-
立木胸径和树高是衡量立木生长状况的重要因子[1],立木因子的获取是森林资源调查中最重要的工作之一[2-3]。传统的立木因子测量主要依靠人工或二维图像完成。人工测量方法中,使用皮尺、测距仪等测树工具[4],工作量大且主观误差较大;电子经纬仪、全站仪等精密设备[5-6]专业性强,但操作复杂。随着计算机视觉技术的发展,基于二维图像的测量方法[7-9]取得了一定的成果,但由于维度的限制,这类方法对于遮挡严重的场景测量精度不高。近几年,三维重建方法被广泛用于植物表形参数的测量[10-11]。其中地面激光扫描技术(terrestrial laser scanning, TLS)[12-13]测量精度高,但地面激光扫描仪价格昂贵,产生点云数据量大,对计算机的运行速度、传输容量等有较高要求,使其在植株表型参数提取与分析方面的应用受到了制约,难以满足社会化的需求。运动恢复结构(structure from motion,SfM)[14]是一种通过特征点匹配建立不同视角的二维图像的关系,从而恢复相机参数与目标三维信息的算法。该算法为植株表型参数测量提供了一种新思路[15]。梁秀英等[16]使用户外小车自动拍摄田间玉米Zea mays植株,基于SfM 算法首先获取玉米植株稀疏三维点云,然后再进一步得到植株稠密点云,通过点云数据测得玉米株高、茎粗和叶面积等参数。HUI等[17]基于SfM算法,利用Visual SFM软件对茄Solanum melongena、辣椒Capsicum annuum和黄瓜Cucumis sativus等3种蔬菜进行了重建和表型解析,获取了植物叶片数、叶长、叶宽和叶面积数据。该方法除用于小型作物表型参数的测量外,在立木因子测量方面也有应用。MILLER等[18]、徐慧丹等[19]围绕单株立木拍摄重叠度约70%的图片,并基于SfM算法获取其三维点云模型,从而估计树高、胸径等参数。孙英伟等[20]在室外围绕单株立木进行拍摄,并基于SfM算法获取立木三维点云,将点云最高和最低的差值作为树高数据,对1.3 m处点云拟合圆提取胸径值。这些方法虽然能够有效替代传统方法和TLS测量立木因子,但均是围绕立木人为控制拍摄间隔获取图像,步骤繁琐且精度难以保障,仅能测量单株立木,效率较低。
本研究提出基于运动恢复结构的多株立木因子测量方法,围绕立木场景拍摄视频,使用关键帧提取算法自动提取三维重建所需的立木图像,减少拍摄的复杂程度;基于SfM算法获取立木三维点云后,进行多株立木点云分割,实现立木单株点云的提取和树高、胸径的自动测量,为多株立木因子的自动测量提供了新思路。
-
以浙江农林大学校园内的立木为研究对象,在自然条件下使用智能手机环绕包含多株立木的场景拍摄一段视频。拍摄时将手机移动速度尽量保持均匀并减少晃动,尽可能拍到立木的全部,并将相机镜头始终指向场景中心。由于每个场景中的立木数量、高度、间距均不相同,因此拍摄路线也不同。图1为某场景的拍摄路线示意图,场景中放置的蓝色长方体尺寸已知,有助于将立木三维点云的尺度恢复到与实际相同。
-
视频相比图像能够传达更为丰富的信息,但是一个完整的视频序列包含较多冗余数据,关键帧提取算法能够从视频中选择满足特定要求的帧,使得提取的关键帧序列能够在满足后续立木三维点云获取所需基本信息的基础上尽量减少冗余。将固定采样法和相似度度量法相结合,对立木视频进行关键帧提取。先用固定采样法提取视频帧作为候选帧,即以视频的第1帧作为候选帧的开始,使用固定间隔为t帧的采样算法At对包含L帧的视频VL进行候选帧提取,得到候选帧序列Fc,其中
${f_1},{f_{1 + t}}, \cdots ,{f_{1 + nt}}$ 为候选帧序列中的每帧,(1±nt)≤L。$$F_{ {{\rm{c}} }}=\left\{f_{1}, f_{1+t}, \cdots, f_{1+n t}\right\}=A_{t}\left(V_{L}\right)。 $$ (1) 式(1)中,将所有的候选帧提取完成后,以候选帧的第1帧作为关键帧的开始,采用差异值哈希(dHash)算法[21]计算当前关键帧与候选帧之间的相似度。该算法首先将2幅图像分别缩小并灰度化,然后比较每行相邻元素的大小,根据比较结果赋值1或0,得到2幅图像的哈希值,最后利用汉明距离计算2幅图像之间的相似度S。
$$ S=D\left \{ d H\left(I_{i}\right), d H\left(f_{j}\right)\right \} 。 $$ (2) 式(2)中:Ii表示当前关键帧,fj表示候选帧,dH(Ii)和dH(fj)分别表示2幅图像的哈希值,D表示汉明距离。
计算出相似度S之后,设定相似度阈值S1、S2 (分别取值为0.6和0.8)。当S>0.8时,将筛选出的关键帧序列进行三维重建时立木三维模型的效果并没有明显提升,但是关键帧图像大量增加导致效率降低;当S>0.6可以较好地排除视频中突然出现的干扰(如车辆)。因此,若0.6≤S≤0.8,则将该候选帧加入到关键帧序列,并将该帧设置为当前关键帧。然后继续计算当前关键帧与下一候选帧的相似度,直至筛选完所有候选帧,得到视频关键帧序列Fe。
-
在立木视频关键帧序列(即有序图像集)提取的基础上,基于运动恢复结构算法生成立木三维点云,基本流程如图2所示。①特征点提取与匹配。通过尺度不变特征变换算法(scale-invariant feature transformation,SIFT)[22]对图像进行特征点提取,并计算每2幅图像特征点描述子之间的欧几里得距离来完成特征点匹配,得到所有图像的特征匹配关系
$M \left\{m_{1,2}, m_{2,3}, \cdots, m_{n-1, n}\right\}$ ,其中n为关键帧图像的数量,m中储存了2幅图像间的特征点匹配对$m\left\{\left(x_{1}, x_{1}^{\prime}\right),\left(x_{2}, x_{2}^{\prime}\right), \cdots,\left(x_{i}, x_{i}^{\prime}\right)\right\}$ ,其中i为特征点匹配对的数量。②使用2幅图像进行重建初始化。首先将第1幅图像与第2幅图像中的匹配点对x和x'代入对极几何约束条件[式(3)]求得基础矩阵F,该矩阵代表了2幅图像匹配点之间的空间几何关系。$$\left(x^{\prime}\right)^{{\rm{T}}} {\boldsymbol{F}} x=0 。 $$ (3) 再通过已知的相机内参K和式(4)求得本质矩阵E和,对E进行奇异值分解后得到第2幅图像相对第1幅图像的相机旋转矩阵R和平移向量T。
$$ {\boldsymbol{E}}=K^{{\rm{T}}} F K。 $$ (4) 在此基础上,可通过式(5)求得2个相机的投影矩阵P1和P2:
$$ \left\{\begin{array}{l}{\boldsymbol{P}}_{1}=K[I, \;0] \\ {\boldsymbol{P}}_{2}=K[{\boldsymbol{R}},\; T]\end{array}\right.。 $$ (5) 通过P1和P2建立二维匹配点x和x'及其对应的三维空间点X的关系:
$$ \left\{\begin{array}{l}x={\boldsymbol{P}}_{1} X \\ x^{\prime}={\boldsymbol{P}}_{2} X\end{array}\right.。 $$ (6) 并将匹配点x和x'的齐次坐标[u, v, 1]T及[u', v', 1]T代入上式,得:
