Research progress on application effect of orchard waste biochar in orchard
-
摘要: 处理果园废弃物是果园生产中的重要环节,传统方式主要有填埋、饲料、焚化、堆肥、厌氧消化、酶利用等。果园废弃物生物质炭是以果园生产中的废弃物为原料,通过热解技术转化后获得生物质炭,再将生物质炭返还于果园。这样不仅改良了果园土壤,还保障和提高了果实产量和品质。果园废弃物在果园中的合理应用对果园生产效率和生态环境具有重要的稳定作用,开展果园废弃物生物质炭的研究对其在果园中的合理应用和演变机质具有重要的科学意义和应用价值。目前,果园废弃物生物质炭的研究集中于不同类别果园废弃物生物质炭的制备原理和性质,改良土壤的效果以及有机肥配施对果园生产的影响。未来应重点关注:①进一步分类果园废弃物,制备更多满足差异化需求的生物质炭;②比较不同类别果园废弃物生物质炭施用的生产效益;③制备果园专用生物质炭基有机肥;④探讨果园废弃物生物质炭对果园生态环境的影响。图1表2参94Abstract: Treatment of orchard waste is an important link in orchard production. The carbonization of orchard waste is a green, environmentally friendly and low-carbon mode of production, which can improve orchard soil, as well as yield and quality of fruits. Therefore, it’s of great scientific significance and application value to carry out research on orchard waste biochar for its rational application and evolution in orchard. The current research on biochar from orchard wastes was reviewed, which mainly focused on the preparation principle and properties of biochar from different types of orchard wastes and the effects on soil improvement, and the impact of its application combined with organic fertilizer on orchard production. The future research directions are proposed: (1) To further classify the orchard wastes to prepare more biochar to meet the differentiated needs. (2) To compare the production benefits of different types of orchard waste biochar application. (3) To prepare biochar-based organic fertilizer for orchard. (4) To explore the effect of orchard waste biochar on orchard environment and ecology. [Ch, 1 fig. 2 tab. 94 ref.]
-
Key words:
- orchard /
- orchard waste /
- biochar
-
表 1 果园废弃物生物质炭制作条件和性质
Table 1. Methods and properties of orchard waste biochar production
原材料 热解温度/℃ 热解时间/h 有机碳/(g·kg−1) 全碳/% 全氮/% 全磷/% 全钾/% 炭产量/% 橙子皮 350 3 65.58 2.26 0.66 0.05 32.5 100~600 1 10.85 1.56 300 2 80.72 2.55 350 2 8.58 0.17 12.2 18.62 柑橘枝 500 2 80.6 0.87 0.3 1.08 香蕉花梗 300 1 37.79 66 500 1 41.86 40 香蕉皮 350 3 5.54 1.9 1.26 0.42 40 香蕉茎叶 500 2 462.5 1.36 0.54 4.27 苹果树枝 450 1 82.15 1.28 苹果树皮 450 1 68.96 2.93 苹果枝 700 2 74.21 1.29 32.6 300 2 62.2 1.69 47.94 600 2 80.1 1.28 28.48 椰子壳 400 47.92 1.34 43.33 600 58.43 1.02 36.00 800 67.31 0.87 34.00 1000 74.08 0.50 31.00 海枣树废弃物 300 57.99 0.54 49.97 400 66.87 0.45 36.54 500 72.30 0.42 32.38 600 72.89 0.39 30.88 700 73.42 0.35 28.84 800 74.63 0.31 27.40 原材料 灰分/% 挥发物/% 水分/% pH 比表面积/(m2·g−1) 碳氮比 文献 橙子皮 7.8 21.4 6.2 9.97 SIAL等[22] 5.5 70.0 13 9.43 STELLA等[23] 352.5 31.65 ADENIYI等[24] 9.1 10.02 OGUNKUNLE等[25] 柑橘枝 9.23 4.85 92.64 逄玉万等[26] 香蕉花梗 24.84 33.69 26.28 8.1 KARIM等[27] 35.48 24.37 21.26 10.2 香蕉皮 9.8 26.5 5.2 10.88 SIAL等[28] 香蕉茎叶 19.05 10.33 80.51 340.07 徐广平等[29] 苹果树枝 2.01 9.47 40.38 64.18 石钧元等[30] 苹果树皮 12.00 12.36 55.14 23.54 苹果枝 8.9 10 57.53 曹辉等[31] 6.72 60.77 2.39 36.80 ZHAO等[32] 9.40 14.86 108.59 62.58 椰子壳 26.27 30.56 8.5 39.57 35.76 SUMAN等[33] 21.99 20.82 9.64 120.73 57.28 17.32 5.33 10.87 256.60 77.37 12.03 4.72 11.02 590.41 148.46 海枣树废弃物 14.42 40.08 3.29 107.39 USMAN等[34] 16.34 20.25 3.13 148.60 19.68 9.31 2.96 172.14 20.71 6.85 2.25 186.90 21.05 5.47 2.12 209.77 21.39 3.91 2.09 240.74 说明:橙子Citrus sinensis;柑橘C. reticulata;香蕉Musa nana;苹果Malus pumila;椰子Cocos nucifera;海枣树 Phoenix dactylifera。表中百分数均为质量分数 -
