本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。
炭基肥与有机肥替代部分化肥对青紫泥水稻土微生物丰度及酶活性的影响
doi: 10.11833/j.issn.2095-0756.20210619
Effects of biochar-based fertilizer and organic fertilizer substituting chemical fertilizer partially on soil microbial abundances and enzyme activities
-
摘要:
目的 探究炭基肥施用和有机肥替代部分化肥对土壤养分含量、微生物丰度和酶活性的影响,分析土壤酶活性变化的主要驱动因子,为提高稻田土壤质量和新型肥料应用提供科学依据。 方法 在杭嘉湖平原典型稻田进行田间小区试验,供试土壤为青紫泥稻田土。设置4个处理:不施肥对照(ck)、常规施肥(CF)、炭基肥(BF)及有机肥替代50%化肥(OF),3种施肥处理的氮、磷、钾投入量一致。处理开始于2019年6月,于2019年11月水稻Oryza sativa收获后采集0~20 cm土壤样品,测定土壤碳氮组分质量分数、细菌、真菌和古菌丰度及土壤碳氮磷循环相关酶活性。 结果 与CF处理相比,BF和OF处理对土壤pH、总碳、易氧化态碳、全氮、有效磷、速效钾、硝态氮质量分数无显著影响,而OF处理显著提高了土壤铵态氮和溶解性有机氮质量分数。与ck相比,OF处理显著提高了土壤微生物生物量碳质量分数(164%)、细菌16S rRNA(35%)和真菌18S rRNA基因拷贝数(98%)及真菌/细菌比(50%),而BF处理对上述指标无影响。3种施肥处理对β-葡萄糖苷酶、木聚糖苷酶、亮氨酸氨基肽酶活性均无影响,而BF和OF处理显著提高了土壤α-葡萄糖苷酶(111%和136%)、纤维二糖苷酶(77%和100%)、β-N-乙酰氨基葡萄糖苷酶(109%和177%)和酸性磷酸酶(97%和199%)活性,OF处理平均提高幅度高于BF处理。冗余分析表明:土壤铵态氮、溶解性有机碳和氮、真菌丰度是影响土壤酶活性变化的主要驱动因子。 结论 相比常规施肥,有机肥替代部分化肥和炭基肥施用提高了土壤碳氮磷转化相关酶活性,且有机肥替代部分化肥进一步提高了微生物丰度,对促进稻田土壤养分周转具有重要意义。图2表3参33 Abstract:Objective The objective is to provide a scientific basis for improving rice paddy soil quality and for the application of new fertilizer, by investigating the effects of biochar-based fertilizer and organic fertilizer substituting chemical fertilizer partially on soil nutrients contents, microbial abundances and enzyme activities, and investigated the driving factors for soil enzyme activities. Method A field experiment was conducted in a typical rice paddy located in Hangjiahu Plain, which soil is Qingzini paddy soil. Four treatments, namely no fertilizer control (ck), conventional fertilizer (CF), biochar-based fertilizer (BF) and organic fertilizer substitution of 50% chemical fertilizer (OF), were laid out with the three fertilization treatments had consistent input of N, P and K amount. The field trail was initiated on June 2019 and soil sampling were collectted on November, 2019. Topsoils (0−20 cm) were sampled to investigate changes in soil carbon and nitrogen fractions, bacterial, fungal and archaeal abundances and enzyme activities involved in C, N and P cycling. Result Compared with CF, BF and OF treatments had no effects on soil pH, total C and N, available P and K and nitrate contents, but OF significantly increased soil ammonia and dissolved organic C contents. Compared with ck, OF treatment increased the content of soil microbial biomass carbon (MBC) by 164%, bacterial 16S rRNA gene abundance by 35% and fungal 18S rRNA gene abundances by 98% and fungi/bacteria ratio by 50%, while BF and CF had no effects on them. The three fertilization treatments had no effects on the activities of β-glucosidase, β-xylosidase and Leucine aminopeptidase, whereas BF and OF treatments significantly increased the activities of α-glucosidase (AG) by 