-
屋顶绿化是一种独立于自然土壤,在各类建筑的顶部种植树木花卉的绿化形式[1-2],对解决中国城市绿化覆盖率低、绿化资源紧张、“热岛效应”加剧等问题具有重大意义[3-4]。由于屋顶环境的风力大、光照强、湿度低且荷载非常有限[5-6],同时植物的健康生长需要适宜的温度、水分和养分,因此绿化基质应兼备质地轻、持水保水性强、通气透水性强、肥力适中、结构稳定、经济环保等特点[7]。屋顶绿化常用的基质有改良土和无机复合种植土,前者是将田园土与有机物质和无机物质按一定比例混合而成[8],后者是非金属矿物经高温膨化后加入外源添加剂配制而成[9]。相比改良土,无机复合种植土不但能更好地解决基质容重大、透气保水性差、肥力低等问题,还可避免基质结构不稳定、有机质含量及排水色度过高等问题,是屋顶绿化基质的最佳选择[10]。研究表明:以适宜的粒径比配制的珍珠岩轻型基质可改善基质的容重、孔隙度、电导率等指标,既能减轻屋顶负荷,又能避免板结[11]。由于珍珠岩交换吸附能力弱,通过孔隙截留作用和土粒吸附作用的保水保肥效果不理想。因此,在珍珠岩基质中添加合适的改良剂,提高轻型基质的保水保肥性能,对无机复合种植土的研发具有重要意义。保水剂是一种高分子亲水聚合物,可反复吸水,能使基质的容重降低,持水量升高,孔隙状况得到改善[12],水分蒸发及养分流失减缓[13-14]。生物表面活性剂是无毒、可降解的微生物代谢产物,能降低固体物料的表面张力,在农业中常作为润湿剂。适量添加生物表面活性剂不但能使基质有效水分分布更均匀,缓解基质局部干燥,提高水分利用率[15-16],还能增加基质的保水保肥能力,促进植物根系发育[17],降低土壤侵蚀,减少露霜危害和抑制土传病原菌的繁殖[18]。保水剂和生物表面活性剂的应用主要集中在园艺栽培基质、农田土壤和森林土壤,但大多为单施,对两者混施于屋顶绿化专用基质的研究鲜有报道。本研究在施用缓释肥条件下在珍珠岩基质中添加保水剂和生物表面活性剂,结合基质的理化性质和植物生长指标,选出最优屋顶绿化专用基质配方。研究结果可为保水剂和生物表面活性剂在屋顶绿化基质方面的应用提供依据,同时对屋顶绿化新型基质的研发提供思路。
-
试验地点位于北京林业大学三顷园苗圃(40°01′N,116°35′E),为暖温带半湿润半干旱季风气候区,年均降水量626 mm,其中80%集中在夏季,年均太阳辐射量4.7~5.7 GJ·m−2。
供试材料包括珍珠岩、缓释肥、保水剂和生物表面活性剂。珍珠岩产自河南信阳。将粒径为0.20~1.00 mm和1.00~3.35 mm的2种珍珠岩按照质量比7∶3均匀混合,备用。保水剂为粉末状,粒径180~230 μm,购自烟台润星环保科技有限公司;生物表面活性剂购自西安瑞捷生物科技有限公司。将生物表面活性剂原液用去离子水稀释50倍得到质量分数为2%的生物表面活性剂溶液备用。缓释肥为美国施可得公司(The Scotts Company)的奥绿肥,主要养分组成:氮为15%、五氧化二磷为9%、氧化钾为11%、氧化镁为2%(均为质量分数)。
供试植物金叶莸Caryopteris clandonensis ‘Worcester Gold’和马蔺Iris lactea。试验中选用长势相同,苗龄1 a的植株。
-
试验于2019年3月至2020年7月进行,由基质筛选试验(2019年3−5月)和室外栽培试验(2019年7月至2020年7月)2个部分组成。
-
采用3×3完全随机试验,因素A为保水剂添加量,施用水平(以珍珠岩质量分数计)为0、0.5、1.0 g·kg−1,分别记为A0、A0.5、A1.0;因素B为质量分数2%的生物表面活性剂添加量,施用水平为0、100、200 mL·kg−1,分别记为B0、B100、B200;A0B0为对照组,共9个处理。每个处理重复5次,合计45盆。各处理基质组成见表1。
表 1 试验处理基质组成
Table 1. Composition of substrate treatments
处理 保水剂/
(g·kg−1)2%生物表面活性剂/
(mL·kg−1)缓释肥/
(g·kg−1)对照 0 0 30 A0B100 0 100 30 A0B200 0 200 30 A0.5B0 0.5 0 30 A0.5B100 0.5 100 30 A0.5B200 0.5 200 30 A1.0B0 1.0 0 30 A1.0B100 1.0 100 30 A1.0B200 1.0 200 30 等量称取9份1.1节中的珍珠岩,分别平铺于园艺地垫上,按照表1的施用水平向珍珠岩均匀施加2%生物表面活性剂,混匀并风干。再施加保水剂和缓释肥,充分混匀后将各处理装入花盆(高17.5 cm,口径16.0 cm,底径12.5 cm)中,基质厚度设置为15 cm,每组处理装5盆。定期浇水,保持基质湿度为田间持水量的60%左右,将基质在室外培育2个月后(2019年5月)现场取样。
-
根据1.2.1节试验结果,筛选出A1.0B100、A1.0B200等2种基质与对照进行屋顶栽培试验,每种基质种植金叶莸和马蔺各1槽(种植槽长156 cm、宽78 cm、高48 cm,槽底装有排蓄水板和排水口)。按照简单式屋顶花园种植规划,设置厚度为40 cm的基质层。种植前1 d均匀浇水至排水口刚好流出水,种植当天将每株金叶莸和马蔺修剪株高至10 cm,每槽种植32株,株间距17 cm×16 cm。期间由专人管护,定期浇水、除草,栽培1 a后(2020年7月)取样。
-
基质样品采集与处理:称量体积为V的环刀质量(M0)。用环刀取样后,将花盆中剩余基质置于牛皮纸上充分混匀,四分法缩分后将样品封存于聚乙烯自封袋,带回晾土室自然风干,去除杂质、粉碎并过筛。用于全氮测定的样品过100目筛,测定其他指标的样品过10目筛。
