11833/j.issn.2095-0756.2019.06.011
    [8] 张勇, 胡海波, 王增, 黄玉洁, 吕爱华, 张金池, 刘胜龙.  凤阳山4种森林土壤在不同温度培养下活性有机碳的变化 . 浙江农林大学学报, 2018, 35(2): 243-251. doi: 10.11833/j.issn.2095-0756.2018.02.007
    [9] 叶钱, 蒋燕锋, 冯家骏, 冯恺俊, 谢彩香, 刘京晶.  多花黄精有效成分与主要环境因子的相关性 . 浙江农林大学学报, 2017, 34(1): 192-196. doi: 10.11833/j.issn.2095-0756.2017.01.026
    [10] 朱国亮, 商天其, 管杰然, 高洪娣, 叶诺楠, 伊力塔.  缙云县公益林群落数量分类与排序 . 浙江农林大学学报, 2017, 34(1): 68-77. doi: 10.11833/j.issn.2095-0756.2017.01.011
    [11] 钱逸凡, 韩冰园, 伊力塔, 张超, 余树全, 郑超超.  浙江中部地区公益林的群落结构 . 浙江农林大学学报, 2013, 30(6): 830-838. doi: 10.11833/j.issn.2095-0756.2013.06.005
    [12] 王金亮, 程鹏飞, 徐申, 王小花, 程峰.  基于遥感信息模型的香格里拉森林生物量估算 . 浙江农林大学学报, 2013, 30(3): 325-329. doi: 10.11833/j.issn.2095-0756.2013.03.003
    [13] 季碧勇, 陶吉兴, 张国江, 杜群, 姚鸿文, 徐军.  高精度保证下的浙江省森林植被生物量评估 . 浙江农林大学学报, 2012, 29(3): 328-334. doi: 10.11833/j.issn.2095-0756.2012.03.002
    [14] 钱逸凡, 伊力塔, 钭培民, 朱国亮, 应宝根, 余树全.  浙江缙云公益林生物量及固碳释氧效益 . 浙江农林大学学报, 2012, 29(2): 257-264. doi: 10.11833/j.issn.2095-0756.2012.02.016
    [15] 杨前宇, 谢锦忠, 张玮, 林振清.  椽竹各器官生物量模型 . 浙江农林大学学报, 2011, 28(3): 519-526. doi: 10.11833/j.issn.2095-0756.2011.03.027
    [16] 玉宝, 张秋良, 王立明, 乌吉斯古楞.  不同结构落叶松天然林生物量及生产力特征 . 浙江农林大学学报, 2011, 28(1): 52-58. doi: 10.11833/j.issn.2095-0756.2011.01.009
    [17] 杨再鸿, 杨小波, 余雪标, 李跃烈, 吴庆书.  海南桉树林林下植物多样性特点的简单相关分析 . 浙江农林大学学报, 2007, 24(6): 725-730.
    [18] 李贵祥, 孟广涛, 方向京, 郎南军, 袁春明, 温绍龙.  滇中高原桤木人工林群落特征及生物量分析 . 浙江农林大学学报, 2006, 23(4): 362-366.
    [19] 哀建国, 梅盛龙, 刘胜龙, 丁炳扬.  浙江凤阳山自然保护区福建柏群落物种多样性 . 浙江农林大学学报, 2006, 23(1): 41-45.
    [20] 杨同辉, 达良俊, 宋永昌, 杨永川, 王良衍.  浙江天童国家森林公园常绿阔叶林生物量研究(Ⅰ)群落结构及主要组成树种生物量特征 . 浙江农林大学学报, 2005, 22(4): 363-369.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200696

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/4/1

计量
  • 文章访问数:  525
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-12
  • 修回日期:  2021-04-12

浙江省公益林生物多样性和立地对生物量的影响

doi: 10.11833/j.issn.2095-0756.20200696
    基金项目:  浙江省省属科研院所扶持专项(2019F065-6)
    作者简介:

    金超(ORCID: 0000-0002-5615-1145),从事森林群落生态学研究。E-mail: superking_jin@163.com

    通信作者: 焦洁洁(ORCID: 0000-0001-7840-5284),助理研究员,从事森林经营技术研究。E-mail: 705241632@qq.com
  • 中图分类号: S718.5

摘要:   目的  探究浙江省公益林生物多样性和立地因子对生物量的影响,研究公益林群落结构的稳定性。  方法  依托浙江省3个县的公益林调查数据,探索10个土壤和地形因子(土壤吸湿水、土壤pH、土壤有机质、土壤速效氮、土壤速效磷、土壤速效钾、海拔、坡度、坡向和土壤厚度)以及生物多样性(物种丰富度和谱系多样性)对3种森林类型(针叶林、针阔混交林和阔叶林)生物量的影响。  结果  谱系多样性较物种丰富度能更好地区分森林类型,其中阔叶林和混交林有较高的生物多样性,针叶林则拥有高生物量。仅考虑单独因子的作用,谱系多样性(P=0.041)和物种丰富度(P<0.001)在阔叶林中与生物量呈显著正相关;而考虑环境因子的效应时,物种丰富度、谱系多样性、土壤速效氮、土壤厚度和土壤吸湿水对阔叶林中的生物量具有显著影响(P<0.05),土壤厚度和土壤酸碱度对针叶林的生物量具有显著影响(P<0.05)。谱系多样性会因为环境因子的影响而和生物量呈负相关。  结论  生物多样性和环境因素共同影响浙江公益林的生物量。在未来公益林的经营中,应对不同森林类型采取相应的措施,增加针阔混交林和针叶林中的土壤肥力,改善阔叶林的物种结构,以期更好地维持和提升公益林的生态系统功能。图2表2参44

English Abstract

金超, 李领寰, 吴初平, 姚良锦, 朱锦茹, 袁位高, 江波, 焦洁洁. 浙江省公益林生物多样性和立地对生物量的影响[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200696
引用本文: 金超, 李领寰, 吴初平, 姚良锦, 朱锦茹, 袁位高, 江波, 焦洁洁. 浙江省公益林生物多样性和立地对生物量的影响[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200696
JIN Chao, LI Linghuan, WU Chuping, YAO Liangjin, ZHU Jinru, YUAN Weigao, JIANG Bo, JIAO Jiejie. Impact of biodiversity and site factors on biomass of public welfare forests in Zhejiang Province[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200696
Citation: JIN Chao, LI Linghuan, WU Chuping, YAO Liangjin, ZHU Jinru, YUAN Weigao, JIANG Bo, JIAO Jiejie. Impact of biodiversity and site factors on biomass of public welfare forests in Zhejiang Province[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200696

返回顶部

目录

    /

    返回文章
    返回