111%和136%, β-cellobiosidase (BG) by 77%和100%, β-N-acetylglucosaminidase (NAG) by 109%和177% and acid phosphatase (PHOS) by 97%和199%, respectively. Redundant analysis indicated that changes in soil enzyme activities were strongly dependent on the contents of soil ammonia, dissolved organic C and N, and fungal abundances. Conclusion The application of organic fertilizer and biochar-based fertilizer significantly increased soil enzyme activities involved in C, N and P cycling, with the OF treatment further increased soil microbial abundance, which was beneficial for soil nutrient cycling. [Ch, 2 fig. 3 tab. 33 ref.] -
Key words:
- organic fertilizer /
- biochar-based fertilizer /
- soil microbes /
- soil enzymes
-
表 1 不同施肥处理对土壤化学性质的影响
Table 1. Effects of different fertilization treatments on soil chemical properties
处理编号 pH 总碳/(g·kg−1) 全氮/(g·kg−1) 有效磷/(mg·kg−1) 速效钾/(mg·kg−1) 硝态氮/(mg·kg−1) 铵态氮/(mg·kg−1) ck 6.24±0.27 a 13.97±1.16 ab 1.93±0.23 a 9.58±0.36 a 139.59±1.06 a 1.18±1.08 a 5.25±2.08 c CF 6.20±0.26 a 12.97±0.15 b 2.23±0.15 a 10.77±1.19 a 157.28±15.69 a 2.86±0.85 a 9.67±0.96 b BF 6.11±0.10 a 15.57±1.18 a 2.27±0.42 a 11.94±2.43 a 133.90±28.88 a 2.09±0.82 a 9.63±2.03 b OF 6.23±0.15 a 14.27±1.24 ab 2.30±0.20 a 11.28±0.43 a 128.97±28.15 a 2.37±1.16 a 13.17±1.60 a 说明:数据为平均值±标准差。同列数据不同小写字母表示各处理间差异达5 %显著水平 表 2 不同施肥处理对土壤溶解性有机碳(DOC)、溶解性有机氮(DON)、微生物生物量碳(MBC)和微生物生物量氮(MBN)质量分数的影响
Table 2. Effects of different fertilization treatments on soil dissolved organic C and N, microbial biomass C and N contents
处理编号 质量分数/(mg·kg−1) MBC/MBN 溶解性有机碳 溶解性有机氮 易氧化态碳 微生物生物量碳 微生物生物量氮 ck 354.49±64.31 b 17.51±4.42 b 3.97±0.02 a 90.36±26.55 b 17.06±3.93 a 5.68±2.62 a CF 414.7±27.81 ab 17.51±2.88 b 3.75±0.26 a 123.63±42.63 b 21.27±5.48 a 6.25±2.84 a BF 484.19±50.53 a 15.02±3.34 b 4.36±0.5 a 117.64±40.05 b 23.47±6.62 a 5.43±2.92 a OF 520.11±65.57 a 41.09±11.84 a 4.14±0.38 a 238.29±102.01 a 26.79±8.02 a 9.09±3.79 a 说明:数据为平均值±标准差。同列不同字母表示各处理间差异显著(P<0.05) 表 3 不同施肥处理对土壤细菌、真菌、古菌基因丰度的影响
Table 3. Effects of different fertilization treatments on the gene abundances of bacteria, fungi and archaeal
处理编号 细菌丰度/(×109拷贝·g−1) 真菌丰度/(×108拷贝·g−1) 古菌丰度/(×107拷贝·g−1) 真菌/细菌/(×10−2) ck 4.62±0.74 b 0.85±0.36 b 1.25±0.26 a 1.78±0.47 b CF 3.61±0.72 b 0.27±0.03 c 1.26±0.26 a 0.75±0.11 ab BF 4.01±0.98 b 0.67±0.33 bc 1.35±0.43 a 1.89±1.43 ab OF 6.24±0.32 a 1.68±0.33 a 1.89±0.42 a 2.68±0.39 a 说明:数据为平均值±标准差。同列不同字母表示各处理间差异显著(P<0.05) -