将取样后的环刀放入水(密度为ρ水)中并保持水面与环刀上口持平但不淹没环刀顶端,浸泡24 h后称量(M1),将环刀底盖向下置于石英砂上,静置2 h时称量(M2),继续静置至8 h时称量(M3),最终在105 ℃下烘干至恒量,冷却至室温后称量(M4)。测定:基质容重A=(M4−M0) /V;基质饱和含水量B=(M1−M4)/(M4−M0);基质毛管持水量C=(M2−M4)/(M4−M0);基质田间持水量D=(M3−M4)/(M4−M0);总孔隙度E=AB/ρ水;毛管孔隙度F=CA/ρ水;通气孔隙度G=E−F;水气比H=F/G[19]。
pH、电导率测定:以质量比为5∶1的水土比将去离子水和基质混合震荡30 min,静置后用雷磁S-3C型pH计测定pH,MP521型电导率仪测定电导率。
全氮、有效磷、速效钾和阳离子交换量测定参考《土壤农化分析》[20]。全氮:凯氏定氮法;有效磷:0.5 mol·L−1 碳酸氢钠浸提-钼锑抗比色法(波长700 nm);速效钾:醋酸铵浸提-火焰光度计法;阳离子交换量:氯化钡-硫酸镁(强迫交换)法。
-
将基质的理化指标组成优劣排序值矩阵,对基质进行综合评价,评分越高表明基质越优[21]。
-
每槽随机选取5株植物,测定株高、根长、地上部鲜质量和根部鲜质量以及植物总鲜质量,并计算根冠比。
-
根据f(x)=(x−xmin)/(xmax−xmin)求得植物某一形态指标的隶属函数值[22]。其中:x为该指标某一测定值,xmax和xmin分别表示该指标的最大值和最小值。基质综合评价指数为各形态指标隶属函数值的平均数,其值越大表明栽培基质越优。
-
数据的整理和制图用Excel 2016,数据分析用SPSS 20.0。
-
由表2可知:随保水剂和生物表面活性剂施用量增加,基质的容重、总孔隙度和通气孔隙度均呈降低趋势;毛管孔隙度和水气比呈升高趋势。就容重和通气孔隙度而言,8个处理组较对照均显著(P<0.05)降低,且在A1.0B200处理下达到最小值0.096 g·cm−3和17.11%。就总孔隙度而言,除A0.5B200处理较对照显著(P<0.05)降低11.12%外,其余各处理较对照均无显著差异。毛管孔隙度在A1.0B0处理下达到最大值54.19%,较对照提高10.82%,但各处理间差异均不显著。各处理水气比为1.76~3.14,其中A1.0B200处理显著(P<0.05)高于除A1.0B100外的其他处理。
表 2 基质物理性质
Table 2. Physical properties of substrate treatments
处理 容重/(g·cm−3) 总孔隙度/% 通气孔隙度/% 毛管孔隙度/% 水气比 对照 0.134 a 76.98 a 28.08 a 48.90 a 1.76 e A0B100 0.122 b 72.43 ab 24.04 b 48.39 a 2.02 de A0B200 0.115 c 76.03 ab 22.94 bc 53.09 a 2.33 cd A0.5B0 0.119 b 73.28 ab 22.64 bcd 50.64 a 2.26 cd A0.5B100 0.113 bc 71.49 ab 20.53 cde 50.97 a 2.50 cd A0.5B200 0.099 d 68.42 b 19.94 de 48.48 a 2.43 cd A1.0B0 0.112 bc 75.20 ab 21.01 cd 54.19 a 2.60 bc A1.0B100 0.104 cd 71.80 ab 18.07 ef 53.73 a 2.99 ab A1.0B200 0.096 d 70.65 ab 17.11 f 53.54 a 3.14 a 说明:同列不同小写字母表示不同处理间差异显著(P<0.05) -
由图1可知:随保水剂和生物表面活性剂施用量增加,基质饱和含水量、毛管持水量、田间持水量均呈升高趋势,且均在A1.0B200处理下达到最大值,分别较对照显著(P<0.05)提高27.48%、52.20%和55.55%。单施保水剂或生物表面活性剂均提高了基质的持水量,其中A1.0B0处理的饱和含水量、毛管持水量、田间持水量较对照分别显著(P<0.05)提升16.88%、32.70%和36.71%;A0B200处理较对照分别提升15.48%、27.04%和26.60%。混施保水剂和生物表面活性剂与单施保水剂或生物表面活性剂相比,对基质持水量的提高更显著(P<0.05),其中A1.0B200处理的饱和含水量、毛管持水量和田间持水量较A1.0B0处理分别提高9.07%、14.70%和13.78%,较A0B200处理分别提高10.39%、19.81%和22.86%。
-
如表3所示:单施生物表面活性剂可降低基质pH,A0B100和A0B200处理的pH较对照均显著(P<0.05)降低。其中,A0B100处理的pH为各处理间最低,较对照显著降低(P<0.05),较A0B200处理无显著差异。随单施保水剂用量增加,基质pH先降低后升高。混施保水剂和生物表面活性剂降低了基质的pH,A1.0B200处理下,pH比对照显著(P<0.05)降低,基质更接近中性。
表 3 基质化学性质
Table 3. Chemical properties of substrate treatments
处理 pH 电导率/
(μS·cm−1)阳离子交换量/
(cmol·kg−1)全氮/
(g·kg−1)有效磷/
(mg·kg−1)速效钾/
