留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浙江凤阳山不同海拔常绿阔叶林土壤微生物特征

何柳 曹敏敏 鲁建兵 郑翔 刘胜龙 姜姜

何柳, 曹敏敏, 鲁建兵, 郑翔, 刘胜龙, 姜姜. 浙江凤阳山不同海拔常绿阔叶林土壤微生物特征[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210820
引用本文: 何柳, 曹敏敏, 鲁建兵, 郑翔, 刘胜龙, 姜姜. 浙江凤阳山不同海拔常绿阔叶林土壤微生物特征[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210820
HE Liu, CAO Minmin, LU Jianbing, ZHENG Xiang, LIU Shenglong, JIANG Jiang. Soil microbial characteristics of evergreen broad-leaved forest at different altitudes in Fengyang Mountain, Zhejiang Province[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210820
Citation: HE Liu, CAO Minmin, LU Jianbing, ZHENG Xiang, LIU Shenglong, JIANG Jiang. Soil microbial characteristics of evergreen broad-leaved forest at different altitudes in Fengyang Mountain, Zhejiang Province[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210820

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

浙江凤阳山不同海拔常绿阔叶林土壤微生物特征

doi: 10.11833/j.issn.2095-0756.20210820
基金项目: 国家自然科学基金资助项目(32071612);国家重点研发计划项目(2017YFC0505500, 2017YFC0505502)
详细信息
    作者简介: 何柳(ORCID: 0000-0002-2073-9553),从事土壤微生物和凋落物分解等研究。E-mail: 761077902@qq.com
    通信作者: 姜姜(ORCID: 0000-0001-5058-8664),教授,从事森林水文学、生态系统生态学、全球变化和生态水文模型研究。E-mail: ecologyjiang@gmail.com
  • 中图分类号: S718.5

Soil microbial characteristics of evergreen broad-leaved forest at different altitudes in Fengyang Mountain, Zhejiang Province

  • 摘要:   目的  探明浙江凤阳山地带性植被常绿阔叶林土壤微生物群落特征,明确土壤微生物群落沿海拔梯度的变化规律及影响微生物群落结构和多样性的主要因子。  方法  采集海拔343、765、1 364、1 611 m处土壤样品,利用高通量测序技术,探究土壤微生物群落与海拔的关系。  结果  凤阳山细菌操作分类单元 (OTU)数量多于真菌,中低海拔(343和765 m)共有的OTU数目较多;Chao 1指数随海拔上升呈下降趋势,Shannon指数没有明显的变化规律。在门水平上,细菌群落优势类群为酸杆菌门Acidobacteria(43.77%~51.55%)、变形菌门Proteobacteria(31.18%~35.77%)和放线菌门Actinobacteria(5.24%~7.99%);真菌群落优势类群为担子菌门Basidiomycota(33.16%~67.35%)和子囊菌门Ascomycota(22.98%~46.78%)。相对丰度前10 位的细菌门中,芽单胞菌门Gemmatimonadetes、硝化螺旋菌门Nitrospirae、疣微菌门Verrucomicrobia与海拔呈极显著负相关(P<0.01)。真菌群落不存在与海拔相关的微生物门,而LefSe线性判别分析结果显示:真菌群落具有更多的差异类群。此外,主坐标分析显示:土壤微生物群落以765 m为界,存在海拔分异性特征,且第1主轴与温度、土壤全磷、土壤全钾、土壤pH显著相关(P<0.05)。  结论  海拔变化引起了凤阳山土壤微生物群落特征的变化,并且温度是最主要的驱动因子。图5表6参41
  • 图  1  不同海拔土壤细菌(A)和真菌(B)群落维恩图

    Figure  1  Venn diagram showing the unique and shared OTUs at different elevations in bacterial (A) and fungal (B) communities

    图  2  不同海拔门水平上土壤细菌(A)和真菌(B)群落相对丰度

    Figure  2  Relative abundance of bacteria (A) and fungi (B) phylum at different altitudes

    图  3  不同海拔属水平上土壤细菌(A)和真菌(B)群落相对丰度

    Figure  3  Relative abundance of bacteria (A) and fungi (B) genus at different altitudes

