留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同组织及干旱胁迫下黄薇内参基因的筛选与验证

赵雨 林琳 王群 张国哲 王杰 尚林雪 洪思丹 马清清 顾翠花

赵雨, 林琳, 王群, 张国哲, 王杰, 尚林雪, 洪思丹, 马清清, 顾翠花. 不同组织及干旱胁迫下黄薇内参基因的筛选与验证[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220342
引用本文: 赵雨, 林琳, 王群, 张国哲, 王杰, 尚林雪, 洪思丹, 马清清, 顾翠花. 不同组织及干旱胁迫下黄薇内参基因的筛选与验证[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220342
ZHAO Yu, LIN Lin, WANG Qun, ZHANG Guozhe, WANG Jie, SHANG Linxue, HONG Sidan, MA Qingqing, GU Cuihua. Screening and validation of reference genes in Heimia myrtifolia in different tissues and under drought stress[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220342
Citation: ZHAO Yu, LIN Lin, WANG Qun, ZHANG Guozhe, WANG Jie, SHANG Linxue, HONG Sidan, MA Qingqing, GU Cuihua. Screening and validation of reference genes in Heimia myrtifolia in different tissues and under drought stress[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220342

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

不同组织及干旱胁迫下黄薇内参基因的筛选与验证

doi: 10.11833/j.issn.2095-0756.20220342
基金项目: 浙江省农业新品种重大专项花卉育种专项(2021C02071-4);浙江省自然科学基金资助项目(LY21C160001)
详细信息
    作者简介: 赵雨(ORCID: 0000-0001-7671-6206),从事园林植物遗传育种研究。E-mail: zhaoyu@stu.zafu.edu.cn
    通信作者: 顾翠花(ORCID: 0000-0003-4086-8587),教授,博士,从事园林植物种质创新、遗传育种以及应用研究。E-mail: gucuihua@zafu.edu.cn
  • 中图分类号: S718.46

Screening and validation of reference genes in Heimia myrtifolia in different tissues and under drought stress

  • 摘要:   目的  为黄薇Heimia myrtifolia不同组织及不同干旱胁迫下基因表达分析筛选最适内参基因。  方法  选取黄薇盛花期的根、茎、叶、花,以及5种不同干旱处理的叶片作为实验材料,借助RT-qPCR技术对黄薇转录组数据筛选的9个候选内参基因进行分析,并利用软件geNorm、BestKeeper、NormFinder和RefFinder综合评价候选基因的表达稳定性。最后选取2个与胁迫相关的基因CSLDSOD,对所选内参基因进行验证。  结果  geNorm、BestKeeper和NormFinder分析得出的候选内参基因排序存在一定差异。利用在线软件RefFinder对上述3个软件的结果综合分析得出:在不同组织中,最稳定的内参基因为GAPDH,最不稳定的内参基因为TUA;在干旱胁迫中,最稳定的内参基因为GAPDH,最不稳定的内参基因为TUB。在全部样本中,最稳定的内参基因为GAPDH,最不稳定的内参基因为18S RNA。对不同组织和干旱胁迫下的CSLDSOD基因表达模式进行验证表明:上述2个基因与筛选所得内参基因的表达量和变化趋势均较为一致。  结论  在不同组织和干旱处理后,GAPDH是最适合黄薇基因表达的内参基因。图4表4参33
  • 图  1  黄薇总RNA琼脂糖凝胶电泳分析(A)和RT-qPCR扩增产物特异性(B)

    Figure  1  Agarose gel electrophoresis analysis of total RNA (A) and specificity of products amplified by RT-qPCR (B) in H. myrtifolia

    图  2  9个候选内参基因的Ct

    Figure  2  Ct values of the 9 candidate reference genes

    图  3  geNorm分析9个候选内参基因的表达稳定值和配对变异值

    Figure  3  Stable expression values and paired variation values of nine candidate reference genes were analyzed by geNorm