(mg·kg−1)对照 8.22 a 343.44 cd 5.74 f 5.75 e 96.70 e 2 703.3 e A0B100 6.51 d 270.36 d 5.93 ef 5.89 e 101.80 e 2 883.4 d A0B200 6.86 bcd 341.76 cd 6.63 c 5.83 e 107.30 de 2 957.8 cd A0.5B0 7.38 b 553.74 b 6.16 de 6.09 d 118.40 cd 2 937.5 cd A0.5B100 7.01 bcd 438.95 bc 6.30 d 6.37 bc 125.50 bc 3 088.1 bc A0.5B200 6.68 cd 480.10 bc 6.93 b 6.44 ab 129.80 abc 3 143.8 b A1.0B0 8.01 a 768.74 a 6.71 bc 6.24 cd 131.30 abc 3 178.4 b A1.0B100 7.12 bc 580.76 b 6.94 b 6.43 ab 145.64 a 3 421.8 a A1.0B200 7.32 b 564.96 b 7.32 a 6.60 a 139.60 ab 3 386.6 a 说明:同列不同小写字母表示不同处理间差异显著(P<0.05) -
相同生物表面活性剂施用水平下,随保水剂施用量增加,基质电导率呈升高趋势(表3),并在A1.0B0处理下达到最大值,较其余处理显著(P<0.05)提高。相同保水剂施用水平下,生物表面活性剂施用量为100或200 mg·kg−1时,基质电导率较不施生物表面活性剂时均显著(P<0.05)降低,但在2种施用量之间,生物表面活性剂对电导率的降低效果无显著差异。
-
随着保水剂和生物表面活性剂用量增加,各处理阳离子交换量以及全氮、有效磷和速效钾质量分数均呈升高趋势(表3)。其中阳离子交换量和全氮质量分数在A1.0B200处理下达到最大值,较对照显著(P<0.05)增加,A1.0B10处理下次之。A1.0B100处理下的有效磷和速效钾质量分数最高,分别较对照显著(P<0.05)提高44.36%和26.58%,A1.0B200处理次之,较A1.0B100无显著差异。单施保水剂可显著(P<0.05)提高基质的阳离子交换量以及全氮、有效磷和速效钾质量分数;A1.0B0处理基质的阳离子交换量以及全氮、有效磷和速效钾质量分数较对照均显著(P<0.05)增加。单施生物表面活性剂时,仅基质的阳离子交换量和速效钾质量分数显著(P<0.05)提高。
-
采用矩阵法综合评价各组基质,容重越小得分越高;总孔隙度>70%时,越大得分越高;水气比越接近3.00评分越高;通气孔隙度和持水孔隙度、饱和含水量、毛管持水量、田间持水量、阳离子交换量以及全氮、有效磷和速效钾质量分数越大评分越高;pH和电导率分别以接近7.00和500 μS·cm−1为优。最终求得各处理得分:对照为35分、A0B100为38分、A0B200为67分、A0.5B0为58分、A0.5B100为71分、A0.5B200为80、A1.0B0为87分、A1.0B100为100分和A1.0B200为100分,综合评分最高的2组基质为A1.0B100和A1.0B200,故选用此2种基质进行栽培试验。
-
如图2所示:无论是金叶莸还是马蔺,2种植物的株高和根长均为A1.0B200处理最大,A1.0B100处理次之、对照最小。在A1.0B200基质上栽培金叶莸和马蔺较在对照基质上均显著(P<0.05)提高了株高和根长,而在A1.0B100基质上的栽培效果与在对照上相比,金叶莸的株高、根长增高均不显著。
由表4可知:2种植物的总鲜质量、地上部鲜质量和根部鲜质量均为A1.0B200处理最大,A1.0B100处理次之,对照最小。在A1.0B200栽培基质上,金叶莸的总鲜质量、地上部鲜质量和根部鲜质量均达到最大值,较对照均有显著(P<0.05)提高,较A1.0B100均无显著差异;马蔺的总鲜质量显著(P<0.05)大于对照和A1.0B100处理,地上部和根部鲜质量均显著(P<0.05)大于对照处理,较A1.0B100无显著差异。金叶莸和马蔺的根冠比在各处理间差异不显著。
表 4 植物鲜质量和根冠比
Table 4. Fresh weight and root top ratio of plant
植物 处理 总鲜质量/g 根鲜质量/g 地上部鲜质量/g 根冠比 金叶莸 对照 49.74 b 14.03 b 35.71 b 0.39 a A1.0B100 61.09 ab 18.26 ab 42.83 ab 0.43 a A1.0B200 72.59 a 22.95 a 49.64 a 0.48 a 马蔺 对照 85.56 b 36.19 b 49.37 b 0.73 a A1.0B100 104.00 b 44.08 ab 59.92 ab 0.76 a A1.0B200 129.16 a 51.69 a 77.47 a 0.68 a 说明:同一植物相同指标不同小写字母表示不同处理间差异显著(P<0.05) -
通过植株生长指标的隶属度函数,计算得出A1.0B200基质的综合评价系数大于A1.0B100处理和对照,即A1.0B200处理为本研究最适宜屋顶绿化基质配方(表5)。
表 5 不同基质条件下对金叶莸和马蔺生长指标的综合评价
Table 5. Comprehensive evaluation of growth indexes of C.clandonensis ‘Worcester Gold’ and I. lactea
处理 金叶莸 马蔺 综合评价
系数综合
排名株高 根长 总鲜
质量根鲜
质量地上部
鲜质量根冠比 株高 根长 总鲜
质量根鲜
质量地上部
鲜质量根冠比 对照 0 0 0 0 0 0 0 0 0 0 0 0.67 0.06 3 A1.0B100 0.35 0.56 0.50 0.47 0.51 0.42 0.50 0.23 0.42 0.51 0.38 1.00 0.49 2 A1.0B200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.92 1
Study on light-weight substrate for roof greening with aquasorb and biosurfactant
-