$$ \left[\begin{array}{l}P_{13} u-P_{11} \\ P_{13} v-P_{12} \\ P_{23} u^{\prime}-P_{21} \\ P_{23} v^{\prime}-P_{22}\end{array}\right] X=A X=0 。$$ (7) 式(7)中:Pi1、Pi2、Pi3是Pi的行向量,对A进行奇异值分解后得到二维图像特征点的三维坐标。
③加入新的图像。根据新加入的一幅图像与已重建的上一幅图像上特征点的匹配关系,获得已知的三维点X对应新图像上的二维点x,将对应的二维点和三维点代入式(8)可求得投影矩阵Pi,然后重复使用步骤②中的方法获得新图像上其余未重建的匹配点的三维坐标。
$$ x=P_{i} X。 $$ (8) ④利用光束平差(bundle adjustment,BA)[23]算法进行集束调整,减小相机姿态R、T和重建三维点坐标的误差。将所有三维点通过重新映射的方式到得到其在图像上的二维点坐标,然后计算与其真实二维点之间的距离,并将该距离最小化以完成优化。即:
$$ \min \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{m}\left(x_{i j}-P_{j} \:X_{i}\right)^{2}。 $$ (9) 式(9)中:xij是第i个特征点在第j幅图像上的坐标,Pj为投影矩阵,Xi为第i个特征点的三维坐标。每重建一幅图像进行一次集束调整,当所有图像重建完成后,再次进行集束调整,获得优化后的稀疏三维点云。
⑤三维点云稠密化。采用多视角立体集群算法(cluster multi-view stereo,CMVS)和多视角拼接算法(patch-based multi-view stereo,PMVS)对重建出来的稀疏点云进行稠密化[24]。
-
由于立木场景三维点云数据量大,夹杂了许多噪声点,且点云模型与真实世界三维空间的方向、尺度上也存在不一致,因此需要对点云模型进行下采样、去噪、比例校正、坐标校正、方向校正等预处理,以减少后续算法运行时间。①采用三维体素栅格法对点云进行下采样。首先为输入的点云数据创建由大量指定边长的微小立方体包围的集合,即三维体素栅格;然后在每个体素内计算所有点的重心,利用重心代替该体素内的其余点,这样所有的三维点云最终都由各个体素内的重心表示。②去噪。使用直通滤波器对X、Y、Z阈值范围进行设定,划分出感兴趣的立木范围区域,从而减少背景噪声点。接着采用统计滤波方法去除离群噪声点,计算直通滤波后的每个点pi,计算其与k(取50)个近邻点的平均距离
$\bar{d}\left(p_{i}\right)$ ,假设得到的结果服从高斯分布,得平均距离均值(μ)和标准差(σ),如果这些点的平均距离$\bar{d}\left(p_{i}\right)$ 大于阈值Cσ(C为常量,取1),则将被视为离群值去除。③坐标校正。首先进行点云模型与实际的比例校正,由放置物体实际尺寸hr和放置物体的模型尺寸hm得到坐标缩放比例r=hr/hm,在进行立木因子测量时可按比例将其换算到与实际相同的尺度。④方向校正。计算三维点云模型质心点的三维坐标,并基于主成分分析法(principal component analysis,PCA)[25]将点云模型进行质心化,求解点云模型协方差矩阵的特征值和特征向量,特征向量为立木三维点云模型的主方向,根据该主方向创建旋转矩阵M,将原始点云Po以质心点为中心转换到主方向的位置,得到新的三维点云模型Pn=MPo。 -
预处理后的三维点云模型中包含多株目标立木及地面,为此需要进行点云分割,分别提取单株立木三维点云。首先使用RANSAC算法将地面点云拟合成一个平面,然后提取属于该平面内的点云,从而将地面点云与立木点云进行初步分割。
在初步分割后的点云中,同一立木的点云总是紧邻的,而不同立木的点云之间存在间距,因此,根据空间点的欧氏距离采用条件欧几里得聚类算法进行多株立木三维点云的分割。对于三维点云中的某一点P,通过KD树找到三维点云中离点P最近的k个点,这些点与P点的距离若小于阈值d则聚类到集合Q中。然后从集合Q中选取点P以外的点,重复上述过程,直到集合Q中点的数量不再增加,则聚类过程结束。最后将多株立木三维点云分割到不同的点云集合中,从而提取出单株立木三维点云。
-
将立木在z轴方向的最高点与最低点的差值默认为其高度,如图3所示。由于点云坐标校正后单株立木的生长方向均与z轴的正方向一致,且立木底部平面位于oxy平面,所以提取出单株立木点云后,遍历所有点,找到单株立木z轴坐标的最大值与最小值,两者差值的绝对值即为单株立木的高度h (h=|Zmax−Zmin|)。
-
将立木位于距地面1.3 m处断面直径的最大值和最小值的平均视为其胸径,如图4所示。在单株立木的三维点云中,利用校正后的比例r求得1.3 m处点云坐标:z=1.3/r。对该处做3 cm厚度的切片,然后再将点云切片投影至oxy平面,利用非线性最小二乘法进行椭圆拟合求解椭圆一般方程式:Ax2+Bxy+Cy2+Dx+Ey+1=0。其中:A、B、C、D、E是待求解参数。求得椭圆一般方程式后,根据式(10)和式(11)求得椭圆的短轴a和长轴b:
$$ \left\{\begin{array}{l}X_{{\rm{C}}}=\dfrac{B E-2 C D}{4 A C-B^{2}} \\ Y_{{\rm{C}}}=\dfrac{B D-2 A E}{4 A C-B^{2}}\end{array}\right.; $$ (10) $$ \left\{\begin{array}{l}a^{2}=\dfrac{2\left(A X_{{\rm{c}}}{ }^{2}+C Y_{{\rm{c}}}{ }^{2}+B X_{{\rm{c}}} Y_{{\rm{c}}}-1\right)}{A+C+\sqrt{(A-C)^{2}+B^{2}}} \\ b^{2}=\dfrac{2\left(A X_{{\rm{c}}}{ }^{2}+C Y_{{\rm{c}}}{ }^{2}+B X_{{\rm{c}}} Y_{{\rm{c}}}-1\right)}{A+C-\sqrt{(A-C)^{2}+B^{2}}}\end{array}\right. 。$$ (11) 然后将椭圆的短轴与长轴的平均值作为立木的胸径(Φ):Φ=(a+b)/2。
-
基于软件平台Visual Studio 2017和计算机视觉Opencv库提取立木视频关键帧图像并基于运动恢复结构算法获取立木三维点云;基于C++开源点云库(point cloud library,PCL)对点云数据进行预处理及分割操作。
-
立木视频关键帧提取后,基于运动恢复结构算法获取的立木场景三维点云如图5A所示。可以看出该原始三维点云不仅包含了4株立木,还包含了地面、背景及离群噪声点。由图5B所示:进行点云下采样之后点云数据减少了约3倍,这并不影响立木三维点云的整体形状,且经过预处理后的点云成功滤除了背景及大量离群噪声点,点云模型的坐标方向也得到了校正(该场景中种植立木的花坛长度已知,无需在场景中放置用于比例校正的物体)。图5C是将地面点云与立木点云进行初步分割后的结果,图5D是点云通过条件欧几里得聚类算法分割后得到的4株立木。
-
由表1可见:经过计算得出树高测量的绝对误差为0.03~0.24 m,测量值与实际值之间的相对误差为0.63%~3.93%,平均相对误差为1.96%。树高测量值总体上比实际值低,主要是因为树冠顶部的枝叶稀少,导致生成的三维点云在树冠顶部较为稀疏,在点云处理阶段被视为噪声点去除,并且在一些枝叶较细或者高度较高的立木上,由于视频拍摄不够清晰导致特征点匹配数量不足,使得立木三维重建时存在点云部分缺失的现象。立木的胸径测量的绝对误差为0.20~0.85 cm,测量值与实际值之间的相对误差为1.45%~6.92%,平均相对误差为3.19%。测量误差主要是由于拍摄时立木之间的遮挡,导致部分立木树干重建效果不佳,并且在使用非线性最小二乘法进行椭圆拟合时,由于利用的点云数量较少且分布不均匀,使得拟合不够准确。