[1] 徐春春, 纪龙, 陈中督, 等. 2020年我国水稻产业形势分析及2021年展望[J]. 中国稻米, 2021, 27(2): 1 − 4. doi: 10.3969/j.issn.1006-8082.2021.02.001 XU Chunchun, JI Long, CHEN Zhongdu, et al. Analysis of China’s rice industry in 2020 and the outlook for 2021 [J]. China Rice, 2021, 27(2): 1 − 4. doi: 10.3969/j.issn.1006-8082.2021.02.001 [2] ZHANG Q C, SHAMSI I H, XU D T, et al. Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure [J]. Appl Soil Ecol, 2012, 57: 1 − 8. doi: 10.1016/j.apsoil.2012.02.012 [3] LI Zhaolei, ZENG Zhaoqi, SONG Zhaopeng, et al. Vital roles of soil microbes in driving terrestrial nitrogen immobilization [J]. Glob Change Biol, 2021, 27: 1848 − 1858. doi: 10.1111/gcb.15552 [4] SCHMIDT J E, KENT A D, BRISSON V L, et al. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling[J/OL]. Microbiome, 2019, 7: 146 [2021-08-10]. doi: 10.1186/s40168-019-0756-9. [5] 徐洋, 杨帆, 张卫峰, 等. 2014—2016年我国种植业化肥施用状况及问题[J]. 植物营养与肥料学报, 2019, 25(1): 11 − 21. doi: 10.11674/zwyf.18073 XU Yang, YANG Fan, ZHANG Weifeng, et al. Status and problems of chemical fertilizer application in crop plantations of China from 2014 to 2016 [J]. J Plant Nutr Fert, 2019, 25(1): 11 − 21. doi: 10.11674/zwyf.18073 [6] 周晓阳, 徐明岗, 周世伟, 等. 长期施肥下我国南方典型农田土壤的酸化特征[J]. 植物营养与肥料学报, 2015, 21(6): 1615 − 1621. doi: 10.11674/zwyf.2015.0629 ZHOU Xiaoyang, XU Minggang, ZHOU Shiwei, et al. Soil acidification characteristics in southern China’ s croplands under long-term fertilization [J]. J Plant Nutr Fert, 2015, 21(6): 1615 − 1621. doi: 10.11674/zwyf.2015.0629 [7] ZENG Jun, LIU Xuejun, SONG Ling, et al. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition [J]. Soil Biol Biochem, 2016, 92: 41 − 49. doi: 10.1016/j.soilbio.2015.09.018 [8] 张福锁. 科学认识化肥的作用[J]. 中国农技推广, 2017, 33(1): 16 − 19. doi: 10.3969/j.issn.1002-381X.2017.01.005 ZHANG Fusuo. Scientific understanding of the role of chemical fertilizers [J]. China Agric Technol Ext, 2017, 33(1): 16 − 19. doi: 10.3969/j.issn.1002-381X.2017.01.005 [9] 温延臣, 张曰东, 袁亮, 等. 商品有机肥替代化肥对作物产量和土壤肥力的影响[J]. 中国农业科学, 2018, 51(11): 2136 − 2142. doi: 10.3864/j.issn.0578-1752.2018.11.011 WEN Yanchen, ZHANG Yuedong, YUAN Liang, et al. Crop yield and soil fertility response to commercial organic fertilizer substituting chemical fertilizer [J]. Sci Agric Sin, 2018, 51(11): 2136 − 2142. doi: 10.3864/j.issn.0578-1752.2018.11.011 [10] 李文军, 彭保发, 杨奇勇. 长期施肥对洞庭湖双季稻区水稻土有机碳、氮积累及其活性的影响[J]. 中国农业科学, 2015, 48(3): 488 − 500. doi: 10.3864/j.issn.0578-1752.2015.03.09 LI Wenjun, PENG Baofa, YANG Qiyong. Effects of long-term fertilization on organic carbon and nitrogen accumulation and activity in a paddy soil in double cropping rice area in Dongting Lake of China [J]. Sci Agric Sin, 2015, 48(3): 488 − 500. doi: 10.3864/j.issn.0578-1752.2015.03.09 [11] 李小萌, 陈效民, 曲成闯, 等. 生物有机肥与减量配施化肥对连作黄瓜养分利用率及产量的影响[J]. 水土保持学报, 2020, 34(2): 309 − 317. LI Xiaomeng, CHEN Xiaomin, QU Chengchuang, et al. Effects of bio-organic fertilizer combined with reduced fertilizer on nutrient utilization and yield of continuous cropping cucumber [J]. J Soil Water Conserv, 2020, 34(2): 309 − 317. [12] 赵泽州, 王晓玲, 李鸿博, 等. 生物质炭基肥缓释性能及对土壤改良的研究进展[J]. 