摘要:
目的 以珍珠岩为基质骨料,保水剂(A)、生物表面活性剂(B)和缓释肥为添加剂,结合植物生长指标,筛选最优屋顶绿化专用基质。 方法 在施加30 g·kg−1缓释肥条件下,分析不同质量分数(0、0.5、1.0 g·kg−1)保水剂(处理号分别为A0、A0.5、A1.0)]和不同施用水平(0、100、200 mL·kg−1)质量分数为2%生物表面活性剂(处理号分别为B0、B100、B200)对珍珠岩理化性质改良效果。通过矩阵法选择2组高评分基质开展栽培试验,利用隶属函数分析栽培植物金叶莸Caryopteris clandonensis ‘Worcester Gold’和马蔺Iris lactea的生长指标,筛选最优配比基质。 结果 保水剂和生物表面活性剂对基质理化性质和植物生长指标影响显著(P<0.05)。与对照(A0B0)相比,A1.0B200的容重显著降低17.11%,毛管孔隙度和田间持水量显著提高10.82%和55.55%,全氮、有效磷和速效钾质量分数分别显著提高14.78%、44.36%和25.28%;A1.0B200栽培的金叶莸和马蔺的株高、根长以及地上部和根部鲜质量均显著大于对照,隶属函数综合评价系数最高。 结论 保水剂和生物表面活性剂可以改善珍珠岩基质的水气比,提高基质的供肥和保肥能力;与A1.0B100相比,A1.0B200基质更优。图2表5参39 Abstract:Objective The purpose of this research is to screen the optimal specific substrate for roof greening by taking perlite as matrix aggregate, aquasorb (A), biosurfactant (B) and slow-release fertilizer as additives, combined with plant growth indexes. Method Based on the analysis of effects of aquasorb [0(A0), 0.5(A0.5), 1.0(A1.0) g·kg−1] and 2% biosurfactant [0(B0), 100(B100), 200(B200) mL·kg−1] on physicochemical properties of perlite under the condition of slow-release fertilizer (30 g·kg−1), two groups of high scoring substrates were chosen by matrix methods for cultivation experiment, and the growth indexes of Caryopteris clandonensis ‘Worcester Gold’ and Iris lactea were analyzed by membership function to determine the optimal substrate. Result The aquasorb and biosurfactant had significant effects on the physicochemical properties of the substrates and plant growth indicators of the cultivated plants (P<0.05). Compared with the control (aquasorb 0 g·kg−1 and 2% biosurfactant 0 mL·kg−1), the bulk density of A1.0B200(aquasorb 1.0 g·kg−1 and 2% biosurfactant 200 mL·kg−1) decreased by 17.11%, capillary porosity and field capacity increased by 10.82% and 55.55%, the mass fraction of total nitrogen, available phosphorus and rapidly available potassium increased by 14.78%, 44.36% and 25.28%, respectively. The plant height, root length, shoot and root fresh weight of A1.0B200 (aquasorb 1.0 g·kg−1, 2% biosurfactant 200 mL·kg−1) were significantly higher than those of the control, and the comprehensive evaluation coefficient of membership function was the highest. Conclusion Aquasorb and biosurfactant can improve the water-gas ratio of perlite substrate and improve the ability of fertilizer supply and conservation. Compared with A1.0B100, A1.0B200 is superior. [Ch, 2 fig. 5 tab. 39 ref.] -
Key words:
- horticulture /
- roof greening /
- substrate /
- perlite /