    图  4  不同海拔土壤细菌(A)和真菌(B)群落LefSe分析

    Figure  4  LefSeanalysis showing the significant differences at different bacteria(A) and fungi(B) taxonomic levels

    图  5  不同海拔OTU水平上土壤细菌(A)和真菌(B)群落PCoA分析

    Figure  5  PCoA analysis showing the first two principal coordinates at different altitudes in bacterial (A) and fungal (B) communities

    表  1  不同海拔林分特征

    Table  1.   General Situation of the trees at different altitudes

    海拔编号树种组成郁闭度/%
    EG1 木荷Schima superba、甜槠Castanopsis eyrei、青冈Cyclobalanopsis glauca、石栎Lithocarpus glaber
     檵木Loropetalum chinense
    91
    EG2 木荷、甜槠、青冈、檵木、山鸡椒Litsea cubeba 87
    EG3 木荷、甜槠、青冈、杨桐Cleyera japonica、马银花Rhododendron ovatum 92
    EG4 甜槠、青冈、马银花、尖叶山茶Camellia cuspidata、麂角杜鹃Rhododendron latoucheae 90
    下载: 导出CSV

    表  2  不同海拔土壤理化性质

    Table  2.   Physical and chemical properties of soil at different altitudes

    海拔编号pH土壤湿度/%总碳/(mg·g−1)全氮/(mg·g−1)全磷/(mg·g−1)全钾/(mg·g−1)
    EG14.86±0.03 a15.54±6.41 c103.97±7.60 a3.57±0.35 b0.21±0.04 c19.63±2.58 a
    EG24.93±0.18 a43.45±19.89 b160.53±96.86 a9.43±4.65 a0.51±0.12 b14.13±1.37 b
    EG34.67±0.07 a38.41±7.81 bc117.23±25.94 a7.13±1.12 ab0.45±0.16 b11.43±1.03 b
    EG44.73±0.21 a71.36±14.42 a125.97±45.76 a9.63±3.09 a0.73±0.05 a14.37±1.58 b
      说明:数值为平均值±标准差表示(n=3),不同小写字母表示海拔间差异显著(P<0.05)
    下载: 导出CSV

    表  3  不同海拔土壤微生物群落多样性

    Table  3.   Soil bacterial diversity indices at different altitudes

    细菌真菌
    海拔编号Chao 1指数Shannon指数覆盖度海拔编号Chao 1指数Shannon指数覆盖度
    EG14506.81±41.85 a9.2622±0.246 8 a0.9773±0.000 6 bEG1783.12±36.26 a3.6031±0.6633 b0.9911±0.0006 b
    EG24255.62±295.74 b8.8781±0.214 4 b0.9780±0.001 7 bEG2807.96±115.36 a5.0242±0.6876 a0.9911±0.0013 b
    EG33688.80±100.61 c9.0043±0.231 9 ab0.9824±0.000 5 aEG3729.86±52.44 ab4.6790±0.4236 a0.9921±0.0002 ab
    EG43791.13±110.41 c8.9974±0.176 5 ab0.9815±0.000 8 aEG4653.00±67.50 b4.5171±0.6495 ab0.9928±0.0008 a
      说明:数值为平均值±标准差(n = 4),不同小写字母表示海拔间差异显著(P<0.05)
    下载: 导出CSV

    表  4  海拔与微生物门Pearson相关性系数

    Table  4.   Pearson correlation coefficient between altitude and soil bacterial phylum

    细菌门相关性系数真菌门相关性系数细菌门相关性系数真菌门相关性系数
    酸杆菌门 0.032 担子菌门 −0.402 芽单胞菌门 −0.817** 壶菌门 −0.209
    变形菌门 0.234 子囊菌门 0.173 迷踪菌门 −0.260 Cercozoa −0.191
    放线菌门 −0.417 接合菌门 0.437 髌骨细菌门 −0.490 新丽鞭菌门 −0.233
    拟杆菌门 0.269 罗兹菌门 −0.308 硝化螺旋菌门 −0.723** 芽枝霉门 −0.236
    厚壁菌门 0.525* 球囊菌门 −0.036 疣微菌门 −0.705**
      说明:*表示在0.05水平(双侧)上显著相关;**表示在0.01水平(双侧)上显著相关
    下载: 导出CSV