表 1 树高和胸径的测量值与实际值
Table 1. Measured and actual values of tree height and DBH
立木
编号树高 胸径 实际
值/m测量
值/m相对误
差/%实际
值/cm测量
值/cm相对误
差/%1 6.14 6.10 0.63 15.60 14.85 4.85 2 4.98 4.87 2.15 13.06 13.33 2.07 3 5.49 5.53 0.84 12.74 13.00 2.09 4 5.64 5.49 2.60 14.97 15.58 4.06 5 3.42 3.39 0.93 10.83 10.62 1.87 6 3.49 3.55 1.69 12.26 13.11 6.91 7 4.53 4.40 2.78 12.90 12.25 4.99 8 4.31 4.21 2.39 14.33 14.09 1.70 9 6.65 6.60 0.71 19.43 19.14 1.44 10 6.19 6.08 1.79 18.63 19.35 3.87 11 7.17 6.93 3.40 18.80 18.42 1.94 12 5.63 5.73 1.67 18.72 19.39 3.58 13 7.52 7.35 2.18 16.97 17.27 1.77 14 7.47 7.20 3.56 19.04 18.59 2.37 15 5.58 5.69 1.93 15.13 14.36 5.08 16 5.01 5.05 0.64 11.94 12.20 2.16 17 5.41 5.27 2.57 12.67 12.46 1.68 18 7.18 6.98 2.78 16.08 16.88 4.93 平均值 1.96 3.19 图6为树高和胸径测量值与实际值的线性回归分析图,使用本研究方法测量的立木树高和胸径与实际值之间均存在着显著的线性相关关系,树高相关系数(R2)为0.987 9,均方根误差(RMSE)为0.133 3 m;胸径R2为0.962 1,RMSE为0.533 7 cm。
-
针对当前基于三维点云的立木因子测量方法效率低或成本高的问题,本研究提出了一种基于运动恢复结构的多株立木因子测量方法,使用普通智能手机实现了自然环境下多株立木树高和胸径的灵活、有效测量。本研究表明:使用本方法测量树高的平均相对误差为1.96%,相关系数为0.987 9,均方根误差为 0.133 3 m;测量胸径的平均相对误差为3.19%,相关系数为0.962 1,均方根误差为0.533 7 cm。本方法测量树高的平均相对误差均低于文献[26-27],具有更高的树高测量精度;测量胸径的平均相对误差低于文献[26],略高于文献[27],但是文献[26-27]分别需要使用三维激光扫描仪和ToF手机,而本方法仅需使用普通智能手机,具有更好的普适性。
本方法具有较高的精度,但是测量胸径和树高仍有一定的误差,可能原因为:①树冠顶部的枝叶稀少,导致生成的三维点云在树冠顶部较为稀疏,在点云处理阶段被视为噪声点去除,导致树高测量值总体上比实际值低。②在一些枝叶较细或者高度较高的立木上,由于视频拍摄不够清晰导致特征点匹配数量不足,使得立木三维重建时点云部分缺失。③采用非线性最小二乘法拟合椭圆时由于树干点云的数量较少或分布不均导致立木胸径计算结果不理想。因此,可尝试采用高分辨率无人机等设备进行树冠顶部视频的拍摄,以获得立木清晰且全面的图像,同时进一步研究立木图像特征点提取与匹配算法,增加树干与树冠顶部枝叶的特征点匹配对数量,以提高重建立木的三维点云质量。
Measuring method of multiple trees attributes based on structure from motion
-
摘要:
目的 提出基于运动恢复结构的多株立木因子测量方法,以解决目前基于三维点云的立木因子测量方法获取立木树高和胸径存在效率低或成本高的问题。 方法 ①使用智能手机环绕包含多株立木的场景拍摄一段视频,并采用固定帧采样法和差异值哈希算法自动提取立木视频中的关键帧图像,然后,基于运动恢复结构(structure from motion,SfM)算法处理立木关键帧图像,从而获取立木场景的原始三维点云;②在对原始三维点云进行预处理及初步分割后,运用条件欧几里得聚类算法对多株立木三维点云进行分割,以提取单株立木三维点云;③对立木三维点云使用最值遍历法和椭圆拟合法实现立木树高和胸径的自动测量。 结果 与真实值相比,本研究方法测得的树高、胸径的平均相对误差分别为1.96%、3.19%,均方根误差分别为0.133 3 m、0.533 7 cm,相关系数分别为0.987 9、0.962 1。 结论 该方法具有较高的树高和胸径测量精度,提供了一种便捷、低成本的多株立木因子三维测量方法。图6表1参27 Abstract:Objective Tree attributes are generally measured by obtaining the tree height and DBH using a method based on three-dimensional point cloud, which is featured with either low efficiency or high cost. To solve this problem, this study is aimed to propose a measuring method of multiple trees attributes based on Structure from Motion. Method Firstly, a smart phone was used to shoot a video of a scene with multiple trees before its key frame images were automatically extracted using the fixed-frame sampling and dHash algorithm; Secondly, such key frame images of the trees were processed on the basis of structure from motion (SfM) algorithm to obtain the original 3D point cloud of the scene; Thirdly, after the pre-procession and initial segmentation of the original 3D point cloud, the conditional European clustering algorithm is used to segment the 3D point cloud of multiple trees to extract the 3D point cloud of a single tree; Finally, the most value traversal method and ellipse fitting method were employed to deal with the tree 3D point cloud to realize