    图  4  不同组织和干旱胁迫下CSLD (A)和SOD基因(B)利用不同内参基因的表达分析

    Figure  4  Expression analysis for CSLD gene (A) and SOD gene (B) using different reference genes in different tissues and drought stress

    表  1  黄薇候选内参基因引物信息

    Table  1.   Primer information of candidate reference gene in H. myrtifolia

    基因正向引物序列(5′→3′)反向引物序列(5′→3′)扩增大小/bp退火温度/℃扩增效率/%R2
    EF-1α TGGTTTTGAGGCTGGTATCTCC TTTGCTTGACACCAAGGGTGA 80 56.5 95.6 0.998
    TUA TCTCTGCCTTGACCGAGTGA ACCACCAACGGCACTGAAAA 82 56.5 96.6 0.998
    CYP ACCCCGACTCGTCCTACAAG TCGGTGTTCCGCTCCAAATG 130 58.0 106.8 0.999
    GAPDH AGAAGGTCGTCATTTCTGCCC TGGTTGTGCAGCTAGCGTTG 114 57.5 108.4 0.999
    18S RNA CAGGGCCTAGGATTTCGTCC GCCTTCAATCTTAGTCGTGGC 113 58.5 100.5 0.992
    UBC GACCTGATGACACTCCCTGG TCACAGTTGGTGGTTTGTTCG 87 57.5 99.1 0.999
    TUB GGGTGCTGAGCTTATTGATGC TGAGCAATGTCCCCATGCCT 131 57.5 96.8 0.996
    ACT AGGGAATGCCTTTTGATTGATCC AAACATAAGCTCCACTGCCCTC 102 57 109.7 0.999
    DNA J CGGAGCTATCACCCCGATG CGGCCTCACCATACCTGTCA 127 59.5 100.2 0.997
    CSLD TACCTTGTCCCTTTCGGCG TCAGCGTCCTCATCCCGATA 149 57.4 95.1 0.997
    SOD GTTGACGCAAGACGAGGGA CCGTTGGTCGTGTCACCAT 108 57.3 96.0 0.997
    下载: 导出CSV

    表  2  NormFinder分析内参基因的表达稳定值

    Table  2.   Expression stability values of nine candidate reference genes calculated by the NormFinder

    基因不同组织干旱胁迫全部样品
    表达稳定值排序表达稳定值排序表达稳定值排序
    GAPDH 0.069 2 0.142 1 0.359 1
    UBC 0.593 5 0.452 3 0.578 2
    EF-1α 0.904 6 0.800 5 0.862 3
    TUA 1.483 9 0.239 2 0.910 4
    CYP 0.069 1 0.611 4 0.911 5
    DNA J 0.579 4 1.479 6 1.094 6
    18S RNA 0.494 3 1.542 8 1.366 7
    ACT 1.095 7 1.507 7 1.390 8
    TUB 1.294 8 1.816 9 1.505 9
    下载: 导出CSV

    表  3  BestKeeper分析内参基因的表达稳定值

    Table  3.   Expression stability values of nine candidate reference genes calculated by the BestKeeper

    基因不同组织干旱胁迫全部样品
    CV±SD排序CV±SD排序CV±SD排序
    EF-1α 3.46 ± 0.95 2 1.97 ± 0.53 1 2.58 ± 0.71 1
    GAPDH 2.65 ± 0.69 1 3.78 ± 0.94 4 3.59 ± 0.91 2
    UBC 3.73 ± 1.04 4 4.32 ± 1.18 5 4.21 ± 1.16 3
    TUB 3.47 ± 1.06 3 6.14 ± 1.86 9 4.98 ± 1.51 4
    TUA 6.65 ± 1.89 8 3.52 ± 0.95 3 5.26 ± 1.45 5
    ACT 5.03 ± 1.46 5 6.11 ± 1.84 8 5.72 ± 1.69 6
    CYP 6.36 ± 1.99 6 3.34 ± 0.96 2 6.11 ± 1.83 7
    DNA J 7.31 ± 2.18 9 6.11 ± 1.81 7 6.81 ± 2.03 8
    18S RNA 6.57 ± 2.05 7 5.68 ± 1.64 6 7.61 ± 2.28 9
    下载: 导出CSV