    表  5  海拔与微生物属Pearson相关性系数

    Table  5.   Pearson correlation coefficient between altitude and soil bacterial genus

    细菌属真菌属细菌属真菌属
    属名相关系数属名相关系数属名相关系数属名相关系数
    Candidatus_Solibacter −0.458 红菇属Russula −0.645** Granulicella 0.719** Sebacina 0.197
    Bryobacter 0.088 Archaeorhizomyces 0.290 Acidipila 0.639** 鹅膏菌属Amanita 0.250
    Acidibacter −0.520* 大团囊菌属Elaphomyces −0.234 芽单胞菌属Gemmatimonas −0.734** Rossbeevera −0.127
    热酸菌属Acidothermus 0.514* Xerocomus 0.200 分枝杆菌属Mycobacterium 0.035 丝盖伞属Inocybe 0.190
    Candidatus_Koribacter −0.178 丝膜菌属Cortinarius 0.182 鞘氨醇单胞菌属Sphingomonas −0.778** 地舌菌属Geoglossum −0.194
    Burkholderia-Caballeronia-
    Paraburkholderia
    0.648** 棉革菌属Tomentella −0.259 拟杆菌属Bacteroides 0.224 Lactarius 0.311
    Clade_Ia 0.472 湿伞属Hygrocybe −0.097 MND1 −0.743** 粉褶菌属Entoloma −0.209
    Pajaroellobacter 0.740** 被孢霉属Morlierella 0.702**
      说明:*表示在0.05水平(双侧)上显著相关;**表示在0.01水平(双侧)上显著相关
    下载: 导出CSV

    表  6  温度、土壤理化性质与微生物Pearson相关性系数

    Table  6.   Pearson correlation coefficient between temperature,soil physical and chemical properties and soil microorganism