the automatic measurement of tree height and DBH. Result Compared with real values, the mean relative errors of tree height and DBH measured using this method are 1.96% and 3.19%, the root mean square errors were 0.1333 m and 0.5337 cm whereas the correlation coefficients were 0.9879 and 0.9621 respectively. Conclusion This method, with high measurement accuracy of tree height and DBH, serves as a convenient and low-cost three-dimensional measurement method for multiple trees attributes. [Ch, 6 fig. 1 tab. 27 ref.] -
城市热岛效应成为困扰城市发展的主要障碍和难点,如何通过生态途径协调城市发展与环境问题之间的关系,成为当前研究的热点。自然山水架构在调和城市中的人工—自然矛盾体之间发挥了重要的生态效能,为解决城镇化进程中出现的“城市病”提供了最基本的生态解决途径之一。绿色廊道将城市公园、街头绿地、自然保护地、农田、滨水湿地和山地等串联构成具有自我维持能力的动态绿色景观结构体系[1]。作为城市最重要的生态载体之一,绿色廊道的空间分布和结构特征对改善城市热环境具有重要的生态效益。不同的绿地类型、形态、结构和植物群落等构成的绿色廊道对降低城市热岛强度的生态调节功能和效益各不相同。绿色廊道按空间结构特征分为:线状绿色廊道、带状绿色廊道和河流型绿色廊道等[2]。按功能类型分为:生态型绿色廊道、文化与历史遗产型绿色廊道、休闲游憩型绿色廊道等[3]。
绿色廊道的路径选线直接影响其空间属性特征,因此,通过优化绿色廊道的景观格局来降低城市的热岛强度是行之有效的生态途径和方法。根据不同的研究目标,研究人员基于兴趣点( point of interest,POI)、选线适宜性评价、生态适宜性分析、多源数据与深度学习、层次分析法、重力模型、最小累积阻力模型(minimum cumulative model,MCR)、环境公平视角等方法对绿色廊道的选线和评价进行了深入探讨[4-9]。有研究表明:当城镇绿化覆盖率达到50%时,地表温度下降约13 ℃,城市热岛效应可基本消除[10]。本研究以改善城市热环境为目标,基于MCR模型与水文流域模型,对福建省福州市绿色廊道的景观格局进行优化分析,为城市规划和建设提供参考。
1. 研究区概况与数据
1.1 研究区概况
福州市位于中国东南沿海(25°15′~26°39′N,118°08′~120°31′E),属于中、南亚热带海洋性季风气候区,常年雨量充沛,夏季高温湿热,逆温频率高,持续时间长,城市热岛效应明显。福州市位于河口盆地中心,主城区被海拔600~1 000 m的莲花山、鼓山、五虎山和旗山等群山环绕,形成“枕山、襟江、面海”的自然地理环境特征。为更全面地分析热岛效应与绿色廊道的空间关系,研究范围选取鼓楼区、台江区、晋安区、仓山区、马尾区、长乐新区及闽侯县等区域,总面积约1 759.95 km²。
根据《福州市中心城区绿地系统总体规划(2011—2020年)》《福建省绿道网总体规划纲要(2012—2020)》和《福州市绿道网总体规划》,福州市共规划省级绿道3 119.0 km,其中,6条省级绿道、3条支线和2条连接线。福州市以“沿江、沿河、环湖、达山、通公园”为目标,整合城市自然生态和历史人文资源,在省级绿道总体规划框架内,共规划市级绿道1 238.0 km,其中,2条省级绿道、36条市级绿道、94条社区级绿道。目前,已建16条山地丘陵型绿道,86条环湖滨河型绿道,5条滨江面海型绿道,15条绿色通勤型绿道,10条历史文化型绿道。截至2020年,全市新建168个串珠公园绿地,中心城区的绿地率达42%,绿化覆盖率达48%,人均绿地面积超过15 m2。
1.2 数据收集与处理
研究数据主要包括:土地利用类型数据根据2019年福州市谷歌(Google)地图2.5 m高精度影像(谷歌地图资源共享平台下载),结合GB/T 721010—2017《土地利用现状分类》分为林地、建设用地、道路、水体、农田、草地、未利用地,分类精度为89.84%,Kappa系数0.85。地表温度数据由2019年9月22日Landsat 8 OLI遥感影像(美国地质调查局网站下载)根据辐射传输方程法反演获取[11]。2019年福州市建筑矢量数据、《福州市城市总体规划(2010—2020年)》《福州新区总体规划(2015—2020年)》《福州市中心城区绿地系统总体规划(2011—2020年)》《福州市中心城区综合交通总体规划(2011—2020年)》等来源于福州市规划局网站。福州市90 m分辨率数字高程模型(DEM)遥感影像来源于中国地理空间数据云网站。影像噪声低、几何形变小。研究区范围云量低于2%,满足研究需求。
2. 研究方法
2.1 生态源地的识别及重要性评价方法
根据土地利用分类数据,通过形态学空间格局模型(morphological spatial pattern analysis,MSPA)开闭运算数学方法[12],对栅格图像进行度量、识别及数据分割等操作,分别提取MSPA模型的前景数据和背景数据,得出像元层面的景观生态斑块,将其进行二值化栅格处理,运用ArcGIS软件中的Guidos Toolbox分析工具,采用八邻域图像细化分析方法[13],提取像素目标和矢量化跟踪,得到互不重叠的7种景观类型和结构:核心区、孤岛、孔隙、边缘、环道、桥接、支线,将结果按面积大小提取核心区斑块和生态源地[14]。
景观连通性指数是反映景观连通度和斑块重要性的主要依据[15-16]。本研究选取斑块整体连通性指数(IIC)和斑块面积比指数(DA)对源斑块的重要性进行评价。通过ArcGIS平台,设定源斑块之间连通的距离阀值。如果距离小于阈值,则视为连通;如果距离大于阈值,则视为不连通[17]。IIC指数通过计算2个斑块之间最短路径来确定,结果为0~1,当值为0时,说明各斑块间互不连通;当值为1时,说明整个景观单元都是生境斑块。利用Conefor Inputs for ArcGIS插件,计算关键源点间的阻力距离值[18]。将IIC指数和DA指数的结果输入Conefor Sensinode 2.6软件,设置阈值距离等参数,计算绿地斑块重要性指数(dIIC)。dIIC指数的值越高,表示各斑块在绿地系统中的重要性越高。根据dIIC指数对斑块重要性进行评价,由此划分生态源斑块和绿色廊道的等级。
2.2 基于MCR模型的绿色廊道构建方法
构建绿色廊道最常用的方法是MCR模型[19],表示生态流克服生态阻力面,从一个生态源地到另一个生态源地的最小累积距离,可确定生态源地起始点和目标点之间的最短费用路径[20]。通过阻力面赋值和权重生成最佳路径,进而模拟生物运动的潜在趋势与景观格局改变之间的关系[21]。MCR模型是计算生态流克服不同土地利用类型阻力进行移动的过程,需考虑生态源点、路径距离和阻力因子,对生态敏感性影响因子进行赋值和权重计算[22]。权重值通过序关系法获取[23]。由此构建生态综合阻力面来表征景观类型对生态流动的阻力影响。利用ArcGIS插件中的Build Network and Map Linkages工具计算各生态源地到各斑块之间的费用距离栅格(距离测算)和成本回溯链接栅格数据(费用路径),利用最短路径函数计算并生成“源”到各“网络中心”耗费最少、流动性成本最小的潜在绿色廊道。公式为:
$$ {C}_{i}=\sum _{j=1}^n({D}_{i}\times {F}_{j}) 。$$ 其中:Ci表示从景观单元i (i=1,2,3
$,\cdots, $ m)到生态源的累积耗费距离值,即最小成本的计算结果;Di表示景观单元i到生态源的间隔距离;Fj表示空间中景观单元j (j=1,2,3$,\cdots, $ n)对物种迁移的阻抗值。2.3 基于水文流域模型的绿色廊道优化方法
基于DEM数据,根据水文流域模型对水的径流方向及路径进行模拟和定量化分析[24]。同理,在ArcGIS平台中,将地表反演温度和绿色廊道生态综合阻力面的值等同于DEM数据,利用栅格计算器将各因子叠加的适宜性图取反后,整个区间为负数,再将取反的适宜性图的最小值取绝对值,使最小值为0,得到一张“反适宜性”图,即取值高的地方不适宜,取值低的地方适宜。通过对“反适宜性”图进行填洼—流向—流量等步骤处理后,利用栅格计算器设定阈值。借助Flow Accumulation工具,按场地特征不断实验阈值来提取温度分布域和绿色廊道分布域,采用Shreve河网分级工具对两者进行分级。
将温度分布域和绿色廊道分布域相叠加,两者的交点视为重要降温生态节点,对降低热岛强度具有重要作用。结合绿色廊道内部廊道之间的交点,与地表温度相叠加,提取未被绿色廊道覆盖的“热点”区域,进而优化绿色廊道的空间分布格局。具体流程如图1。
3. 结果与分析
3.1 福州市生态源地的识别及评价
利用ArcGIS平台,将福州市土地分类数据的林地、草地和农田设为MSPA模型的前景数据,建设用地、道路、水体和未利用地设为背景数据,基于MSPA模型对提取的7种景观类型按面积从大到小排序:核心区、边缘区、桥接区、孤岛、支线、环道区、孔隙,从中筛选出面积排名前30位的核心区斑块作为生态源斑块,并进行编号(表1)。
表 1 福州市重要生态源地统计表Table 1 Overview of important ecological sources in Fuzhou City编号 面积/km² 区位 编号 面积/km² 区位 编号 面积/km² 区位 1 126.77 闽侯县、晋安区 11 3.24 长乐新区 21 2.96 长乐新区 2 1.98 晋安区 12 5.35 长乐新区 22 2.87 长乐新区 3 2.03 闽侯县、鼓楼区 13 1.74 仓山区 23 2.07 长乐新区 4 1.65 晋安区 14 3.42 长乐新区 24 20.97 长乐新区 5 13.65 马尾区 15 1.65 闽侯县 25 3.16 长乐新区 6 2.17 马尾区 16 1.90 长乐新区 26 1.62 长乐新区 7 1.56 马尾区 17 1.63 闽侯县 27 158.00 闽侯县 8 3.85 马尾区 18 73.07 闽侯县 28 31.08 长乐新区 9 17.68 闽侯县 19 2.53 长乐新区 29 5.86 长乐新区 10 140.47 马尾区 20 4.06 闽侯县 30 100.87 闽侯县 将源斑块间连通距离的阈值设为2 km。当距离小于2 km时,2个斑块间视为可连通;当距离大于2 km时,则视为不连通。利用自然断点法对30个生态源斑块的重要性进行评价,共分为4级:一级最重要源斑块2个,dIIC值为25.780~39.620;二级非常重要源斑块3个,dIIC为7.610~25.780;三级很重要源斑块3个,dIIC为1.980~7.610;四级一般重要源斑块22个,dIIC为0.002~1.980。源斑块重要性分布如表2。
表 2 源斑块重要性分级统计Table 2 Statistical graph of the importance classification to source plaques斑块重要性 斑块等级 dIIC区间值 斑块数/个 面积/km2 比例/% 斑块编号 区位说明 最重要 一级 25.780~39.620 2 298.47 40.34 10、27 包括旗山和鼓山自然保护区、风景名胜区、国家森
林公园、重要水源及水库保护区等非常重要 二级 7.610~25.780 3 300.71 40.64 1、18、30 包括莲花山、五虎山和天台山自然林地、森林公
园、重要水源及水库保护区、大面积山地公
园、水源涵养保护区等很重要 三级 1.980~7.610 3 52.61 7.11 8、9、28 包括马尾琅岐旗山公园、闽侯六路山和长乐新区寨
顶山自然林地、大型山地公园、重要湿地等一般重要 四级 0.002~1.980 22 88.08 11.91 剩余斑块 包括大型山地公园、基本农田、大型水库、重要湿
地等3.2 福州市绿色廊道的空间特征及分析
3.2.1 生态景观阻力面分析
结合福州市河口型盆地特征,按生态适应性分析法[25],选取土地利用类型、地形因子、生境因子、景观类型、生态系统服务等5个生态敏感性因子,通过计算赋值和权重值,得到各类景观单元的生态景观阻力面分布特征。由此可知:生态景观阻力值较高的区域集中于鼓楼区、台江区、仓山区、马尾区和晋安区等主城区。其中,长乐新区生态景观阻力值较高的区域集中于老城区、营前新区、各乡镇建成区及机场等,闽侯县集中于大学城、高新区、甘蔗县城、青口镇区、南屿镇区和南通镇区等。闽江流域因对物种迁移和扩散构成较大阻力,生态景观阻力值较高;环绕主城区的五虎山、旗山、莲花山、鼓山和天台山等大面积自然林地,生态景观阻力值较小,构成生境斑块的基底。
3.2.2 福州市绿色廊道空间分布特征
将5个生态敏感性因子的景观生态阻力面进行加权叠加,得到综合生态阻力面。基于MCR最小累积阻力模型的最小路径工具计算起点与终点的最小费用路径,模拟源斑块间相互连接的潜在绿色廊道。
将筛选出的30个重要生态源地与城市道路矢量数据、城市水系矢量数据、潜在绿色廊道等进行加权叠加,获得福州市潜在绿色廊道合成图。由此可知:潜在绿色廊道共74条,在主城区鼓楼区、台江区、仓山区中北部、晋安区主城区、马尾区主城区、闽侯上街和高新区等分布均比较少,主要因为这些区域建设密度大,土地利用集约化程度高,地形因子影响大,综合生态阻力高。在仓山区东部、马尾琅岐、长乐新区滨海新城、闽侯南屿镇至青口区域、晋安区北部等分布比较多,说明这些区域生态阻力小,重要斑块分布多,景观破碎度低,连通性高,利于绿色廊道生态路径的形成。
结合源斑块重要性等级划分结果,将起点或终点为一级源斑块的廊道定义为一级廊道,将起点或终点为二级源斑块的廊道定义为二级廊道,其他等级以此类推。因此,如表3可见:福州市绿色廊道分为4级,共74条,总长度918.11 km。其中,一级9条,132.88 km,占14.47%;二级14条,207.48 km,占22.60%;三级14条,153.57 km,占16.73%;四级37条,424.18 km,占46.20%。
表 3 福州市绿色廊道分级概况Table 3 Classification of greenway in Fuzhou City廊道类型 数量/条 长度/km 绿色廊道路径 一级 9 132.87 ①斑块27(旗山国家森林公园)—斑块9(闽侯六路山);②斑块27—斑块15(闽侯官塘山);③斑块
27—斑块30(五虎山);④斑块10(鼓山风景名胜区)—斑块2(鼓岭风景名胜区);⑤斑块10—斑
块5(马尾琅岐南山尾);⑥斑块10—斑块8(马尾琅岐旗山);⑦斑块10—斑块13(城门山);
