Measuring method of multiple trees attributes based on structure from motion
-
摘要:
目的 提出基于运动恢复结构的多株立木因子测量方法,以解决目前基于三维点云的立木因子测量方法获取立木树高和胸径存在效率低或成本高的问题。 方法 ①使用智能手机环绕包含多株立木的场景拍摄一段视频,并采用固定帧采样法和差异值哈希算法自动提取立木视频中的关键帧图像,然后,基于运动恢复结构(structure from motion,SfM)算法处理立木关键帧图像,从而获取立木场景的原始三维点云;②在对原始三维点云进行预处理及初步分割后,运用条件欧几里得聚类算法对多株立木三维点云进行分割,以提取单株立木三维点云;③对立木三维点云使用最值遍历法和椭圆拟合法实现立木树高和胸径的自动测量。 结果 与真实值相比,本研究方法测得的树高、胸径的平均相对误差分别为1.96%、3.19%,均方根误差分别为0.133 3 m、0.533 7 cm,相关系数分别为0.987 9、0.962 1。 结论 该方法具有较高的树高和胸径测量精度,提供了一种便捷、低成本的多株立木因子三维测量方法。图6表1参27 Abstract:Objective Tree attributes are generally measured by obtaining the tree height and DBH using a method based on three-dimensional point cloud, which is featured with either low efficiency or high cost. To solve this problem, this study is aimed to propose a measuring method of multiple trees attributes based on Structure from Motion. Method Firstly, a smart phone was used to shoot a video of a scene with multiple trees before its key frame images were automatically extracted using the fixed-frame sampling and dHash algorithm; Secondly, such key frame images of the trees were processed on the basis of Structure from Motion (SfM) algorithm to obtain the original 3D point cloud of the scene; Thirdly, after the pre-procession and initial segmentation of the original 3D point cloud, the conditional European clustering algorithm is used to segment the 3D point cloud of multiple trees to extract the 3D point cloud of a single tree; Finally, the most value traversal method and ellipse fitting method were employed to deal with the tree 3D point cloud to realize the automatic measurement of tree height and DBH. Result Compared with real values, the mean relative errors of tree height and DBH measured using this method are 1.96% and 3.19%, the root mean square errors were 0.1333 m and 0.5337 cm whereas the correlation coefficients were 0.9879 and 0.9621 respectively. Conclusion This method, with high measurement accuracy of tree height and DBH, serves as a convenient and low-cost three-dimensional measurement method for multiple trees attributes. [Ch, 6 fig. 1 tab. 27 ref.] -
表 1 树高和胸径的测量值与实际值
Table 1. Measured and actual values of tree height and DBH
立木
编号树高 胸径 实际
值/m测量
值/m相对误
差/%实际
值/cm测量
值/cm相对误
差/%1 6.14 6.10 0.63 15.60 14.85 4.85 2 4.98 4.87 2.15 13.06 13.33 2.07 3 5.49 5.53 0.84 12.74 13.00 2.09 4 5.64 5.49 2.60 14.97 15.58 4.06 5 3.42 3.39 0.93 10.83 10.62 1.87 6 3.49 3.55 1.69 12.26 13.11 6.91 7 4.53 4.40 2.78 12.90 12.25 4.99 8 4.31 4.21 2.39 14.33 14.09 1.70 9 6.65 6.60 0.71 19.43 19.14 1.44 10 6.19 6.08 1.79 18.63 19.35 3.87 11 7.17 6.93 3.40 18.80 18.42 1.94 12 5.63 5.73 1.67 18.72 19.39 3.58 13 7.52 7.35 2.18 16.97 17.27 1.77 14 7.47 7.20 3.56 19.04 18.59 2.37 15 5.58 5.69 1.93 15.13 14.36 5.08 16 5.01 5.05 0.64 11.94 12.20 2.16 17 5.41 5.27 2.57 12.67 12.46 1.68 18 7.18 6.98 2.78 16.08 16.88 4.93 平均值 1.96 3.19 -