    指标细菌多样性细菌群落结构真菌多样性真菌群落结构
    Chao 1ShannonPC1PC2Chao 1ShannonPC1PC2
    温度 0.886* 0.320 −0.944* −0.190 0.603* −0.377 −0.939* −0.241
    总碳 −0.041 −0.208 −0.010 0.057 0.048 0.242 −0.026 0.033
    全氮 −0.412 −0.415 0.380 0.262 −0.215 0.478 0.349 0.249
    全磷 −0.588* −0.394 0.618* 0.485 −0.448 0.435 0.581* 0.498
    全钾 0.719* 0.427 −0.656* 0.325 0.207 −0.555 −0.671* 0.316
    土壤湿度 −0.560 −0.360 0.600* 0.513 −0.461 0.382 0.562 0.530
    pH 0.527 −0.016 −0.585* 0.176 0.343 −0.026 −0.616* 0.121
      说明:*表示在0.05水平(双侧)上显著相关
    下载: 导出CSV
  • [1] CHANG E H, CHEN T H, TIAN G L, et al. The effect of altitudinal gradient on soil microbial community activity and structure in moso bamboo plantations [J]. Appl Soil Ecol, 2016, 98: 213 − 220. doi:  10.1016/j.apsoil.2015.10.018
    [2] MA Yuhua, FENG Chun, WANG Zhaocheng, et al. Restoration in degraded subtropical broadleaved forests induces changes in soil bacterial communities [J/OL]. Global Ecol Conserv, 2021, 30: e01775[2021-11-20]. doi:  10.1016/j.gecco.2021.e01775.
    [3] SHAOPengshuai, LIANG Chao, RUBERT-NASON K, et al. Secondary successional forests undergo tightly-coupled changes in soil microbial community structure and soil organic matter [J]. Soil Biol Biochem, 2019, 128: 56 − 65. doi:  10.1016/j.soilbio.2018.10.004
    [4] NELSON M B, MARTINY A C, MARTINY J B H. Global biogeography of microbial nitrogen-cycling traits in soil [J]. Proc Natl Acad Sci, 2016, 113(29): 8033 − 8040. doi:  10.1073/pnas.1601070113
    [5] WARING B G, AVERILL C, HAWKES C V. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models [J]. Ecol Lett, 2013, 16(7): 887 − 894. doi:  10.1111/ele.12125
    [6] SUN Junming, IRZYKOWSKI W, JEDRYCZKA M, et al. Analysis of the genetic structure of Sclerotinia sclerotiorum (Lib. ) de Bary populations from different regions and host plants by random amplified polymorphic DNA markers [J]. J Integr Plant Biol, 2005, 47(4): 385 − 395. doi:  10.1111/j.1744-7909.2005.00077.x
    [7] ŽIFČÁKOVÁ L, VĚTROVSKÝ T, HOWE A, et al. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter [J]. Environ Microbiol, 2016, 18(1): 288 − 301. doi:  10.1111/1462-2920.13026
    [8] FRAC M, HANNULA S E, BELKA M, et al. Fungal biodiversity and their role in soil health [J/OL]. Front Microbiol, 2018, 9: 707[2021-11-20]. doi: 10.3389/fmicb.2018.00707.
    [9] MARGESIN R, NIKLINSKA M A. Editorial: elevation gradients: microbial indicators of climate change? [J/OL]. Front Microbiol, 2019, 10: 2405[2021-11-20]. doi: 10.3389/fmicb.2019.02405.
    [10] SILES J A, CAJTHAML T, FILIPOVÁ A, et al. Altitudinal, seasonal and interannual shifts in microbial communities and chemical composition of soil organic matter in Alpine forest soils [J]. Soil Biol Biochem, 2017, 112: 1 − 13. doi:  10.1016/j.soilbio.2017.04.014
    [11] WU Jiejun, ANDERSON B J, BUCKLEY H L, et al. Aspect has a greater impact on alpine soil bacterial community structure than elevation [J/OL]. FEMS Microbiol Ecol, 2017, 93(5): fiw253[2021-11-20]. doi:  10.1093/femsec/fix032.
    [12] COLLINS H P, CAVIGELLI M A. Soil microbial community characteristics along an elevation gradient in the Laguna Mountains of Southern California [J]. Soil Biol Biochem, 2003, 35(8): 1027 − 1037.
    [13] LOOBY C I, MARTIN P H. Diversity and function of soil microbes on montane gradients: the state of knowledge in a changing world [J/OL]. FEMS Microbiol Ecol, 2020, 96(9): fiaa122[2021-11-20]. doi:  10.1093/femsec/fiaa122.
    [14] 周煜杰, 贾夏, 赵永华, 等. 森林生态系统土壤真菌群落及其影响因素研究进展[J]. 生态环境学报, 2020, 29(8): 1703 − 1712.

    ZHOU Yujie, JIA Xia, ZHAO Yonghua, et al. A review on soil fungal community and its affectingfactors in forest ecosystem [J]. Ecol Environ Sci, 2020, 29(8): 1703 − 1712.
    [15] 厉桂香, 马克明. 土壤微生物多样性海拔格局研究进展[J]. 生态学报, 2018, 38(5): 1521 − 1529.

    LI Guixiang, MA Keming. Progress in the study of elevational patterns of soil microbial diversity [J]. Acta Ecol Sin, 2018, 38(5): 1521 − 1529.
    [16] 赵盼盼, 周嘉聪, 林开淼, 等. 海拔梯度变化对中亚热带黄山松土壤微生物生物量和群落结构的影响[J]. 生态学报, 2019, 39(6): 2215 − 2225.

    ZHAO Panpan, ZHOU Jiacong, LIN Kaimiao, et al. Effect of different altitudes on soil microbial biomass and community structure of Pinus taiwanensis forest in mid-subtropical zone [J]. Acta Ecol Sin, 2019, 39(6): 2215 − 2225.
    [17] 孟苗婧, 郭晓平, 张金池, 等. 海拔变化对凤阳山针阔混交林地土壤微生物群落的影响[J]. 生态学报, 2018, 38(19): 7057 − 7065.