⑧斑块10—斑块17(南山公园);⑨斑块10—斑块18(天台山)二级 14 207.48 ①斑块1(莲花山)—斑块3(金鸡山公园);②斑块1—斑块4(鼓岭);③斑块1—斑块9(闽侯六路
山);④斑块18(天台山)—斑块6(牛岭山);⑤斑块18—斑块8(琅岐旗山);⑥斑块18—斑块
10(鼓山风景名胜区);⑦斑块18—斑块12(火焰山);⑧斑块18—斑块14(长乐烟台山);⑨斑块
18—斑块17(南山公园);⑩斑块18—斑块19(龙角峰公园);⑪斑块18—斑块23(长乐莲花山);
⑫斑块30(五虎山)—斑块15(闽侯官塘山);⑬斑块30—斑块20(祥谦林森公园);⑭斑块30—斑
块27(旗山国家森林公园)三级 14 153.57 ①斑块9(六路山)—斑块1(莲花山);②斑块9—斑块3(金鸡山公园);③斑块9—斑块15(闽侯官塘
山);④斑块9—斑块27(旗山国家森林公园);⑤斑块8(马尾琅岐旗山)—斑块5(马尾琅岐南山
尾);⑥斑块8—斑块6(牛岭山);⑦斑块8—斑块10(鼓山风景名胜区);⑧斑块8—斑块12(火焰
山);⑨斑块8—斑块18(天台山);⑩斑块28(寨顶山)—斑块17(南山公园);⑪斑块28—斑块
23(长乐莲花山);⑫斑块28—斑块24(塔山);⑬斑块28—斑块26(古槐镇农保地);⑭斑块28—
斑块29(三溪水库)四级 37 424.18 主要由城市大型山地公园、农保地、大型水库、河流湿地等四级斑块之间相互连接,构成建成
区的主要绿色廊道3.3 福州市绿色廊道的景观格局优化分析
3.3.1 绿色廊道降温生态节点空间分布
绿色廊道各路径之间汇聚相交的点是重要的生态节点,对降低城市热岛强度具有重要的作用。利用ArcGIS平台,识别绿色廊道内部的生态“交点”。由此:共生成80个生态“交点”,主要分布于城区周边的自然林地生态斑块,以及城区内部的大型城市绿地和山体公园,中心主城区因绿地斑块破碎化严重,连通性较差,内部生态“交点”稀少。其中,鼓楼区2个,仓山区3个,晋安区6个,台江区无生态“交点”。马尾区和闽侯县因分布数量较多的自然生态林地和森林公园等,分别有生态“交点”13个和14个,长乐新区因分布大面积的农田、山体公园、湿地保护区等,生态“交点”高达42个。
根据水文流域模型,将绿色廊道分布域图和温度分布域图叠加,共识别降温生态节点176个。由图2可知:鼓楼区有降温生态节点8个,仓山区21个,晋安区14个,台江区1个,马尾区27个,长乐新区63个,闽侯县42个。中心城区生态节点分布较少,说明绿色廊道对主城区热岛效应的缓解作用较弱,需对其数量和结构进行优化,增加主城区的降温生态节点,提升城区夏季的热舒适度,增强绿色廊道的生态效益。
3.3.2 福州市绿色廊道优化分析
将福州市绿色廊道与地表温度叠加分析,由此识别出35处需降温区域(图2),其中,鼓楼区2处、仓山区9处、晋安区6处、台江区2处、马尾区4处、长乐新区4处、闽侯县8处。以识别的降温区域为导向,基于缓解城市热岛效应为目标,将福州市绿色廊道与城市用地分类矢量数据、绿色廊道生态“交点”、降温生态节点、地表温度等叠加后,在原有74条绿色廊道的基础上,新增绿色廊道14条,主要包括道路型绿色廊道和滨水型绿色廊道2种类型(表4)。其中,道路型绿色廊道8条,主要由城市主干道路构成;滨水型绿色廊道6条,主要由闽江和乌龙江流域,以及城市内河构成。
表 4 福州市优化新增绿色廊道统计Table 4 Statistical table of optimized new greenways in Fuzhou City廊道类型 数量/条 廊道路径 道路型
绿色廊道8 ①五四北泰禾广场—福州北绕城高速—福山郊野公园—软件园—铜盘路—西湖公园—东街口—白马河—中
亭街—长安山公园—旧师大—高盖山公园—义序机场—三环路等
②闽侯六路山—国宾大道—永嘉天地—洪塘大桥—金牛山公园—梅峰路—西湖公园—华林路—牛岗山公园— 东三环路—盛丰物流园区—上洋工业区—鼓山等
③狮子峰—牛岗山公园—福光路—盛丰物流园区—上洋工业区—光明港公园等
④东街口—东大路—东二环泰禾广场等
⑤旗山国家森林公园—大学城—建平路—橘园洲大桥—金山大道—金山工业园区—金洲南路—飞凤山公园— 海峡奥林匹克体育中心—高盖山公园—白湖亭—南二环路—会展中心等
⑥浦上大桥—浦上大道—仓山万达—闽江大道—旧师大—长安山公园—世欧上江城等
⑦永嘉天地—旗山大道—大学城—高新区—南屿镇区—117县道—南港大桥—南通镇区等
⑧五虎山—奔驰大道—青口镇区—104国道—闽江绿道等、长乐洋屿工业园区—洞江—朝阳路—南山公园— 首占镇区—大象山滨水型
绿色廊道6 ①亭江镇区—马尾主城区—马尾工业园区—台江金融街万达—中亭街—闽侯荆溪永丰—甘蔗城区等沿闽江
北岸构成
②火车南站—会展中心—世欧上江城—闽江公园—淮安大桥—三环快速路乌龙江段—火车南站等形成的环
仓山区南台岛分布
③闽侯候官村—洪塘大桥—乌龙江大道—南屿镇区—203省道—福昆线—长乐洋屿工业园区—马尾琅岐镇区
等沿乌龙江及闽江构成
④长乐旗山—两港工业区—滨海新城—龙角峰公园等沿海岸线构成
⑤五四北泰禾广场—新店溪及秀峰路—火车北站—晋安河—世欧王庄—光明港—闽江等沿内河构成
⑥世欧王庄—光明港—上洋工业区—鼓岭等沿光明港构成结合《福州市城市总体规划(2010—2020年)》《福州新区总体规划(2015—2020年)》《福州市中心城区绿地系统总体规划(2011—2020年)》《福州市中心城区综合交通总体规划(2011—2020年)》等,对新增绿色廊道的路径选线进行合理性验证和分析,研究结果基本满足要求。优化后的绿色廊道共88条,廊道数量和类型更丰富,景观格局空间分布和结构特征更合理。绿色廊道对城市热点区域的覆盖更全面,对改善城市热岛具有更明显的生态调节功能。在福州市大山水格局的生态框架下,结合城市总体规划和用地布局,对福州市绿色廊道的宽度、走向、植物配置形式等方面进行科学规划和全局统筹,并通过制定行之有效的保护措施和法律法规,提升绿色廊道的空间结构分布特征,发挥绿色廊道的生态效益和功能。
4. 结论与讨论
本研究选取具有河口型盆地地貌特征的福州市为对象,以改善城市热环境为目标,基于MCR模型和水文流域模型,对福州市绿色廊道的景观格局进行优化和分析。主要结论如下:①根据MSPA模型和源斑块重要性评价,将提取的30个生态源斑块分为4级:一级最重要斑块(2个)、二级非常重要斑块(3个)、三级很重要斑块(3个)、四级一般重要斑块(22个)。结合生态适应性分析法,由土地利用类型、地形因子、生境因子、景观类型、生态系统服务等5个生态敏感性因子构建综合生态阻力面。②通过MCR模型计算综合生态阻力面的最小成本路径,由此生成74条绿色廊道,总长度918.11 km:一级9条,132.88 km;二级14条,207.48 km;三级14条,153.57 km;四级37条,424.18 km。将绿色廊道与城市地表温度叠加,共识别80个生态“交点”、35处未覆盖需降温区域,表明绿色廊道的降温效果不够明显,景观格局需进一步优化提升。③利用水文流域模型,将绿色廊道分布域与温度分布域叠加生成176个降温生态节点。据此新增14条绿色廊道:8条道路型绿色廊道和6条滨水型绿色廊道。优化后的福州市绿色廊道共计88条,廊道路径与城市上位规划相符合,整体空间分布更合理,对城市热点区域覆盖更全面,降温效果更明显,缓解城市热岛效应的生态调节功能更突出。
-
表 1 树高和胸径的测量值与实际值
Table 1. Measured and actual values of tree height and DBH
立木
编号树高 胸径 实际
值/m测量
值/m相对误
差/%实际
值/cm测量
值/cm相对误