植物营养与肥料学报, 2021, 27(5): 886 − 897. doi: 10.11674/zwyf.20472 ZHAO Zezhou, WANG Xiaoling, LI Hongbo, et al. Slow-release property and soil remediation mechanism of biochar-based fertilizers [J]. J Plant Nutr Fert, 2021, 27(5): 886 − 897. doi: 10.11674/zwyf.20472 [13] 李春阳. 减氮条件下配施不同用量炭基肥对红壤稻田土壤性质的影响[D]. 南昌: 江西农业大学, 2020. LI Chunyang. Effects of Different Amount of Biochar based Fertilizer on Soil Properties of Red Soil Paddy Field under Nitrogen Reduction Condition[D]. Nanchang: Jiangxi Agricultural University, 2020. [14] 常栋, 马文辉, 张凯, 等. 生物炭基肥对植烟土壤微生物功能多样性的影响[J]. 中国烟草学报, 2018, 24(6): 58 − 66. CHANG Dong, MA Wenhui, ZHANG Kai, et al. Effect of biochar fertilizer on microbial functional diversity in tobacco growing soil [J]. Acta Tab Sin, 2018, 24(6): 58 − 66. [15] 潘全良, 宋涛, 陈坤, 等. 连续6年施用生物炭和炭基肥对棕壤生物活性的影响[J]. 华北农学报, 2016, 31(3): 225 − 232. doi: 10.7668/hbnxb.2016.03.033 PAN Quanliang, SONG Tao, CHEN Kun, et al. Influences of 6-year application of biochar and biochar-based compound fertilizer on soil bioactivity on brown soil [J]. Acta Agric Boreal-Sin, 2016, 31(3): 225 − 232. doi: 10.7668/hbnxb.2016.03.033 [16] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. LU Rukun. Methods of Soil Agricultural Chemical Analysis[M]. Beijing: China Agricultural Science and Technology Press, 2000. [17] FIERER N, JACKSON J A, VILGALYS R, et al. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays [J]. Appl Environ Microbiol, 2005, 71(7): 4117 − 4120. doi: 10.1128/AEM.71.7.4117-4120.2005 [18] MAY L A, SMILEY B, SCHMIDT M G. Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage [J]. Can J Microbiol, 2001, 47(9): 829 − 841. doi: 10.1139/w01-086 [19] BANO N, RUFFIN S, RANSOM B, et al. Phylogenetic composition of arctic ocean archaeal assemblages and comparison with antarctic assemblages [J]. Appl Environ Microbiol, 2004, 70(2): 781 − 789. doi: 10.1128/AEM.70.2.781-789.2004 [20] 吴涛, 冯歌林, 曾珍, 等. 生物质炭对盆栽黑麦草生长的影响及机理[J]. 土壤学报, 2017, 54(2): 525 − 534. WU Tao, FRNG Gelin, ZENG Zhen, et al. Effect of biochar addition on ryegrass growth in a pot experiment and its mechanism [J]. Acta Pedol Sin, 2017, 54(2): 525 − 534. [21] 吕真真, 吴向东, 侯红乾, 等. 有机–无机肥配施比例对双季稻田土壤质量的影响[J]. 植物营养与肥料学报, 2017, 23(4): 904 − 913. LÜ Zhenzhen, WU Xiangdong, HOU Honggan, et al. Effect of different application ratios of chemical and organic fertilizers on soil quality in double cropping paddy fields [J]. J Plant Nutr Fert, 2017, 23(4): 904 − 913. [22] 杨天昱. 生物炭基肥对水稻产量及稻田土壤肥力特性的影响[D]. 沈阳: 沈阳农业大学, 2020. YANG Tianyu. Effects of Biochar-based Fertilizer on Rice Yield and Paddy Soil Fertility Characteristics [D]. Shenyang Agricultural University, 2020. [23] 李昌娟, 杨文浩, 周碧青, 等. 生物炭基肥对酸化茶园土壤养分及茶叶产质量的影响[J]. 土壤通报, 2021, 52(2): 387 − 397. LI Changjuan, YANG Wenhao, ZHOU Biqing, et al. Effects of biochar based fertilizer on soil nutrients, tea output and quality in an acidified tea field [J]. Chin J Soil Sci, 2021, 52(2): 387 − 397. [24] 石丽红, 李超, 唐海明, 等. 