    表  4  RefFinder分析内参基因的表达稳定值         

    Table  4.   Expression stability of candidate reference genes ranked by RefFinder

    排序不同组织干旱胁迫全部样品
    基因表达稳
    定值
    基因表达稳
    定值
    基因表达稳
    定值
    1 GAPDH 1.41 GAPDH 1.19 GAPDH 1.19
    2 CYP 2.11 TUA 1.86 UBC 2.11
    3 18S RNA 3.57 EF-1α 3.34 EF-1α 2.45
    4 UBC 4.76 UBC 3.41 TUA 4.28
    5 TUB 4.76 CYP 4.00 CYP 5.23
    6 EF-1α 5.05 ACT 6.70 DNA J 6.45
    7 ACT 5.12 DNA J 6.96 ACT 6.73
    8 DNA J 5.44 18S RNA 7.20 TUB 6.84
    9 TUA 9.00 TUB 9.00 18S RNA 7.45
    下载: 导出CSV
  • [1] 方文培. 中国植物志[M]. 北京: 科学出版社, 2004.

    FANG Wenpei. Flora of China[M]. Beijing: Science Press, 2004.
    [2] LOURTEIG A. Legitimacy of Heimia myrtifolia Chamisso et Schlechtendal (Lythraceae) [J]. Taxon, 1989, 38(2): 279 − 280. doi:  10.2307/1220858
    [3] CLEMENS S. Frequent oligolecty characterizing a diverse bee-plant community in a xerophytic bushland of subtropical Brazil [J]. Studies on Neotropical Fauna and Environment, 1998, 33(1): 46 − 59. doi:  10.1076/snfe.33.1.46.2168
    [4] AYOUB N, SINGAB A N, ELNAGGAR M, et al. Investigation of phenolic leaf extract of Heimia myrtifolia (Lythraceae): pharmacological properties (stimulation of mineralization of Saos-2 osteosarcoma cells) and identification of polyphenols [J]. Drug Discovery Today, 2010, 4(5): 341 − 348.
    [5] 林启芳, 刘婷婷, 刘洁茹, 等. 紫薇属与黄薇属植物花瓣类黄酮组成及含量分析[J]. 园艺学报, 2021, 48(10): 1956 − 1968.

    LIN Qifang, LIU Tingting, LIU Jieru, et al. Flavonoids composition and content in petals of Lagerstroemia and Heimia species and cultivars [J]. Acta Horticulturae Sinica, 2021, 48(10): 1956 − 1968.
    [6] 郑钢, 顾翠花, 王杰, 等. 干旱胁迫对黄薇光合特性和若干生理生化指标的影响[J]. 浙江农业学报, 2021, 33(9): 1650 − 1659. doi:  10.3969/j.issn.1004-1524.2021.09.09

    ZHENG Gang, GU Cuihua, WANG Jie, et al. Effects of drought stress on photosynthetic characteristics and several physiological and biochemical indexes of Heimia myrtifolia Cham. et Schlechtend [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1650 − 1659. doi:  10.3969/j.issn.1004-1524.2021.09.09
    [7] 顾帆, 季梦成, 顾翠花, 等. 高温干旱胁迫对黄薇抗氧化防御系统的影响[J]. 浙江农林大学学报, 2019, 36(5): 894 − 901.