- comprehensive evaluation and analysis
-
表 1 试验处理基质组成
Table 1. Composition of substrate treatments
处理 保水剂/
(g·kg−1)2%生物表面活性剂/
(mL·kg−1)缓释肥/
(g·kg−1)对照 0 0 30 A0B100 0 100 30 A0B200 0 200 30 A0.5B0 0.5 0 30 A0.5B100 0.5 100 30 A0.5B200 0.5 200 30 A1.0B0 1.0 0 30 A1.0B100 1.0 100 30 A1.0B200 1.0 200 30 表 2 基质物理性质
Table 2. Physical properties of substrate treatments
处理 容重/(g·cm−3) 总孔隙度/% 通气孔隙度/% 毛管孔隙度/% 水气比 对照 0.134 a 76.98 a 28.08 a 48.90 a 1.76 e A0B100 0.122 b 72.43 ab 24.04 b 48.39 a 2.02 de A0B200 0.115 c 76.03 ab 22.94 bc 53.09 a 2.33 cd A0.5B0 0.119 b 73.28 ab 22.64 bcd 50.64 a 2.26 cd A0.5B100 0.113 bc 71.49 ab 20.53 cde 50.97 a 2.50 cd A0.5B200 0.099 d 68.42 b 19.94 de 48.48 a 2.43 cd A1.0B0 0.112 bc 75.20 ab 21.01 cd 54.19 a 2.60 bc A1.0B100 0.104 cd 71.80 ab 18.07 ef 53.73 a 2.99 ab A1.0B200 0.096 d 70.65 ab 17.11 f 53.54 a 3.14 a 说明:同列不同小写字母表示不同处理间差异显著(P<0.05) 表 3 基质化学性质
Table 3. Chemical properties of substrate treatments
处理 pH 电导率/
(μS·cm−1)阳离子交换量/
(cmol·kg−1)全氮/
(g·kg−1)有效磷/
(mg·kg−1)速效钾/
(mg·kg−1)对照 8.22 a 343.44 cd 5.74 f 5.75 e 96.70 e 2 703.3 e A0B100 6.51 d 270.36 d 5.93 ef 5.89 e 101.80 e 2 883.4 d A0B200 6.86 bcd 341.76 cd 6.63 c 5.83 e 107.30 de 2 957.8 cd A0.5B0 7.38 b 553.74 b 6.16 de 6.09 d 118.40 cd 2 937.5 cd A0.5B100 7.01 bcd 438.95 bc 6.30 d 6.37 bc 125.50 bc 3 088.1 bc A0.5B200 6.68 cd 480.10 bc 6.93 b 6.44 ab 129.80 abc 3 143.8 b A1.0B0 8.01 a 768.74 a 6.71 bc 6.24 cd 131.30 abc 3 178.4 b A1.0B100 7.12 bc 580.76 b 6.94 b 6.43 ab 145.64 a 3 421.8 a A1.0B200 7.32 b 564.96 b 7.32 a 6.60 a 139.60 ab 3 386.6 a 说明:同列不同小写字母表示不同处理间差异显著(P<0.05) 表 4 植物鲜质量和根冠比
Table 4. Fresh weight and root top ratio of plant
植物 处理 总鲜质量/g 根鲜质量/g 地上部鲜质量/g 根冠比 金叶莸 对照 49.74 b 14.03 b 35.71 b 0.39 a A1.0B100 61.09 ab 18.26 ab 42.83 ab 0.43 a A1.0B200 72.59 a 22.95 a 49.64 a 0.48 a 马蔺 对照 85.56 b 36.19 b 49.37 b 0.73 a A1.0B100 104.00 b 44.08 ab 59.92 ab 0.76 a A1.0B200 129.16 a 51.69 a 77.47 a 0.68 a 说明:同一植物相同指标不同小写字母表示不同处理间差异显著(P<0.05) 表 5 不同基质条件下对金叶莸和马蔺生长指标的综合评价
Table 5. Comprehensive evaluation of growth indexes of C.clandonensis ‘Worcester Gold’ and I. lactea
处理 金叶莸 马蔺 综合评价
系数综合
排名株高 根长 总鲜
质量根鲜
质量地上部
鲜质量根冠比 株高 根长 总鲜
质量根鲜
质量地上部
鲜质量根冠比 对照 0 0 0 0 0 0 0 0 0 0 0 0.67 0.06 3 A1.0B100 0.35 0.56 0.50 0.47 0.51 0.42 0.50 0.23 0.42 0.51 0.38 1.00 0.49 2 A1.0B200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.92 1 -
