Soil microbial characteristics of evergreen broad-leaved forest at different altitudes in Fengyang Mountain, Zhejiang Province
-
摘要:
目的 探明浙江凤阳山地带性植被常绿阔叶林土壤微生物群落特征,明确土壤微生物群落沿海拔梯度的变化规律及影响微生物群落结构和多样性的主要因子。 方法 采集海拔343、765、1 364、1 611 m处土壤样品,利用高通量测序技术,探究土壤微生物群落与海拔的关系。 结果 凤阳山细菌操作分类单元 (OTU)数量多于真菌,中低海拔(343和765 m)共有的OTU数目较多;Chao 1指数随海拔上升呈下降趋势,Shannon指数没有明显的变化规律。在门水平上,细菌群落优势类群为酸杆菌门Acidobacteria(43.77%~51.55%)、变形菌门Proteobacteria(31.18%~35.77%)和放线菌门Actinobacteria(5.24%~7.99%);真菌群落优势类群为担子菌门Basidiomycota(33.16%~67.35%)和子囊菌门Ascomycota(22.98%~46.78%)。相对丰度前10 位的细菌门中,芽单胞菌门Gemmatimonadetes、硝化螺旋菌门Nitrospirae、疣微菌门Verrucomicrobia与海拔呈极显著负相关(P<0.01)。真菌群落不存在与海拔相关的微生物门,而LefSe线性判别分析结果显示:真菌群落具有更多的差异类群。此外,主坐标分析显示:土壤微生物群落以765 m为界,存在海拔分异性特征,且第1主轴与温度、土壤全磷、土壤全钾、土壤pH显著相关(P<0.05)。 结论 海拔变化引起了凤阳山土壤微生物群落特征的变化,并且温度是最主要的驱动因子。图5表6参41 Abstract:Objective The objective is to explore the characteristics of soil microbial community of zonal vegetation in evergreen broad-leaved forest in Fengyang Mountain, Zhejiang Province, and to clarify the changes of soil microbial community along the elevation gradient and the main factors affecting structure and diversity of microbial community. Method Soil samples were collected at 343, 765, 1364 and 1611 m above sea level. High-throughput sequencing technology was used to explore the relationship between soil microbial community and altitude. Result The number of OTU of bacteria was more than that of fungi, and middle and low altitudes (343 and 765 m) displayed more OTUs. Chao 1 index decreased with the increase of altitude, while Shannon index had no obvious trend. The dominant taxa of bacteria at the phylum level were Acidobacteria (43.77%−51.55%), Proteobacteria (31.18%−35.77%) and Actinobacteria, (5.24%−7.99%), while the dominant groups of fungal community were Basidiomycota (33.16%−67.35%) and Ascomycota (22.98%−46.78%). Among the top 10 bacterial phyla in relative abundance, Gemmatimonadetes, Nitrospirae and Verrucomicrobia were significantly negatively correlated with altitude (P<0.01). There were no altitudinal taxa in the fungal community at the phylum level. LefSe (LDA Effect Size) analysis exhibited more different taxa in the fungal community. In addition, PCoA showed that the soil microbial community had the characteristics of altitudinal differentiation bounded by 765 m, and the first axis of this PcoA(PC1) was significantly correlated with temperature, total phosphorus, total kalium and pH(P<0.05). Conclusion The change of altitude leads to the change of soil microbial community characteristics in Fengyang Mountain, and temperature is the main driving factor. [Ch, 5 fig. 6 tab. 41 ref.] -
Key words:
- soil bacteria /
- soil fungi /
- altitude /
- high throughput sequencing /
- FengyangMountain
-
表 1 不同海拔林分特征
Table 1. General Situation of the trees at different altitudes
海拔编号 树种组成 郁闭度/% EG1 木荷Schima superba、甜槠Castanopsis eyrei、青冈Cyclobalanopsis glauca、石栎Lithocarpus glaber、
檵木Loropetalum chinense等91 EG2 木荷、甜槠、青冈、檵木、山鸡椒Litsea cubeba等 87 EG3 木荷、甜槠、青冈、杨桐Cleyera japonica、马银花Rhododendron ovatum等 92 EG4 甜槠、青冈、马银花、尖叶山茶Camellia cuspidata、麂角杜鹃Rhododendron latoucheae等 90 表 2 不同海拔土壤理化性质