    MENG Miaojing, GUO Xiaoping, ZHANG Jinchi, et al. Effects of altitude on soil microbial community in Fengyang Mountain coniferous and broad-leaved forest [J]. Acta Ecol Sin, 2018, 38(19): 7057 − 7065.
    [18] LI Guixiang, XU Guorui, SHEN Congcong, et al. Contrasting elevational diversity patterns for soil bacteria between two ecosystems divided by the treeline [J]. Sci China Life Sci, 2016, 59(11): 1177 − 1186.
    [19] DAI Zhongmin, ZANG Huadong, CHEN Jie, et al. Metagenomic insights into soil microbial communities involved in carbon cycling along an elevation climosequences [J]. Environ Microbiol, 2021, 23(8): 4631 − 4645. doi:  10.1111/1462-2920.15655
    [20] 金裕华. 武夷山不同海拔土壤微生物多样性的变化特征[D]. 南京: 南京林业大学, 2012.

    JIN Yuhua. Variations of Soil Microbial Diversity along an Elevation Gradient in the Wuyi Mountains [D]. Nanjing: Nanjing Forestry University, 2012.
    [21] 丁炳扬, 陈根荣, 程秋波, 等. 浙江凤阳山自然保护区种子植物区系的统计分析[J]. 云南植物研究, 2000, 22(1): 27 − 37. doi:  10.3969/j.issn.2095-0845.2000.01.002

    DING Bingyang, CHEN Genrong, CHENG Qiubo, et al. A floristic statistics and analyses of seed plants of Fengyangshan Nature Reserve in Zhejiang Province [J]. Acta Bot Yunnan, 2000, 22(1): 27 − 37. doi:  10.3969/j.issn.2095-0845.2000.01.002
    [22] 徐筱芃. 浙江凤阳山常绿阔叶林树种多样性及其影响因素研究[D]. 南京: 南京林业大学, 2017.

    XU Xiaopeng. Study on Plant Diversity and Its Influence Factors of the Evergreen Broad-leaved Forest in Fengyang Mountain [D]. Nanjing: Nanjing Forestry University, 2017.
    [23] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

    LU Rukun. The Analysis Method of Soil Agricultural Chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.
    [24] BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data [J]. Bioinformatics, 2014, 30(15): 2114 − 2120. doi:  10.1093/bioinformatics/btu170
    [25] MAGOČ T, SALZBERG S L. FLASH: fast length adjustment of short reads to improve genome assemblies [J]. Bioinformatics, 2011, 27(21): 2957 − 2963. doi:  10.1093/bioinformatics/btr507
    [26] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data [J]. Nat Methods, 2010, 7(5): 335 − 336. doi:  10.1038/nmeth.f.303
    [27] EDGAR R C, HAAS B J, CLEMENTE J C, et al. UCHIME improves sensitivity and speed of chimera detection [J]. Bioinformatics, 2011, 27(16): 2194 − 2200. doi:  10.1093/bioinformatics/btr381
    [28] ROGNES T, FLOU T, NICHOLS B, et al. VSEARCH: a versatile open source tool for metagenomics [J/OL]. Peer J, 2016, 4: 2409v1[2021-11-20]. doi: 10.7287/peerj. preprints. 2409v1.
    [29] SEGATA N, IZARD J, WALDRON L, et al. Metagenomic biomarker discovery and explanation [J/OL]. Genome Biol, 2011, 12(6): R60 [2021-11-20]. https://doi.org/10.1186/gb-2011-12-6-r60.
    [30] SHEN Congcong, NI Yingying, LIANG Wenjun, et al. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra [J/OL]. Front Microbiol, 2015, 6: 582[2021-11-20]. doi:  10.3389/fmicb.2015.00582.
    [31] 安前东, 徐梦, 张旭博, 等. 西藏色季拉山垂直植被带土壤细菌群落组成及功能潜势[J]. 应用生态学报, 2021, 32(6): 2147 − 2157.