    GU Fan, JI Mengcheng, GU Cuihua, et al. Heat and drought stress with an antioxidant defense system in Heimia myrtifolia [J]. Journal of Zhejiang A&F University, 2019, 36(5): 894 − 901.
    [8] 徐涛, 张柯岩, 顾翠花. 盐胁迫对黄薇若干生理生化指标的影响[J/OL]. 分子植物育种, 2022[2022-04-28]. https://kns.cnki.net/kcms/detail/46.1068.S.20220425.1310.008.html.

    XU Tao, ZHANG Keyan, GU Cuihua. Effects of salt stress on several physiological and biochemical indexes of Heimia myrtifolia[J/OL]. Molecular Plant Breeding, 2022[2022-04-28]. https://kns.cnki.net/kcms/detail/46.1068.S.20220425.1310.008.html.
    [9] GU Cuihua, DONG Bin, XU Liang, et al. The complete chloroplast genome of Heimia myrtifolia and comparative analysis within Myrtales[J/OL]. Molecules, 2018, 23(4): 846[2022-04-30]. doi: 10.3390/molecules23040846.
    [10] WANG Hao, CAI Qizhong, LIU Lu, et al. Reference gene screening for real-time quantitative PCR in Polygonum multiflorum [J]. China Journal of Chinese Materia Medica, 2021, 46: 80 − 85.
    [11] LUO Meng, GAO Zhen, LI Hui, et al. Selection of reference genes for miRNA qRT-PCR under abiotic stress in grapevine[J/OL]. Scientific Reports, 2018, 8(1): 4444[2022-04-30]. doi: 10.1038/s41598-018-22743-6.
    [12] FU Jianxin, WANG Yi, HUANG He, et al. Reference gene selection for RT-qPCR analysis of Chrysanthemum lavandulifolium during its flowering stages [J]. Molecular Breeding, 2013, 31(1): 205 − 215. doi:  10.1007/s11032-012-9784-x
    [13] SUN Huapeng, LI Fang, RUAN Qinmei, et al. Identification and validation of reference genes for quantitative real-time PCR studies in Hedera helix L [J]. Plant Physiology and Biochemistry, 2016, 108: 286 − 294. doi:  10.1016/j.plaphy.2016.07.022
    [14] KUMAR D, DAS P K, SARMAH B K. Reference gene validation for normalization of RT-qPCR assay associated with germination and survival of rice under hypoxic condition [J]. Journal of Applied Genetics, 2018, 59(4): 419 − 430. doi:  10.1007/s13353-018-0466-1
    [15] VANDESOMPELE J, PRETER K D, PATTYN F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J/OL]. Genome Biology, 2002, 3(7): 0034.1[2022-04-28]. doi: 10.1186/gb-2002-3-7-research0034.
    [16] ANDERSEN C L, JENSEN J L, ØRNTOFT T F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets [J]. Cancer Research, 2004, 64(15): 5245 − 5250. doi:  10.1158/0008-5472.CAN-04-0496
    [17] PFAFFL M W, TICHOPAD A, PRGOMET C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations [J]. Biotechnology Letters, 2004, 26(6): 509 − 515. doi:  10.1023/B:BILE.0000019559.84305.47
    [18] 崔运启, 朱再标, 郭巧生, 等. 垂盆草实时荧光定量PCR内参基因筛选[J/OL]. 分子植物育种, 2022[2022-04-30]. https://kns.cnki.net/kcms/detail/46.1068.S.20220317.1731.024.html.

    CUI Yunqi, ZHU Zaibiao, GUO Qiaosheng, et al. Screening of internal reference genes by quantitative real-time PCR in Sedum sarmentosum[J/OL]. Molecular Plant Breeding, 2022[2022-04-30]. https://kns.cnki.net/kcms/detail/46.1068.S.20220317.1731.024.html.
    [19] 干思宸, 师悦, 梁立军. 山麦冬果实花青素生物合成中内参基因的筛选与验证[J]. 浙江农林大学学报, 2022, 39(2): 307 − 317. doi:  10.11833/j.issn.2095-0756.20210332