差/%1 6.14 6.10 0.63 15.60 14.85 4.85 2 4.98 4.87 2.15 13.06 13.33 2.07 3 5.49 5.53 0.84 12.74 13.00 2.09 4 5.64 5.49 2.60 14.97 15.58 4.06 5 3.42 3.39 0.93 10.83 10.62 1.87 6 3.49 3.55 1.69 12.26 13.11 6.91 7 4.53 4.40 2.78 12.90 12.25 4.99 8 4.31 4.21 2.39 14.33 14.09 1.70 9 6.65 6.60 0.71 19.43 19.14 1.44 10 6.19 6.08 1.79 18.63 19.35 3.87 11 7.17 6.93 3.40 18.80 18.42 1.94 12 5.63 5.73 1.67 18.72 19.39 3.58 13 7.52 7.35 2.18 16.97 17.27 1.77 14 7.47 7.20 3.56 19.04 18.59 2.37 15 5.58 5.69 1.93 15.13 14.36 5.08 16 5.01 5.05 0.64 11.94 12.20 2.16 17 5.41 5.27 2.57 12.67 12.46 1.68 18 7.18 6.98 2.78 16.08 16.88 4.93 平均值 1.96 3.19 -
[1] 孟宪宇. 测树学[M]. 北京: 中国林业出版社, 2006: 350. MENG Xianyu. Forest Mensuration[M]. Beijing: China Forestry Publishing House, 2006: 350. [2] MARKUS H, MIKKO V, JUHA H. Outlook for the next generation’s precision forestry in finland [J]. Forests, 2014, 5(7): 1682 − 1694. [3] 程文生, 冯仲科, 黄晓东. 便携式森林资源调查仪研制与试验[J]. 西北林学院学报, 2018, 33(5): 156 − 162. CHENG Wensheng, FENG Zhongke. HUANG Xiaodong. Development and experiment of portable instrument for forest resources inventory [J]. J Northwest For Univ, 2018, 33(5): 156 − 162. [4] 冯仲科, 黄晓东, 刘芳. 森林调查装备与信息化技术发展分析[J]. 农业机械学报, 2015, 46(9): 257 − 265. FENG Zhongke, HUANG Xiaodong, LIU Fang. Forest survey equipment and development of information technology [J]. Trans Chin Soc Agric Mach, 2015, 46(9): 257 − 265. [5] 杜鹏志, 曾伟生, 冯仲科, 等. 利用电子经纬仪测量林木树高和材积的精度分析[J]. 林业资源管理, 2016(2): 45 − 48, 55. DU Pengzhi, ZENG Weisheng, FENG Zhongke, et al. Precision analysis on tree height and stem volume measurements using electronic theodolite [J]. For Resour Manage, 2016(2): 45 − 48, 55. [6] 于东海, 冯仲科, 曹忠, 等. 全站仪测量立木胸径树高及材积的误差分析[J]. 农业工程学报, 2016, 32(17): 160 − 167. YU Donghai, FENG Zhongke, CAO Zhong, et al. Error analysis of measuring diameter at breast height and tree height and volume of standing tree by total station [J]. Trans Chin Soc Agric Eng, 2016, 32(17): 160 − 167. [7] 陈相武, 徐爱俊. 基于智能手机单目视觉的多株立木高度提取方法[J]. 北京林业大学学报, 2020, 42(8): 43 − 52. CHEN Xiangwu, XU Aijun. Height extraction method of multiple standing trees based on monocular vision of smart phones [J]. J Beijing For Univ, 2020, 42(8): 43 − 52. [8] 管昉立, 徐爱俊. 基于智能手机与机器视觉技术的立木胸径测量方法[J]. 浙江农林大学学报, 2018, 35(5): 892 − 899. GUAN Fangli, XU Aijun. Tree DBH measurement method based on smartphone and machine vision technology [J]. J Zhejiang A&F Univ, 2018, 35(5): 892 − 899. [9] 高莉平, 徐爱俊. 应用智能终端的立木高度测量方法[J]. 东北林业大学学报, 2018, 46(11): 28 − 34. GAO Liping, XU Aijun. Tree height measurement method with intelligent terminal [J]. J Northeast For Univ, 2018, 46(11): 28 − 34. [10] VÁZQUEZ-ARELLANO M, GRIEPENTROG H W, REISER D, et al. 3-D imaging systems for agricultural applications: a review [J/OL]. Sensors, 2016, 16 (5): 618. doi: 10.3390/s16050618. [11] 仇瑞承, 张漫, 魏爽, 等. 基于RGB-D相机的玉米茎粗测量方法[J]. 农业工程学报, 2017, 33(增刊 1): 170 − 176. QIU Ruicheng, ZHANG Man, WEI Shuang, et al. Method for measurement of maize stem diameters based on RGB-D camera [J]. Trans Chin Soc Agric Eng, 2017, 33(suppl 1): 170 − 176. [12] NEWNHAM G J, ARMSTON J D, CALDERS K, et al. Terrestrial laser scanning for plot-scale forest measurement [J]. Curr For Rep, 2015, 1(4): 239 − 251. [13] 刘浩, 张峥男, 曹林. 机载激光雷达森林垂直结构剖面参数的沿海平原人工林林分特征反演[J]. 