[1] 许萍, 车伍, 李俊奇. 屋顶绿化改善城市环境效果分析[J]. 环境保护, 2004(7): 41 − 44. XU Ping, CHE Wu, LI Junqi. Analysis on improvement of urban environment made by green roof [J]. Environ Prot, 2004(7): 41 − 44. [2] 北京市质量技术监督局. 屋顶绿化规范: DB11/T 281−2005[S]. 北京: 北京市园林绿化局, 2005. [3] 刘维东. 成都市屋顶绿化植物的选择及其生态效益研究[D]. 成都: 四川农业大学, 2006. LIU Weidong. Studies on Ecological Effect and Selection of Roof Greening Plants in Chengdu City[D]. Chengdu: Sichuan Agricultural University, 2006. [4] 邓雄, 彭晓春, 覃超梅. 屋顶绿化的功能、特点及其在我国的现状和存在的问题[J]. 中山大学学报(自然科学版), 2010, 49(增刊 1): 99 − 101. DENG Xiong, PENG Xiaochun, QIN Chaomei. The review of the functions and characteristics of roof greening, and its current situation and problems in China [J]. Acta Sci Nat Univ Sunyatseni, 2010, 49(suppl 1): 99 − 101. [5] NARDINI A, ANDRI S, CRASSO M. Influence of substrate depth and vegetation type on temperature and water runoff mitigation by extensive green roofs: shrubs versus herbaceous plants [J]. Urban Ecosyst, 2012, 15(3): 697 − 708. [6] 马进. 3种野生景天对逆境胁迫生理响应及园林应用研究[D]. 南京: 南京林业大学, 2009. MA Jin. Studies on the Physiological Responses to Osmosis Stress and Landscape Application of Three Wild Sedum Plants[D]. Nanjing: Nanjing Forestry University, 2009. [7] 吉文丽, 李卫忠, 王诚吉, 等. 屋顶花园发展现状及北方屋顶绿化植物选择与种植设计[J]. 西北林学院学报, 2005, 20(3): 180 − 183. JI Wenli, LI Weizhong, WANG Chengji, et al. A study on present-situation of roof garden, plant select and planting design in northern roof garden [J]. J Northwest For Univ, 2005, 20(3): 180 − 183. [8] 肖超群, 郭小平, 刘玲, 等. 绿化废弃物堆肥配制屋顶绿化新型基质的研究[J]. 浙江农林大学学报, 2019, 36(3): 598 − 604. XIAO Chaoqun, GUO Xiaoping, LIU Ling, et al. Greening waste compost as a new substrate for green roofs [J]. J Zhejiang A&F Univ, 2019, 36(3): 598 − 604. [9] 中国建筑防水协会. 种植屋面工程技术规程: JGJ 155−2013[S]. 北京: 中国建筑工业出版社, 2013. [10] 肖敏, 张国强. 国内外屋顶的绿化设计[J]. 工业建筑, 2015, 45(1): 184 − 188. XIAO Min, ZHANG Guoqiang. Development of designing and application of green roofs [J]. Ind Constr, 2015, 45(1): 184 − 188. [11] 李炎艳. 珍珠岩粒径和灌溉模式对封闭式槽培番茄生长发育的影响[D]. 邯郸: 河北工程大学, 2020. LI Yanyan. Effects of Pearlite Particle Size and Irrigationpatterns on Growth and Development of Enclosedcultivated Tomato[D]. Handan: Hebei University of Engineering, 2020. [12] BAI W, ZHANG H, LIU B, et al. Effects of super-absorbent polymers on the physical and chemical properties of soil following different wetting and drying cycles [J]. Soil Use Manage, 2010, 26(3): 253 − 260. [13] LIU Jin, SHI Bin, LU Yi, et al. Effectiveness of a new organic polymer sand-fixing agent on sand fixation[J]. Environ Earth Sci, . 2012, 65(3). doi: 10.1007/s12665-011-1106-9. [14] 马焕成, 罗质斌, 陈义群, 等. 保水剂对土壤养分的保蓄作用[J]. 