Table 2. Physical and chemical properties of soil at different altitudes
海拔编号 pH 土壤湿度/% 总碳/(mg·g−1) 全氮/(mg·g−1) 全磷/(mg·g−1) 全钾/(mg·g−1) EG1 4.86±0.03 a 15.54±6.41 c 103.97±7.60 a 3.57±0.35 b 0.21±0.04 c 19.63±2.58 a EG2 4.93±0.18 a 43.45±19.89 b 160.53±96.86 a 9.43±4.65 a 0.51±0.12 b 14.13±1.37 b EG3 4.67±0.07 a 38.41±7.81 bc 117.23±25.94 a 7.13±1.12 ab 0.45±0.16 b 11.43±1.03 b EG4 4.73±0.21 a 71.36±14.42 a 125.97±45.76 a 9.63±3.09 a 0.73±0.05 a 14.37±1.58 b 说明:数值为平均值±标准差表示(n=3),不同小写字母表示海拔间差异显著(P<0.05) 表 3 不同海拔土壤微生物群落多样性
Table 3. Soil bacterial diversity indices at different altitudes
细菌 真菌 海拔编号 Chao 1指数 Shannon指数 覆盖度 海拔编号 Chao 1指数 Shannon指数 覆盖度 EG1 4506.81±41.85 a 9.2622±0.246 8 a 0.9773±0.000 6 b EG1 783.12±36.26 a 3.6031±0.6633 b 0.9911±0.0006 b EG2 4255.62±295.74 b 8.8781±0.214 4 b 0.9780±0.001 7 b EG2 807.96±115.36 a 5.0242±0.6876 a 0.9911±0.0013 b EG3 3688.80±100.61 c 9.0043±0.231 9 ab 0.9824±0.000 5 a EG3 729.86±52.44 ab 4.6790±0.4236 a 0.9921±0.0002 ab EG4 3791.13±110.41 c 8.9974±0.176 5 ab 0.9815±0.000 8 a EG4 653.00±67.50 b 4.5171±0.6495 ab 0.9928±0.0008 a 说明:数值为平均值±标准差(n = 4),不同小写字母表示海拔间差异显著(P<0.05) 表 4 海拔与微生物门Pearson相关性系数
Table 4. Pearson correlation coefficient between altitude and soil bacterial phylum
细菌门 相关性系数 真菌门 相关性系数 细菌门 相关性系数 真菌门 相关性系数 酸杆菌门 0.032 担子菌门 −0.402 芽单胞菌门 −0.817** 壶菌门 −0.209 变形菌门 0.234 子囊菌门 0.173 迷踪菌门 −0.260 Cercozoa −0.191 放线菌门 −0.417 接合菌门 0.437 髌骨细菌门 −0.490 新丽鞭菌门 −0.233 拟杆菌门 0.269 罗兹菌门 −0.308 硝化螺旋菌门 −0.723** 芽枝霉门 −0.236 厚壁菌门 0.525* 球囊菌门 −0.036 疣微菌门 −0.705** 说明:*表示在0.05水平(双侧)上显著相关;**表示在0.01水平(双侧)上显著相关 表 5 海拔与微生物属Pearson相关性系数
Table 5. Pearson correlation coefficient between altitude and soil bacterial genus
细菌属 真菌属 细菌属 真菌属 属名 相关系数 属名 相关系数 属名 相关系数 属名 相关系数 Candidatus_Solibacter −0.458 红菇属Russula −0.645** Granulicella 0.719** Sebacina 0.197 Bryobacter 0.088 Archaeorhizomyces 0.290 Acidipila 0.639** 鹅膏菌属Amanita 0.250 Acidibacter −0.520* 大团囊菌属Elaphomyces −0.234 芽单胞菌属Gemmatimonas −0.734** Rossbeevera −0.127 热酸菌属Acidothermus 0.514* Xerocomus 0.200 分枝杆菌属Mycobacterium 0.035 丝盖伞属Inocybe 0.190 Candidatus_Koribacter −0.178 丝膜菌属Cortinarius 0.182 鞘氨醇单胞菌属Sphingomonas −0.778** 地舌菌属Geoglossum −0.194 Burkholderia-Caballeronia-
Paraburkholderia0.648** 棉革菌属Tomentella −0.259 拟杆菌属Bacteroides 0.224 Lactarius 0.311 Clade_Ia 0.472 湿伞属Hygrocybe −0.097 MND1 −0.743** 粉褶菌属Entoloma −0.209 Pajaroellobacter 0.740** 被孢霉属Morlierella 0.702** 说明:*表示在0.05水平(双侧)上显著相关;**表示在0.01水平(双侧)上显著相关 表 6 温度、土壤理化性质与微生物Pearson相关性系数
Table 6. Pearson correlation coefficient between temperature,soil physical and chemical properties and soil microorganism
指标 细菌多样性 细菌群落结构 真菌多样性 真菌群落结构 Chao 1 Shannon PC1 PC2 Chao 1 Shannon PC1 PC2 温度 0.886* 0.320 −0.944* −0.190 0.603* −0.377 −0.939* −0.241 总碳 −0.041 −0.208 −0.010 0.057 0.048 0.242 −0.026 0.033 全氮 −0.412 −0.415 0.380 0.262 −0.215 0.478 0.349 0.249 全磷 −0.588* −0.394 0.618* 0.485 −0.448 0.435 0.581* 0.498 全钾 0.719* 0.427 −0.656* 0.325 0.207 −0.555 −0.671* 0.316 土壤湿度 −0.560 −0.360 0.600* 0.513 −0.461 0.382 0.562 0.530 pH 0.527 −0.016 −0.585* 0.176 0.343 −0.026 −0.616* 0.121 说明:*表示在0.05水平(双侧)上显著相关 -