    AN Qiandong, XU Meng, ZHANG Xubo, et al. Soil bacterial community composition and functional potentials along the vertical vegetation transect on Mount Segrila, Tibet, China [J]. Chin J Appl Ecol, 2021, 32(6): 2147 − 2157.
    [32] SINGH D, LEE-CRUZ L, KIM W S, et al. Strong elevational trends in soil bacterial community composition on Mt. Halla, South Korea [J]. Soil Biol Biochem, 2014, 68: 140 − 149. doi:  10.1016/j.soilbio.2013.09.027
    [33] 贺婧, 闫冰, 李俊生, 等. 秦岭中段北坡不同海拔土壤中细菌群落的分布特征及区域差异比较[J]. 环境科学研究, 2019, 32(8): 1374 − 1383.

    HE Jing, YAN Bing, LI Junsheng, et al. Altitude distribution patterns and regional differences of soil bacterial community in northern slopes in the Middle Qinling Mountains [J]. Res Environ Sci, 2019, 32(8): 1374 − 1383.
    [34] WANG Juntao, ZHENG Yuanming, HU Hangwei, et al. Soil pH determines the alpha diversity but not beta diversity of soil fungal community along altitude in a typical Tibetan forest ecosystem [J]. J Soil Sediment, 2015, 15(5): 1224 − 1232. doi:  10.1007/s11368-015-1070-1
    [35] 李敏, 闫伟. 海拔对乌拉山油松根围真菌群落结构的影响[J]. 菌物学报, 2019, 38(11): 1992 − 2006.

    LI Min, YAN Wei. Effects of altitude on rhizosphere fungal community structure of Pinus tabulaeformis in Wula Mountain, China [J]. Mycosystema, 2019, 38(11): 1992 − 2006.
    [36] KANOKRATANA P, UENGWETWANIT T, RATTANACHOMSRI U, et al. Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis [J]. Microb Ecol, 2011, 61(3): 518 − 528.
    [37] 杜思瑶, 于淼, 刘芳华, 等. 设施种植模式对土壤细菌多样性及群落结构的影响[J]. 中国生态农业学报, 2017, 25(11): 1615 − 1625.

    DU Siyao, YU Miao, LIU Fanghua, et al. Effect of facility management regimes on soil bacterial diversity and community structure [J]. Chin J Eco-Agric, 2017, 25(11): 1615 − 1625.
    [38] 刘子涵, 黄方园, 黎景来, 等. 覆盖模式对旱作农田土壤微生物多样性及群落结构的影响[J]. 生态学报, 2021, 41(7): 2750 − 2760.

    LIU Zihan, HUANG Fangyuan, LI Jinglai, et al. Effects of farmland and mulching patterns on soil microbial diversity and community structure in dryland [J]. Acta Ecol Sin, 2021, 41(7): 2750 − 2760.
    [39] 薛晓敏, 王来平, 韩雪平, 等. 不同树盘覆盖对矮砧苹果园土壤微生物群落结构和多样性的影响[J]. 生态学报, 2021, 41(4): 1528 − 1536.

    XUE Xiaomun, WANG Laiping, HAN Xueping, et al. Effects of different tree disk mulching on soil microbial community structure and diversity in dwarfing rootstock apple orchard [J]. Acta Ecol Sin, 2021, 41(4): 1528 − 1536.
    [40] BASTIDA F, TORRES I F, MORENO J L, et al. The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils [J]. Mol Ecol, 2016, 25(18): 4660 − 4673. doi:  10.1111/mec.13783
    [41] 陈岳民, 高金涛, 熊德成, 等. 土壤增温对中亚热带杉木幼林土壤微生物群落结构和有效氮的影响[J]. 亚热带资源与环境学报, 2016, 11(4): 1 − 8. doi:  10.3969/j.issn.1673-7105.2016.04.001