浙江林学院学报, 2004, 21(4): 404 − 407. MA Huancheng, LUO Zhibin, CHEN Yiqun, et al. Hydrogel’s role in retention of nutrients in soil [J]. J Zhejiang For Coll, 2004, 21(4): 404 − 407. [15] 崔敏. 湿润剂对斥水性栽培基质基本理化性质和作物生长状况的影响[D]. 泰安: 山东农业大学, 2008. CUI Min. The Influences of Wetting Agents on Physical and Chemical Properties and Plant Growth Status of Water-repellent Medium[D]. Tai’an: Shandong Agriculture University, 2008. [16] OOSTINDIE K, DEKKER L W, WESSELING J G, et al. Influence of a single soil surfactant application on potato ridge moisture dynamics and crop yield in a water repellent sandy soil [J]. Acta Hortic, 2012, 938: 341 − 346. [17] 石坂信吉. 人工土壤及其制造方法: CN104394684A [P]. 2015-03-04. [18] BANAT I M, MAKKAR R S, CAMEOTRA S S. Potential commercial applications of microbial surfactants [J]. Appl Microbiol Biotechnol, 2000, 53(5): 495 − 508. [19] 吕刚, 王磊, 卢喜平, 等. 不同复垦方式排土场砾石对饱和导水率和贮水能力的影响[J]. 土壤学报, 2017, 54(6): 1414 − 1423. LÜ Gang, WANG Lei, LU Xiping, et al. The effect of gravel on saturated hydraulic conductivity and sater stor-age capacity in reclaimed dump relative to reclamationmode [J]. Acta Pedol Sin, 2017, 54(6): 1414 − 1423. [20] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. [21] 甘露, 范海燕, 吴文勇, 等. 无土栽培基质水分特性参数研究[J]. 农业机械学报, 2013, 44(5): 113 − 118, 142. GAN Lu, FAN Haiyan, WU Wenyong, et al. Water retention parameters of soilless-culture substrates [J]. Transac Chin Soc Agric Mach, 2013, 44(5): 113 − 118, 142. [22] 郝丹, 张璐, 孙向阳, 等. 金盏菊栽培中园林废弃物堆肥与牛粪替代泥炭的效果分析[J]. 植物营养与肥料学报, 2020, 26(8): 1556 − 1564. HAO Dan, ZHANG Lu, SUN Xiangyang, et al. Effect analysis of garden waste compost and cow manure substituting peat in Calendula officinalis cultivation [J]. J Plant Nutr Fert, 2020, 26(8): 1556 − 1564. [23] 李谦盛. 屋顶绿化栽培基质的选择[J]. 安徽农业科学, 2005, 33(1): 84 − 85. LI Qiansheng. Greening media selection for green roof [J]. J Anhui Agri Sci, 2005, 33(1): 84 − 85. [24] 冉艳玲. 化学保水剂对土壤水分及物理特性的作用效应[D]. 杨凌: 西北农林科技大学, 2014. RAN Yanling. Effects of Super Absorbent Polymers on Soil Water Moisture and Physical Properties[D]. Yangling: Northwest A&F University, 2014. [25] 韩玉国, 武亨飞, 杨培岭, 等. 保水剂对土壤的物理性质与水分入渗的动态影响[J]. 干旱地区农业研究, 2013, 31(5): 161 − 167. HAN Yuguo, WU Hengfei, YANG Peiling, et al. Dynamic effects of super absorbent polymer on physical properties and water infiltration of soil [J]. Agric Res Arid Areas, 2013, 31(5): 161 − 167. [26] 郭世荣. 固体栽培基质研究、开发现状及发展趋势[J]. 