[1] CHANG E H, CHEN T H, TIAN G L, et al. The effect of altitudinal gradient on soil microbial community activity and structure in moso bamboo plantations [J]. Appl Soil Ecol, 2016, 98: 213 − 220. doi: 10.1016/j.apsoil.2015.10.018 [2] MA Yuhua, FENG Chun, WANG Zhaocheng, et al. Restoration in degraded subtropical broadleaved forests induces changes in soil bacterial communities [J/OL]. Global Ecol Conserv, 2021, 30: e01775[2021-11-20]. doi: 10.1016/j.gecco.2021.e01775. [3] SHAOPengshuai, LIANG Chao, RUBERT-NASON K, et al. Secondary successional forests undergo tightly-coupled changes in soil microbial community structure and soil organic matter [J]. Soil Biol Biochem, 2019, 128: 56 − 65. doi: 10.1016/j.soilbio.2018.10.004 [4] NELSON M B, MARTINY A C, MARTINY J B H. Global biogeography of microbial nitrogen-cycling traits in soil [J]. Proc Natl Acad Sci, 2016, 113(29): 8033 − 8040. doi: 10.1073/pnas.1601070113 [5] WARING B G, AVERILL C, HAWKES C V. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models [J]. Ecol Lett, 2013, 16(7): 887 − 894. doi: 10.1111/ele.12125 [6] SUN Junming, IRZYKOWSKI W, JEDRYCZKA M, et al. Analysis of the genetic structure of Sclerotinia sclerotiorum (Lib. ) de Bary populations from different regions and host plants by random amplified polymorphic DNA markers [J]. J Integr Plant Biol, 2005, 47(4): 385 − 395. doi: 10.1111/j.1744-7909.2005.00077.x [7] ŽIFČÁKOVÁ L, VĚTROVSKÝ T, HOWE A, et al. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter [J]. Environ Microbiol, 2016, 18(1): 288 − 301. doi: 10.1111/1462-2920.13026 [8] FRAC M, HANNULA S E, BELKA M, et al. Fungal biodiversity and their role in soil health [J/OL]. Front Microbiol, 2018, 9: 707[2021-11-20]. doi: 10.3389/fmicb.2018.00707. [9] MARGESIN R, NIKLINSKA M A. Editorial: elevation gradients: microbial indicators of climate change? [J/OL]. Front Microbiol, 2019, 10: 2405[2021-11-20]. doi: 10.3389/fmicb.2019.02405. [10] SILES J A, CAJTHAML T, FILIPOVÁ A, et al. Altitudinal, seasonal and interannual shifts in microbial communities and chemical composition of soil organic matter in Alpine forest soils [J]. Soil Biol Biochem, 2017, 112: 1 − 13. doi: 10.1016/j.soilbio.2017.04.014 [11] WU Jiejun, ANDERSON B J, BUCKLEY H L, et al. Aspect has a greater impact on alpine soil bacterial community structure than elevation [J/OL]. FEMS Microbiol Ecol, 2017, 93(5): fiw253[2021-11-20]. doi: 10.1093/femsec/fix032. [12] COLLINS H P, CAVIGELLI M A. Soil microbial community characteristics along an elevation gradient in the Laguna Mountains of Southern California [J]. Soil Biol Biochem, 2003, 35(8): 1027 − 1037. [13] LOOBY C I, MARTIN P H. Diversity and function of soil microbes on montane gradients: the state of knowledge in a changing world [J/OL]. FEMS Microbiol Ecol, 2020, 96(9): fiaa122[2021-11-20]. doi: 10.1093/femsec/fiaa122. [14] 周煜杰, 贾夏, 赵永华, 等. 森林生态系统土壤真菌群落及其影响因素研究进展[J]. 生态环境学报, 2020, 29(8): 1703 − 1712. ZHOU Yujie, JIA Xia, ZHAO Yonghua, et al. A review on soil fungal community and its affectingfactors in forest ecosystem [J]. Ecol Environ Sci, 2020, 29(8): 1703 − 1712. [15] 厉桂香, 马克明. 土壤微生物多样性海拔格局研究进展[J]. 生态学报, 2018, 38(5): 1521 − 1529. LI Guixiang, MA Keming. Progress in the study of elevational patterns of soil microbial diversity [J]. Acta Ecol Sin, 2018, 38(5): 1521 − 1529. [16] 赵盼盼, 周嘉聪, 林开淼, 等. 