    GAN Sichen, SHI Yue, LIANG Lijun. Selection and validation of reference genes for anthocyanin biosynthesis in Liriope spicata fruits [J]. Journal of Zhejiang A&F University, 2022, 39(2): 307 − 317. doi:  10.11833/j.issn.2095-0756.20210332
    [20] 李桥, 王淑安, 王鹏, 等. 铁线莲属萼片荧光定量PCR内参基因的筛选和评价[J/OL]. 分子植物育种, 2022[2022-04-30]. https://kns.cnki.net/kcms/detail/46.1068.s.20220410.2211.014.html.

    LI Qiao, WANG Shu’an, WANG Peng, et al. Selection and evaluation of reference genes for quantitative real-time PCR in sepals of different Clematis Varieties[J/OL]. Molecular Plant Breeding, 2022[2022-04-30]. https://kns.cnki.net/kcms/detail/46.1068.s.20220410.2211.014.html.
    [21] 章丽珍, 韩晓云, 吴菁华, 等. 甜瓜实时荧光定量PCR分析中内参基因的筛选[J]. 福建农业学报, 2020, 35(11): 1179 − 1187.

    ZHANG Lizhen, HAN Xiaoyun, WU Jinghua, et al. Reference gene selection for RT-qPCR analysis on Cucumis melo [J]. Fujian Journal of Agricultural Sciences, 2020, 35(11): 1179 − 1187.
    [22] 杨婷, 薛珍珍, 李娜, 等. 铁十字秋海棠斑叶发育过程内参基因筛选及验证[J]. 园艺学报, 2021, 48(11): 2251 − 2261.

    YANG Ting, XUE Zhenzhen, LI Na, et al. Reference genes selection and validation in Begonia masoniana leaves of different developmental stages [J]. Acta Horticulturae Sinica, 2021, 48(11): 2251 − 2261.
    [23] 钱猛, 杨娜, 朱昌华, 等. 绿豆实时荧光定量PCR内参基因的筛选与验证[J]. 植物生理学报, 2021, 57(11): 2203 − 2212.

    QIAN Meng, YANG Na, ZHU Changhua, et al. Selection and validation of reference genes for real-time fluorescence quantitative PCR in mung beans [J]. Plant Physiology Journal, 2021, 57(11): 2203 − 2212.
    [24] 奚航献. 铁皮石斛葡甘聚糖生物合成途径关键催化酶类纤维素合成酶CslD的挖掘与功能分析[D]. 杭州: 浙江农林大学, 2021.

    XI Hangxian. Discovery and Functional Analysis of Cellulose Synthase D, A Key Catalytic Enzyme in Glucomannan Biosynthesis Pathway in Dendrobium candidum[D]. Hangzhou: Zhejiang A&F University, 2021.
    [25] 朱冉冉, 吉雪花, 张中荣, 等. 辣椒超氧化物歧化酶基因家族的生物信息学分析[J]. 石河子大学学报(自然科学版), 2020, 38(6): 712 − 717.

    ZHU Ranran, JI Xuehua, ZHANG Zhongrong, et al. Bioinformatics analysis of Capsicum superoxide dismutase gene family [J]. Journal of Shihezi University (Natural Science), 2020, 38(6): 712 − 717.
    [26] ZHAO Zeying, ZHOU Hanwen, NIE Zhongnan, et al. Appropriate reference genes for RT-qPCR normalization in various organs of Anemone flaccida Fr. Schmidt at different growing stages[J/OL]. Genes, 2021, 12(3): 459[2022-04-25]. doi: 10.3390/genes12030459.
    [27] TONG Zhaoguo, GAO Zhihong, WANG Fei, et al. Selection of reliable reference genes for gene expression studies in peach using real-time PCR[J/OL]. BMC Molecular Biology, 2009, 10(1): 71[2022-04-25]. doi: 10.1186/1471-2199-10-71.
    [28] WARD D S, JUTTA D W, ROSWITHA W, et al. Reference gene validation for RT-qPCR, a note on different available software packages[J/OL]. PLoS One, 2015, 10(3): e0122515[2022-04-25]. doi:  10.1371/journal.pone.0122515.
    [29] 张海洋, 付娆, 李茹霞, 等. 菠菜非生物胁迫下实时荧光定量PCR分析中内参基因的选择[J]. 山东农业科学, 2020, 52(5): 21 − 25.