遥感学报, 2018, 22(5): 872 − 888. LIU Hao, ZHANG Zhengnan, CAO Lin. Estimating forest stand characteristics in a coastal plain forest plantation based on vertical structure profile parameters derived from ALS data [J]. J Remote Sensing, 2018, 22(5): 872 − 888. [14] WESTOBY M J, BRASINGTON J, GLASSER N F, et al. ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications [J]. Geomorphology, 2012, 179: 300 − 314. [15] 周静静, 郭新宇, 吴升, 等. 基于多视角图像的植物三维重建研究进展[J]. 中国农业科技导报, 2019, 21(2): 9 − 18. ZHOU Jingjing, GUO Xinyu, WU Sheng, et al. Research progress on plant three-dimensional reconstruction based on multi-view image [J]. J Agric Sci Technol, 2019, 21(2): 9 − 18. [16] 梁秀英, 周风燃, 陈欢, 等. 基于运动恢复结构的玉米植株三维重建与性状提取[J]. 农业机械学报, 2020, 51(6): 209 − 219. LIANG Xiuying, ZHOU Fengran, CHEN Huan, et al. Three-dimensional maize plants reconstruction and traits extraction based on structure from motion [J]. Trans Chin Soc Agric Mach, 2020, 51(6): 209 − 219. [17] HUI Fang, ZHU Jinyu, HU Pengcheng, et al. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations [J]. Ann Bot, 2018, 121(5): 1079 − 1088. [18] MILLER J, MORGENROTH J, GOMEZ C. 3D modelling of individual trees using a handheld camera: accuracy of height, diameter and volume estimates [J]. Urban For Urban Greening, 2015, 14(4): 932 − 940. [19] 徐慧丹, 周小成, 黄洪宇, 等. 移动多视图立体摄影的单木结构参数提取[J]. 测绘科学, 2018, 43(9): 108 − 114. XU Huidan, ZHOU Xiaocheng, HUANG Hongyu, et al. Single tree structure parameter extraction of structure-from-motion with multi-view stereophotogrammetry [J]. Sci Surv Mapp, 2018, 43(9): 108 − 114. [20] 孙英伟, 林文树. 基于SFM算法的单木结构参数提取研究[J]. 西北林学院学报, 2020, 35(5): 180 − 184. SUN Yingwei, LIN Wenshu. Extraction of the parameters of single tree structure based on SFM algorithm [J]. J Northwest For Univ, 2020, 35(5): 180 − 184. [21] 化春键, 马金科, 陈莹. 基于差异哈希算法的改进非局部均值去噪算法[J/OL]. 激光与光电子学进展, 2020, 57(14): 141007. doi: 10.3788/LOP57.141007. HUA Chunjian, MA Jinke, CHEN Yin. Improved non-local mean denoising algorithm based on difference hash algorithm[J/OL]. Laser Optoelectron Prog, 2020, 57(14): 141007. doi: 10.3788/LOP57.141007. [22] LOWE D G. Distinctive image features from scale-invariant keypoints [J]. Int J Comput Vision, 2004, 60(2): 91 − 110. [23] TRIGGS B, MCLAUCHLAN P F, HARTLEY R I, et al. Bundle adjustment-a modern synthesis[C]//[s.l.]. International Workshop on Vision Algorithms. Berlin: Springer, 1999: 298 − 372. [24] 何豫航, 岳俊. 基于CMVS/PMVS多视角密集匹配方法的研究与实现[J]. 测绘地理信息, 2013, 38(3): 20 − 23. HE Yuhang, YUE Jun. Research and implementation based on multi-view dense matching by applying CMVS /PMVS [J]. J Geomatics, 2013, 38(3): 20 − 23. [25] WOLD S, ESBENSEN K, GELADI P. Principal component analysis [J]. Chemometrics Intell Lab Syst, 1987, 2(1/3): 37 − 52. [26] 杨全月, 陈志泊, 孙国栋. 基于点云数据的测树因子自动提取方法[J]. 农业机械学报, 2017, 48(8): 179 − 185. YANG Quanyue, CHEN Zhibo, SUN Guodong. Automatic extraction method of tree measurement factors based on point cloud data [J]. Trans Chin Agric Mach, 2017, 48(8): 179 − 185. [27] 范永祥, 冯仲科, 陈盼盼, 等. 基于RGB-D SLAM手机的森林样地调查系统研究[J]. 农业机械学报, 2019, 50(8): 226 − 234. FAN Yongxiang, FENG Zhongke, CHEN Panpan, et al. Research on forest plot survey system based on RGB-D SLAM mobile phone [J]. Trans Chin Soc Agric Mach, 2019, 50(8): 226 − 234. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210547