    CHENYuehmin, GAO Jintao, XIONG Decheng, et al. Effects of soil warming on soil microbial community structure and soil available nitrogen in subtropical young Chinese fir plantation [J]. J Subtrop Resour Environ, 2016, 11(4): 1 − 8. doi:  10.3969/j.issn.1673-7105.2016.04.001
  • [1] 曹善郅, 周家树, 张少博, 姚易寒, 刘娟, 李永夫.  生物质炭基尿素和普通尿素对毛竹林土壤氧化亚氮通量的影响 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20220254
    [2] 土壤与全球环境变化专刊前言 . 浙江农林大学学报, 2021, 38(5): -.
    [3] 周雨苗, 何刚辉, 马绍峰, 邵方雷, 费禹凡, 黄顺寅, 章海波.  土壤微塑料污染的生态效应 . 浙江农林大学学报, 2021, 38(5): 1040-1049. doi: 10.11833/j.issn.2095-0756.20200729
    [4] 徐睿, 姜春前, 白彦锋, 刘秀红, 汪思龙.  杉木纯林和混交林土壤温室气体通量的差异 . 浙江农林大学学报, 2019, 36(2): 307-317. doi: 10.11833/j.issn.2095-0756.2019.02.012
    [5] 姚兰, 张焕朝, 胡立煌, 王艮梅, 方炎明.  黄山不同海拔植被带土壤活性有机碳、氮及其与酶活性的关系 . 浙江农林大学学报, 2019, 36(6): 1069-1076. doi: 10.11833/j.issn.2095-0756.2019.06.003
    [6] 张勇, 胡海波, 王增, 黄玉洁, 吕爱华, 张金池, 刘胜龙.  凤阳山4种森林土壤在不同温度培养下活性有机碳的变化 . 浙江农林大学学报, 2018, 35(2): 243-251. doi: 10.11833/j.issn.2095-0756.2018.02.007
    [7] 陈梦扬, 姚泽秀, 李永春, 吴涵韬, 徐秋芳, 魏健, 秦华.  雷竹林土壤染料降解真菌筛选与脱色效果初步研究 . 浙江农林大学学报, 2016, 33(3): 418-426. doi: 10.11833/j.issn.2095-0756.2016.03.007
    [8] 李波成, 邬奇峰, 张金林, 钱马, 秦华, 徐秋芳.  真菌及细菌对毛竹及阔叶林土壤氧化亚氮排放的贡献 . 浙江农林大学学报, 2014, 31(6): 919-925. doi: 10.11833/j.issn.2095-0756.2014.06.014
    [9] 陈云飞, 江洪, 周国模, 杨爽, 陈健.  覆盖经营雷竹林的土壤热通量季节变化特征 . 浙江农林大学学报, 2013, 30(2): 165-171. doi: 10.11833/j.issn.2095-0756.2013.02.002
    [10] 杜群, 徐军, 王剑武, 张峰, 季碧勇.  浙江省森林碳分布与地形的相关性 . 浙江农林大学学报, 2013, 30(3): 330-335. doi: 10.11833/j.issn.2095-0756.2013.03.004
    [11] 王群, 张金池, 田月亮, 叶立新, 刘胜龙.  浙江凤阳山天然混交林林分空间结构分析 . 浙江农林大学学报, 2012, 29(6): 875-882. doi: 10.11833/j.issn.2095-0756.2012.06.011
    [12] 李海防, 段文军.  华南地区典型人工林土壤二氧化碳和氧化亚氮通量研究 . 浙江农林大学学报, 2011, 28(1): 26-32. doi: 10.11833/j.issn.2095-0756.2011.01.005
    [13] 徐华潮, 郝晓东, 黄俊浩, 叶石玄仙, 叶立新.  浙江凤阳山昆虫物种多样性 . 浙江农林大学学报, 2011, 28(1): 1-6. doi: 10.11833/j.issn.2095-0756.2011.01.001
    [14] 李国会, 温国胜, 田海涛, 张利阳, 李佳, 黄浩.  天目山不同海拔高度柳杉瘿瘤病对柳杉健康的影响 . 浙江农林大学学报, 2010, 27(4): 483-488. doi: 10.11833/j.issn.2095-0756.2010.04.001
    [15] 张晓宁, 欧晓红, 陈杰, 司徒英贤.  云南不同地点及海拔异色瓢虫鞘翅色斑变异比较 . 浙江农林大学学报, 2008, 25(5): 565-568.
    [16] 哀建国, 梅盛龙, 刘胜龙, 丁炳扬.  浙江凤阳山自然保护区福建柏群落物种多样性 . 浙江农林大学学报, 2006, 23(1): 41-45.
    [17] 哀建国, 丁炳扬, 于明坚.  凤阳山自然保护区福建柏群落特征的初步研究 . 浙江农林大学学报, 2005, 22(2): 133-138.
    [18] 丁爱芳, 俞元春, 陈萍萍.  土壤铝对林木根系的影响 . 浙江农林大学学报, 2001, 18(2): 119-122.
    [19] 姜培坤, 俞益武, 张立钦, 许小婉.  雷竹林地土壤酶活性研究 . 浙江农林大学学报, 2000, 17(2): 132-136.
    [20] 罗汝英.  晚近北美森林土壤研究动态 . 浙江农林大学学报, 1993, 10(2): 203-208.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210820