    ZHANG Haiyang, FU Rao, LI Ruxia, et al. Reference gene selection for real-time quantitative PCR in spinach treated with abiotic stresses [J]. Shandong Agricultural Sciences, 2020, 52(5): 21 − 25.
    [30] 王蕊, 胡绍旺, 刘金凤, 等. 大豆不同发育时期及非生物胁迫下实时荧光定量PCR内参基因筛选[J/OL]. 吉林农业大学学报, 2021[2022-04-30]. https://kns.cnki.net/kcms/detail/22.1100.S.20210602.1200.006.html.

    WANG Rui, HU Shaowang, LIU Jinfeng, et al. Screening of reference genes under abiotic stress and different development stages of soybean by real-time fluorescence quantitative PCR[J/OL]. Journal of Jilin Agricultural University, 2021[2022-04-30]. https://kns.cnki.net/kcms/detail/22.1100.S.20210602.1200.006.html.
    [31] HE Meijing, CUI Shunli, YANG Xinlei, et al. Selection of suitable reference genes for abiotic stress-responsive gene expression studies in peanut by real-time quantitative PCR [J]. Electronic Journal of Biotechnology, 2017, 28: 76 − 86. doi:  10.1016/j.ejbt.2017.05.004
    [32] 杨坤, 黄超, 卢山, 等. 铜胁迫下紫鸭跖草根组织实时定量PCR内参基因的选择[J]. 植物生理学报, 2021, 57(1): 195 − 204. doi:  10.13592/j.cnki.ppj.2019.0400