农业工程学报, 2005, 21(增刊): 1 − 4. GUO Shirong. Research progress, current exploitations and developing trends of solid cultivation medium [J]. Trans Chin Soc Agric Eng, 2005, 21(suppl): 1 − 4. [27] SACHDEV D P, CAMEOTRA S S. Biosurfactants in agriculture [J]. Appl Microbiol Biotechnol, 2013, 97(3): 1005 − 1016. [28] 宫丽丹, 殷振华. 保水剂在农业生产上的应用研究[J]. 中国农学通报, 2009, 25(22): 174 − 177. GONG Lidan, YIN Zhenhua. Absorbent polymers in agricultural production on the applied research [J]. Chin Agric Sci Bull, 2009, 25(22): 174 − 177. [29] ABAD M, NOGUERA P, BURÉS S. National inventory of organic wastes for use as growing media for ornamental potted plant production: case study in Spain [J]. Bioresour Technol, 2001, 77(2): 197 − 200. [30] 国家林业局. 花木栽培基质: LY/T 2700−2016[S]. 北京: 中国标准出版社, 2016. [31] 杨逵. 有机-无机复合保水剂的保水性能和对土壤理化性质的影响[D]. 兰州: 甘肃农业大学, 2008. YANG Kui. Effect of Organic-Inorganic Superabsorbent Composite on Water Absorbency and Physicochemical Properties of Soil[D]. Lanzhou: Gansu Agriculture University, 2008. [32] ZHANG Lu, SUN Xiangyang. Effects of rhamnolipid and initial compost particle size on the two-stage composting of green waste [J]. Bioresour Technol, 2014, 163C: 112 − 122. [33] CHANG Baoxin, WHERLEY B, AITKENHEAD-PETERSON J A, et al. Effect of wetting agent on nutrient and water retention and runoff from simulated urban lawns [J]. Hortscience, 2020, 55(7): 1005 − 1013. [34] KARADAG E, UZUM O B, SARAYDIN D. Swelling equilibria and dye adsorption studies of chemically crosslinked superabsorbent acrylamide/maleic acid hydrogels [J]. Eur Polym J, 2002, 38(11): 2133 − 2141. [35] 卫星, 李贵雨, 吕琳. 农林废弃物育苗基质的保水保肥效应[J]. 林业科学, 2015, 51(12): 26 − 34. WEI Xing, LI Guiyu, LÜ Lin. Water and nutrient preservation of agri-forest residues used as nursery matrix [J]. Sci Silv Sin, 2015, 51(12): 26 − 34. [36] MA Qiang, HUANG Chaogang, XIAO Henglin. Functionality study on light-weight ecological substrate [J]. Energies, 2018, 11: 3431. doi: 10.3390/en11123431. [37] CHOI J M. Effect of soil wetting agents on germination, growth, and nutrient uptake of common cockscomb in plug culture [J]. Hortic Environ Biotechnol, 2003, 44(4): 514 − 517. [38] YANG Yonghui, WU Pute, WU Jicheng, et al. Responses of winter wheat photosynthetic characteristics and chlorophyll content to water-retaining agent and N fertilizer [J]. J Appl Ecol, 2011, 22(1): 79 − 85. [39] SANCHETI A, JU L K. Rhamnolipid effects on water imbibition, germination, and initial root and shoot growth of soybeans [J]. J Surfactants Deterg, 2020, 23(2): 371 − 381. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200755