长期不同施肥措施对双季稻田土壤活性有机碳组分和水解酶活性的影响[J]. 应用生态学报, 2021, 32(3): 921 − 930. SHI Lihong, LI Chao, TANG Haiming, et al. Effects of long-term fertilizer management on soil labile organic carbon fractions and hydrolytic enzyme activity under a double-cropping rice system of southern China [J]. Chin J Appl Ecol, 2021, 32(3): 921 − 930. [25] 包建平, 袁根生, 董方圆, 等. 生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响[J]. 土壤学报, 2020, 57(3): 721 − 729. BAO Jianping, YUAN Gensheng, DONG Fangyuan, et al. Effects of biochar application and straw returning on organic carbon fractionations and microbial activities in a red soil [J]. Acta Pedol Sin, 2020, 57(3): 721 − 729. [26] 徐一兰, 唐海明, 肖小平, 等. 长期施肥对双季稻田土壤微生物学特性的影响[J]. 生态学报, 2016, 36(18): 5847 − 5855. XU Yilan, TANG Haiming, XIAO Xiaoping, et al. Effects of different long-term fertilization regimes on the soil microbiological properties of a paddy field [J]. Acta Ecol Sin, 2016, 36(18): 5847 − 5855. [27] SHANG Lirong, WAN Liqiang, ZHOU Xiaoxin, et al. Effects of organic fertilizer on soil nutrient status, enzyme activity, and bacterial community diversity in Leymus chinensis steppe in Inner Mongolia, China [J/OL]. PLoS One, 2020, 15: e0240559[2021-09-20]. doi: 10.1371/journal.pone.0240559.eCollection 2020. [28] LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota: a review [J]. Soil Biol Biochem, 2011, 43(9): 1812 − 1836. doi: 10.1016/j.soilbio.2011.04.022 [29] GUO Kangying, ZHAO Yingzhi, LIU Yang, et al. Pyrolysis temperature of biochar affects ecoenzymatic stoichiometry and microbial nutrient-use efficiency in a bamboo forest soil [J/OL]. Geoderma, 2020, 363: 114162[2021-09-11]. doi: 10.1016/j.geoderma.2019.114162. [30] 陈坤, 徐晓楠, 彭靖, 等. 生物炭及炭基肥对土壤微生物群落结构的影响[J]. 中国农业科学, 2018, 51(10): 1920 − 1930. doi: 10.3864/j.issn.0578-1752.2018.10.011 CHEN Kun, XU Xiaonan, PENG Jing, et al. Effects of biochar and biochar-based fertilizer on soil microbial community structure [J]. Sci Agric Sin, 2018, 51(10): 1920 − 1930. doi: 10.3864/j.issn.0578-1752.2018.10.011 [31] 陈懿, 吴春, 李彩斌, 等. 炭基肥对植烟黄壤细菌、真菌群落结构和多样性的影响[J]. 微生物学报, 2020, 60(4): 653 − 666. CHEN Yi, WU Chun, LI Caibin, et al. Effect of biochar-based fertilizer on bacterial and fungal community composition, diversity in tobacco-planting yellow soil [J]. Acta Microbiol Sin, 2020, 60(4): 653 − 666. [32] MIAO Fuhong, LI Yuan, CUI Song, et al. Soil extracellular enzyme activities under long-term fertilization management in the croplands of China: a meta-analysis [J]. Nutr Cycling in Agroecosyst, 2019, 114: 125 − 138. doi: 10.1007/s10705-019-09991-2 [33] BAILEY V L, FANSLER S J, SMITH J L, et al. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization [J]. Soil Biol Biochem, 2011, 43(2): 296 − 301. doi: 10.1016/j.soilbio.2010.10.014 -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210619

计量
- 文章访问数: 25
- 被引次数: 0