    YANG Kun, HUANG Chao, LU Shan, et al. Reference gene selection for quantitative real-time PCR in purple setcreasea (Setcreasea purpurea) root tissue under copper stress [J]. Plant Physiology Journal, 2021, 57(1): 195 − 204. doi:  10.13592/j.cnki.ppj.2019.0400
    [33] TANG Xun, ZHANG Ning, SI Huaijun, et al. Selection and validation of reference genes for RT-qPCR analysis in potato under abiotic stress[J/OL]. Plant Methods, 2017, 13(1): 85[2022-04-30]. doi: 10.1186/s13007-017-0238-7.
  • [1] 周佩娜, 党静洁, 邵永芳, 石遵睿, 张琳, 刘潺潺, 吴啟南.  荆芥HD-Zip基因家族的全基因组鉴定及分析 . 浙江农林大学学报, 2023, 40(1): 12-21. doi: 10.11833/j.issn.2095-0756.20220390
    [2] 干思宸, 师悦, 梁立军.  山麦冬果实花青素生物合成中内参基因的筛选与验证 . 浙江农林大学学报, 2022, 39(2): 307-317. doi: 10.11833/j.issn.2095-0756.20210332
    [3] 阮诗雨, 张智俊, 陈家璐, 马瑞芳, 朱丰晓, 刘笑雨.  毛竹GRF基因家族全基因组鉴定与表达分析 . 浙江农林大学学报, 2021, 38(4): 792-801. doi: 10.11833/j.issn.2095-0756.20200544
    [4] 叶碧欢, 陈友吾, 舒金平, 张威, 张亚波, 李海波, 宋其岩.  竹林金针虫实时荧光定量PCR内参基因的筛选与应用 . 浙江农林大学学报, 2021, 38(3): 644-651. doi: 10.11833/j.issn.2095-0756.20200492
    [5] 罗卿清, 郑钢, 顾翠花, 顾帆, 陈凯, 郑绍宇.  黄薇花粉活力及柱头可授性 . 浙江农林大学学报, 2020, 37(1): 182-187. doi: 10.11833/j.issn.2095-0756.2020.01.024
    [6] 卞赛男, 常鹏杰, 王宁杭, 刘志高, 张明如, 吴家胜, 申亚梅, 王小德.  氮素形态对喜树叶片生长、叶绿素荧光参数及叶绿体相关基因表达的影响 . 浙江农林大学学报, 2019, 36(5): 908-916. doi: 10.11833/j.issn.2095-0756.2019.05.009
    [7] 王千千, 蒋琦妮, 付建新, 董彬, 赵宏波.  不同光周期和温度处理下桂花内参基因的筛选 . 浙江农林大学学报, 2019, 36(5): 928-934. doi: 10.11833/j.issn.2095-0756.2019.05.011
    [8] 顾帆, 季梦成, 顾翠花, 郑钢, 郑绍宇.  高温干旱胁迫对黄薇抗氧化防御系统的影响 . 浙江农林大学学报, 2019, 36(5): 894-901. doi: 10.11833/j.issn.2095-0756.2019.05.007
    [9] 王倩颖, 常鹏杰, 申亚梅, 张超, 董彬, 时宝柱.  景宁木兰热胁迫下实时荧光定量PCR内参基因的筛选 . 浙江农林大学学报, 2019, 36(5): 935-942. doi: 10.11833/j.issn.2095-0756.2019.05.012
    [10] 石林, 吴瑗, 巴少波, 刘正奎, 陈琳, 王磊, 邵春艳, 孙静, 周莹姗, 王晓杜, 宋厚辉.  猪圆环病毒2型Taqman探针法实时荧光定量PCR检测方法的建立 . 浙江农林大学学报, 2018, 35(6): 1133-1138. doi: 10.11833/j.issn.2095-0756.2018.06.018
    [11] 朱致翔, 时浩杰, 雷飞斌, 张传清.  实时荧光定量PCR定量检测山核桃干腐病病菌潜伏侵染量方法的建立 . 浙江农林大学学报, 2016, 33(2): 364-368. doi: 10.11833/j.issn.2095-0756.2016.02.024
    [12] 于静, 劳秀杰, 陈彦永, 何小江, 代兵, 赵阿勇, 王晓杜, 宋厚辉.  猪圆环病毒2型实时荧光定量PCR检测方法的建立 . 浙江农林大学学报, 2016, 33(2): 357-363. doi: 10.11833/j.issn.2095-0756.2016.02.023
    [13] 付建新, 张超, 王艺光, 赵宏波.  桂花组织基因表达中荧光定量PCR内参基因的筛选 . 浙江农林大学学报, 2016, 33(5): 727-733. doi: 10.11833/j.issn.2095-0756.2016.05.001
    [14] 郭帅, 徐秋芳, 沈振明, 李松昊, 秦华, 李永春.  雷竹林土壤氨氧化微生物对不同肥料的响应 . 浙江农林大学学报, 2014, 31(3): 343-351. doi: 10.11833/j.issn.2095-0756.2014.03.003
    [15] 仇金宏, 沈明霞, 丛静华, 李龙国.  基于单目视觉的森林火点实时定位方法 . 浙江农林大学学报, 2010, 27(5): 651-658. doi: 10.11833/j.issn.2095-0756.2010.05.003
    [16] 段爱国, 杨文忠, 张建国, 张俊佩, 何彩云.  苗木离体叶片水分状况的叶绿素荧光参数定量诊断 . 浙江农林大学学报, 2010, 27(4): 529-537. doi: 10.11833/j.issn.2095-0756.2010.04.009
    [17] 曹福亮, 王国霞, 李广平, 花喆斌.  银杏ISSR-PCR扩增反应体系的优化 . 浙江农林大学学报, 2008, 25(2): 186-190.
    [18] 马俊, 韦新良, 尤建林, 徐小军.  生态景观林树种选择定量研究 . 浙江农林大学学报, 2008, 25(5): 578-583.
    [19] 何莹, 韦新良, 蔡霞, 李可追, 王珍.  生态景观林群落结构定量分析 . 浙江农林大学学报, 2007, 24(6): 711-718.
    [20] 张文标, 金则新, 李钧敏, 潘冠琼.  甜槠ISSR-PCR 反应体系的正交优化 . 浙江农林大学学报, 2006, 23(5): 516-520.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220342