[1] 孟宪宇. 测树学[M]. 北京: 中国林业出版社, 2006: 350. MENG Xianyu. Forest Mensuration[M]. Beijing: China Forestry Publishing House, 2006: 350. [2] MARKUS H, MIKKO V, JUHA H. Outlook for the next generation’s precision forestry in finland [J]. Forests, 2014, 5(7): 1682 − 1694. [3] 程文生, 冯仲科, 黄晓东. 便携式森林资源调查仪研制与试验[J]. 西北林学院学报, 2018, 33(5): 156 − 162. CHENG Wensheng, FENG Zhongke. HUANG Xiaodong. Development and experiment of portable instrument for forest resources inventory [J]. J Northwest For Univ, 2018, 33(5): 156 − 162. [4] 冯仲科, 黄晓东, 刘芳. 森林调查装备与信息化技术发展分析[J]. 农业机械学报, 2015, 46(9): 257 − 265. FENG Zhongke, HUANG Xiaodong, LIU Fang. Forest survey equipment and development of information technology [J]. Trans Chin Soc Agric Mach, 2015, 46(9): 257 − 265. [5] 杜鹏志, 曾伟生, 冯仲科, 等. 利用电子经纬仪测量林木树高和材积的精度分析[J]. 林业资源管理, 2016(2): 45 − 48, 55. DU Pengzhi, ZENG Weisheng, FENG Zhongke, et al. Precision analysis on tree height and stem volume measurements using electronic theodolite [J]. For Resour Manage, 2016(2): 45 − 48, 55. [6] 于东海, 冯仲科, 曹忠, 等. 全站仪测量立木胸径树高及材积的误差分析[J]. 农业 工程学报, 2016, 32(17): 160 − 167. YU Donghai, FENG Zhongke, CAO Zhong, et al. Error analysis of measuring diameter at breast height and tree height and volume of standing tree by total station [J]. Trans Chin Soc Agric Eng, 2016, 32(17): 160 − 167. [7] 陈相武, 徐爱俊. 基于智能手机单目视觉的多株立木高度提取方法[J]. 北京林业大学学报, 2020, 42(8): 43 − 52. CHEN Xiangwu, XU Aijun. Height extraction method of multiple standing trees based on monocular vision of smart phones [J]. J Beijing For Univ, 2020, 42(8): 43 − 52. [8] 管昉立, 徐爱俊. 基于智能手机与机器视觉技术的立木胸径测量方法[J]. 浙江农林大学学报, 2018, 35(5): 892 − 899. GUAN Fangli, XU Aijun. Tree DBH measurement method based on smartphone and machine vision technology [J]. J Zhejiang A&F Univ, 2018, 35(5): 892 − 899. [9] 高莉平, 徐爱俊. 应用智能终端的立木高度测量方法[J]. 东北林业大学学报, 2018, 46(11): 28 − 34. GAO Liping, XU Aijun. Tree height measurement method with intelligent terminal [J]. J Northeast For Univ, 2018, 46(11): 28 − 34. [10] VÁZQUEZ-ARELLANO M, GRIEPENTROG H W, REISER D, et al. 3-D imaging systems for agricultural applications-a review [J]. Sensors, 2016, 16(5): 618. doi: 10.3390/s16050618 [11] 仇瑞承, 张漫, 魏爽, 等. 基于RGB-D相机的玉米茎粗测量方法[J]. 农业工程学报, 2017, 33(增刊 1): 170 − 176. QIU Ruicheng, ZHANG Man, WEI Shuang, et al. Method for measurement of maize stem diameters based on RGB-D camera [J]. Trans Chin Soc Agric Eng, 2017, 33(suppl 1): 170 − 176. [12] NEWNHAM G J, ARMSTON J D, CALDERS K, et al. Terrestrial laser scanning for plot-scale forest measurement [J]. Curr For Rep, 2015, 1(4): 239 − 251. [13] 刘浩, 张峥男, 曹林. 机载激光雷达森林垂直结构剖面参数的沿海平原人工林林分特征反演[J]. 遥感学报, 2018, 22(5): 872 − 888. LIU Hao, ZHANG Zhengnan, CAO Lin. Estimating forest stand characteristics in a coastal plain forest plantation based on vertical structure profile parameters derived from ALS data [J]. J Remote Sensing, 2018, 22(5): 872 − 888. [14] WESTOBY M J, BRASINGTON J, GLASSER N F, et al. ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications [J]. Geomorphology, 2012, 179: 300 − 314. [15] 周静静, 郭新宇, 吴升, 等. 基于多视角图像的植物三维重建研究进展[J]. 中国农业科技导报, 2019, 21(2): 9 − 18. ZHOU Jingjing, GUO Xinyu, WU Sheng, et al. Research progress on plant three-dimensional reconstruction based on multi-view image [J]. J Agric Sci Technol, 2019, 21(2): 9 − 18. [16] 梁秀英, 周风燃, 陈欢, 等. 基于运动恢复结构的玉米植株三维重建与性状提取[J]. 农业机械学报, 2020, 51(6): 209 − 219. LIANG Xiuying, ZHOU Fengran, CHEN Huan, et al. Three-dimensional maize plants reconstruction and traits extraction based on structure from motion [J]. Trans Chin Soc Agric Mach, 2020, 51(6): 209 − 219. [17] HUI Fang, ZHU Jinyu, HU Pengcheng, et al. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations [J]. Ann Bot, 2018, 121(5): 1079 − 1088. [18] MILLER J, MORGENROTH J, GOMEZ C. 3D modelling of individual trees using a handheld camera: accuracy of height, diameter and volume estimates [J]. Urban For Urban Greening, 2015, 14(4): 932 − 940. [19] 徐慧丹, 周小成, 黄洪宇, 等. 移动多视图立体摄影的单木结构参数提取[J]. 测绘科学, 2018, 43(9): 108 − 114. XU Huidan, ZHOU Xiaocheng, HUANG Hongyu, et al. Single tree structure parameter extraction of structure-from-motion with multi-view stereophotogrammetry [J]. Sci Surv Mapp, 2018, 43(9): 108 − 114. [20] 孙英伟, 林文树. 基于SFM算法的单木结构参数提取研究[J]. 西北林学院学报, 2020, 35(5): 180 − 184. SUN Yingwei, LIN Wenshu. Extraction of the parameters of single tree structure based on SFM algorithm [J]. J Northwest For Univ, 2020, 35(5): 180 − 184. [21] 化春键, 马金科, 陈莹. 基于差异哈希算法的改进非局部均值去噪算法[J]. 激光与光电子学进展, 2020, 57(14): 141007. doi: 10.3788/LOP57.141007. HUA Chunjian, MA Jinke, CHEN Yin. Improved non-local mean denoising algorithm based on difference hash algorithm[J]. Laser Optoelectron Prog, 2020, 57(14): 141007. doi: 10.3788/LOP57.141007. [22] LOWE D G. Distinctive image features from scale-invariant keypoints [J]. Int J Comput Vision, 2004, 60(2): 91 − 110. [23] TRIGGS B, MCLAUCHLAN P F, HARTLEY R I, et al. Bundle adjustment-a modern synthesis[C]//[s.l.]. International Workshop on Vision Algorithms. Berlin: Springer, 1999: 298 − 372. [24] 何豫航, 岳俊. 基于CMVS/PMVS多视角密集匹配方法的研究与实现[J]. 测绘地理信息, 2013, 38(3): 20 − 23. HE Yuhang, YUE Jun. Research and implementation based on multi-view dense matching by applying CMVS /PMVS [J]. J Geomatics, 2013, 38(3): 20 − 23. [25] WOLD S, ESBENSEN K, GELADI P. Principal component analysis [J]. Chemometrics Intell Lab Syst, 1987, 2(1/3): 37 − 52. [26] 杨全月, 陈志泊, 孙国栋. 基于点云数据的测树因子自动提取方法[J]. 农业机械学报, 2017, 48(8): 179 − 185. [27] 范永祥, 冯仲科, 陈盼盼, 等. 基于RGB-D SLAM手机的森林样地调查系统研究[J]. 农业机械学报, 2019, 50(8): 226 − 234. FAN Yongxiang, FENG Zhongke, CHEN Panpan, et al. Research on forest plot survey system based on RGB-D SLAM mobile phone [J]. Trans Chin Soc Agric Mach, 2019, 50(8): 226 − 234. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210547

计量
- 文章访问数: 53
- 被引次数: 0