海拔梯度变化对中亚热带黄山松土壤微生物生物量和群落结构的影响[J]. 生态学报, 2019, 39(6): 2215 − 2225. ZHAO Panpan, ZHOU Jiacong, LIN Kaimiao, et al. Effect of different altitudes on soil microbial biomass and community structure of Pinus taiwanensis forest in mid-subtropical zone [J]. Acta Ecol Sin, 2019, 39(6): 2215 − 2225. [17] 孟苗婧, 郭晓平, 张金池, 等. 海拔变化对凤阳山针阔混交林地土壤微生物群落的影响[J]. 生态学报, 2018, 38(19): 7057 − 7065. MENG Miaojing, GUO Xiaoping, ZHANG Jinchi, et al. Effects of altitude on soil microbial community in Fengyang Mountain coniferous and broad-leaved forest [J]. Acta Ecol Sin, 2018, 38(19): 7057 − 7065. [18] LI Guixiang, XU Guorui, SHEN Congcong, et al. Contrasting elevational diversity patterns for soil bacteria between two ecosystems divided by the treeline [J]. Sci China Life Sci, 2016, 59(11): 1177 − 1186. [19] DAI Zhongmin, ZANG Huadong, CHEN Jie, et al. Metagenomic insights into soil microbial communities involved in carbon cycling along an elevation climosequences [J]. Environ Microbiol, 2021, 23(8): 4631 − 4645. doi: 10.1111/1462-2920.15655 [20] 金裕华. 武夷山不同海拔土壤微生物多样性的变化特征[D]. 南京: 南京林业大学, 2012. JIN Yuhua. Variations of Soil Microbial Diversity along an Elevation Gradient in the Wuyi Mountains [D]. Nanjing: Nanjing Forestry University, 2012. [21] 丁炳扬, 陈根荣, 程秋波, 等. 浙江凤阳山自然保护区种子植物区系的统计分析[J]. 云南植物研究, 2000, 22(1): 27 − 37. doi: 10.3969/j.issn.2095-0845.2000.01.002 DING Bingyang, CHEN Genrong, CHENG Qiubo, et al. A floristic statistics and analyses of seed plants of Fengyangshan Nature Reserve in Zhejiang Province [J]. Acta Bot Yunnan, 2000, 22(1): 27 − 37. doi: 10.3969/j.issn.2095-0845.2000.01.002 [22] 徐筱芃. 浙江凤阳山常绿阔叶林树种多样性及其影响因素研究[D]. 南京: 南京林业大学, 2017. XU Xiaopeng. Study on Plant Diversity and Its Influence Factors of the Evergreen Broad-leaved Forest in Fengyang Mountain [D]. Nanjing: Nanjing Forestry University, 2017. [23] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. LU Rukun. The Analysis Method of Soil Agricultural Chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000. [24] BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data [J]. Bioinformatics, 2014, 30(15): 2114 − 2120. doi: 10.1093/bioinformatics/btu170 [25] MAGOČ T, SALZBERG S L. FLASH: fast length adjustment of short reads to improve genome assemblies [J]. Bioinformatics, 2011, 27(21): 2957 − 2963. doi: 10.1093/bioinformatics/btr507 [26] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data [J]. Nat Methods, 2010, 7(5): 335 − 336. doi: 10.1038/nmeth.f.303 [27] EDGAR R C, HAAS B J, CLEMENTE J C, et al. UCHIME improves sensitivity and speed of chimera detection [J]. Bioinformatics, 2011, 27(16): 2194 − 2200. doi: 10.1093/bioinformatics/btr381 [28] ROGNES T, FLOU T, NICHOLS B, et al. VSEARCH: a versatile open source tool for metagenomics [J/OL]. Peer J, 2016, 4: 2409v1[2021-11-20]. doi: 10.7287/peerj. preprints. 2409v1. [29] SEGATA N, IZARD J, WALDRON L, et al. Metagenomic biomarker discovery and explanation [J/OL]. Genome Biol, 2011, 12(6): R60 [2021-11-20]. https://doi.org/10.1186/gb-2011-12-6-r60. [30] SHEN Congcong, NI Yingying, LIANG Wenjun, et al. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra [J/OL]. Front Microbiol, 2015, 6: 582[2021-11-20]. doi: 10.3389/fmicb.2015.00582. [31] 安前东, 徐梦, 张旭博, 等. 西藏色季拉山垂直植被带土壤细菌群落组成及功能潜势[J]. 应用生态学报, 2021, 32(6): 2147 − 2157. AN Qiandong, XU Meng, ZHANG Xubo, et al. Soil bacterial community composition and functional potentials along the vertical vegetation transect on Mount Segrila, Tibet, China [J]. Chin J Appl Ecol, 2021, 32(6): 2147 − 2157. [32] SINGH D, LEE-CRUZ L, KIM W S, et al. Strong elevational trends in soil bacterial community composition on Mt. Halla, South Korea [J]. Soil Biol Biochem, 2014, 68: 140 − 149. doi: 10.1016/j.soilbio.2013.09.027 [33] 贺婧, 闫冰, 李俊生, 等. 秦岭中段北坡不同海拔土壤中细菌群落的分布特征及区域差异比较[J]. 环境科学研究, 2019, 32(8): 1374 − 1383. HE Jing, YAN Bing, LI Junsheng, et al. Altitude distribution patterns and regional differences of soil bacterial community in northern slopes in the Middle Qinling Mountains [J]. Res Environ Sci, 2019, 32(8): 1374 − 1383. [34] WANG Juntao, ZHENG Yuanming, HU Hangwei, et al. Soil pH determines the alpha diversity but not beta diversity of soil fungal community along altitude in a typical Tibetan forest ecosystem [J]. J Soil Sediment, 2015, 15(5): 1224 − 1232. doi: 10.1007/s11368-015-1070-1 [35] 李敏, 闫伟. 海拔对乌拉山油松根围真菌群落结构的影响[J]. 菌物学报, 2019, 38(11): 1992 − 2006. LI Min, YAN Wei. Effects of altitude on rhizosphere fungal community structure of Pinus tabulaeformis in Wula Mountain, China [J]. Mycosystema, 2019, 38(11): 1992 − 2006. [36] KANOKRATANA P, UENGWETWANIT T, RATTANACHOMSRI U, et al. Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis [J]. Microb Ecol, 2011, 61(3): 518 − 528. [37] 杜思瑶, 于淼, 刘芳华, 等. 设施种植模式对土壤细菌多样性及群落结构的影响[J]. 中国生态农业学报, 2017, 25(11): 1615 − 1625. DU Siyao, YU Miao, LIU Fanghua, et al. Effect of facility management regimes on soil bacterial diversity and community structure [J]. Chin J Eco-Agric, 2017, 25(11): 1615 − 1625. [38] 刘子涵, 黄方园, 黎景来, 等. 覆盖模式对旱作农田土壤微生物多样性及群落结构的影响[J]. 生态学报, 2021, 41(7): 2750 − 2760. LIU Zihan, HUANG Fangyuan, LI Jinglai, et al. Effects of farmland and mulching patterns on soil microbial diversity and community structure in dryland [J]. Acta Ecol Sin, 2021, 41(7): 2750 − 2760. [39] 薛晓敏, 王来平, 韩雪平, 等. 不同树盘覆盖对矮砧苹果园土壤微生物群落结构和多样性的影响[J]. 生态学报, 2021, 41(4): 1528 − 1536. XUE Xiaomun, WANG Laiping, HAN Xueping, et al. Effects of different tree disk mulching on soil microbial community structure and diversity in dwarfing rootstock apple orchard [J]. Acta Ecol Sin, 2021, 41(4): 1528 − 1536. [40] BASTIDA F, TORRES I F, MORENO J L, et al. The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils [J]. Mol Ecol, 2016, 25(18): 4660 − 4673. doi: 10.1111/mec.13783 [41] 陈岳民, 高金涛, 熊德成, 等. 土壤增温对中亚热带杉木幼林土壤微生物群落结构和有效氮的影响[J]. 亚热带资源与环境学报, 2016, 11(4): 1 − 8. doi: 10.3969/j.issn.1673-7105.2016.04.001 CHENYuehmin, GAO Jintao, XIONG Decheng, et al. Effects of soil warming on soil microbial community structure and soil available nitrogen in subtropical young Chinese fir plantation [J]. J Subtrop Resour Environ, 2016, 11(4): 1 − 8. doi: 10.3969/j.issn.1673-7105.2016.04.001 -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210820

计量
- 文章访问数: 14
- 被引次数: 0