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023/2/1

计量
  • 文章访问数:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-06
  • 录用日期:  2022-12-07
  • 修回日期:  2022-11-30

不同组织及干旱胁迫下黄薇内参基因的筛选与验证

doi: 10.11833/j.issn.2095-0756.20220342
    基金项目:  浙江省农业新品种重大专项花卉育种专项(2021C02071-4);浙江省自然科学基金资助项目(LY21C160001)
    作者简介:

    赵雨(ORCID: 0000-0001-7671-6206),从事园林植物遗传育种研究。E-mail: zhaoyu@stu.zafu.edu.cn

    通信作者: 顾翠花(ORCID: 0000-0003-4086-8587),教授,博士,从事园林植物种质创新、遗传育种以及应用研究。E-mail: gucuihua@zafu.edu.cn
  • 中图分类号: S718.46

摘要:   目的  为黄薇Heimia myrtifolia不同组织及不同干旱胁迫下基因表达分析筛选最适内参基因。  方法  选取黄薇盛花期的根、茎、叶、花,以及5种不同干旱处理的叶片作为实验材料,借助RT-qPCR技术对黄薇转录组数据筛选的9个候选内参基因进行分析,并利用软件geNorm、BestKeeper、NormFinder和RefFinder综合评价候选基因的表达稳定性。最后选取2个与胁迫相关的基因CSLDSOD,对所选内参基因进行验证。  结果  geNorm、BestKeeper和NormFinder分析得出的候选内参基因排序存在一定差异。利用在线软件RefFinder对上述3个软件的结果综合分析得出:在不同组织中,最稳定的内参基因为GAPDH,最不稳定的内参基因为TUA;在干旱胁迫中,最稳定的内参基因为GAPDH,最不稳定的内参基因为TUB。在全部样本中,最稳定的内参基因为GAPDH,最不稳定的内参基因为18S RNA。对不同组织和干旱胁迫下的CSLDSOD基因表达模式进行验证表明:上述2个基因与筛选所得内参基因的表达量和变化趋势均较为一致。  结论  在不同组织和干旱处理后,GAPDH是最适合黄薇基因表达的内参基因。图4表4参33

English Abstract

赵雨, 林琳, 王群, 张国哲, 王杰, 尚林雪, 洪思丹, 马清清, 顾翠花. 不同组织及干旱胁迫下黄薇内参基因的筛选与验证[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220342
引用本文: 赵雨, 林琳, 王群, 张国哲, 王杰, 尚林雪, 洪思丹, 马清清, 顾翠花. 不同组织及干旱胁迫下黄薇内参基因的筛选与验证[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220342
ZHAO Yu, LIN Lin, WANG Qun, ZHANG Guozhe, WANG Jie, SHANG Linxue, HONG Sidan, MA Qingqing, GU Cuihua. Screening and validation of reference genes in Heimia myrtifolia in different tissues and under drought stress[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220342
Citation: ZHAO Yu, LIN Lin, WANG Qun, ZHANG Guozhe, WANG Jie, SHANG Linxue, HONG Sidan, MA Qingqing, GU Cuihua. Screening and validation of reference genes in Heimia myrtifolia in different tissues and under drought stress[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220342

返回顶部

目录

    /

    返回文章
    返回