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/5/1

计量
  • 文章访问数:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-24
  • 录用日期:  2022-05-26
  • 修回日期:  2022-05-20

浙江凤阳山不同海拔常绿阔叶林土壤微生物特征

doi: 10.11833/j.issn.2095-0756.20210820
    基金项目:  国家自然科学基金资助项目(32071612);国家重点研发计划项目(2017YFC0505500, 2017YFC0505502)
    作者简介:

    何柳(ORCID: 0000-0002-2073-9553),从事土壤微生物和凋落物分解等研究。E-mail: 761077902@qq.com

    通信作者: 姜姜(ORCID: 0000-0001-5058-8664),教授,从事森林水文学、生态系统生态学、全球变化和生态水文模型研究。E-mail: ecologyjiang@gmail.com
  • 中图分类号: S718.5

摘要:   目的  探明浙江凤阳山地带性植被常绿阔叶林土壤微生物群落特征,明确土壤微生物群落沿海拔梯度的变化规律及影响微生物群落结构和多样性的主要因子。  方法  采集海拔343、765、1 364、1 611 m处土壤样品,利用高通量测序技术,探究土壤微生物群落与海拔的关系。  结果  凤阳山细菌操作分类单元 (OTU)数量多于真菌,中低海拔(343和765 m)共有的OTU数目较多;Chao 1指数随海拔上升呈下降趋势,Shannon指数没有明显的变化规律。在门水平上,细菌群落优势类群为酸杆菌门Acidobacteria(43.77%~51.55%)、变形菌门Proteobacteria(31.18%~35.77%)和放线菌门Actinobacteria(5.24%~7.99%);真菌群落优势类群为担子菌门Basidiomycota(33.16%~67.35%)和子囊菌门Ascomycota(22.98%~46.78%)。相对丰度前10 位的细菌门中,芽单胞菌门Gemmatimonadetes、硝化螺旋菌门Nitrospirae、疣微菌门Verrucomicrobia与海拔呈极显著负相关(P<0.01)。真菌群落不存在与海拔相关的微生物门,而LefSe线性判别分析结果显示:真菌群落具有更多的差异类群。此外,主坐标分析显示:土壤微生物群落以765 m为界,存在海拔分异性特征,且第1主轴与温度、土壤全磷、土壤全钾、土壤pH显著相关(P<0.05)。  结论  海拔变化引起了凤阳山土壤微生物群落特征的变化,并且温度是最主要的驱动因子。图5表6参41

English Abstract

何柳, 曹敏敏, 鲁建兵, 郑翔, 刘胜龙, 姜姜. 浙江凤阳山不同海拔常绿阔叶林土壤微生物特征[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210820
引用本文: 何柳, 曹敏敏, 鲁建兵, 郑翔, 刘胜龙, 姜姜. 浙江凤阳山不同海拔常绿阔叶林土壤微生物特征[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210820
HE Liu, CAO Minmin, LU Jianbing, ZHENG Xiang, LIU Shenglong, JIANG Jiang. Soil microbial characteristics of evergreen broad-leaved forest at different altitudes in Fengyang Mountain, Zhejiang Province[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210820
Citation: HE Liu, CAO Minmin, LU Jianbing, ZHENG Xiang, LIU Shenglong, JIANG Jiang. Soil microbial characteristics of evergreen broad-leaved forest at different altitudes in Fengyang Mountain, Zhejiang Province[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210820

返回顶部

目录

    /

    返回文章
    返回