[1] FAWZY S, OSMAN A I, YANG Haiping, et al. Industrial biochar systems for atmospheric carbon removal: a review [J]. Environmental Chemistry Letters, 2021, 19(4): 3023 − 3055. doi: 10.1007/s10311-021-01210-1 [2] FAWZY S, OSMAN A I, DORAN J, et al. Strategies for mitigation of climate change: a review [J]. Environmental Chemistry Letters, 2020, 18(6): 2069 − 2094. doi: 10.1007/s10311-020-01059-w [3] HUANG Xiaobing, GAO Shiqi. Temporal characteristics and influencing factors of agricultural carbon emission in Jiangxi Province of China[J/OL]. Environmental Research Communications, 2022, 4(4): 045006[2022-07-15]. doi: 10.1088/2515-7620/ac6380. [4] GABHANE J W, BHANGE V P, PATIL P D, et al. Recent trends in biochar production methods and its application as a soil health conditioner: a review[J/OL]. Sn Applied Sciences, 2020, 2(7): 1307[2022-07-15]. doi: 10.1007/s42452-020-3121-5. [5] SHARMA S, RANA V S, RANA N, et al. Biochar from fruit crops waste and its potential impact on fruit crops[J/OL]. Scientia Horticulturae, 2022, 299: 111052[2022-07-15]. doi. org/10.1016/j. scienta. 2022.111052. [6] DING Yang, LIU Yunguo, LIU Shaobo, et al. Biochar to improve soil fertility: a review[J/OL]. Agronomy for Sustainable Development, 2016, 36(2): 36[2022-07-15]. doi: 10.1007/s13593-016-0372-z. [7] EL-NAGGAR A, LEE S S, RINKLEBE J, et al. Biochar application to low fertility soils: a review of current status, and future prospects [J]. Geoderma, 2019, 337: 536 − 554. doi: 10.1016/j.geoderma.2018.09.034 [8] LEHMANN J, GAUNT J, RONDON M. Bio-char sequestration in terrestrial ecosystems: a review [J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2): 403 − 427. doi: 10.1007/s11027-005-9006-5 [9] WOOLF D, AMONETTE J E, STREET-PERROTT F A, et al. Sustainable biochar to mitigate global climate change[J/OL]. Nature Communications, 2010, 1(1): 56[2022-07-15]. doi: 10.1038/ncomms1053. [10] SAGAR N A, PAREEK S, SHARMA S, et al. Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization [J]. Comprehensive Reviews in Food Science and Food Safety, 2018, 17(3): 512 − 531. doi: 10.1111/1541-4337.12330 [11] MAGAMA P, CHIYANZU I, MULOPO J. A systematic review of sustainable fruit and vegetable waste recycling alternatives and possibilities for anaerobic biorefinery[J/OL]. Bioresource Technology Reports, 2022, 18: 101031[2022-07-15]. doi: 10.1016/j.biteb.2022.101031. [12] DU Chenyu, ABDULLAH J J, GREETHAM D, et al. Valorization of food waste into biofertiliser and its field application [J]. Journal of Cleaner Production, 2018, 187: 273 − 284. doi: 10.1016/j.jclepro.2018.03.211 [13] GANESH K S, SRIDHAR A, VISHALI S. Utilization of fruit and vegetable waste to produce value-added products: conventional utilization and emerging opportunities-A review[J/OL]. Chemosphere, 2022, 287: 132221[2022-07-15]. doi: 10.1016/j.chemosphere.2021.132221. [14] LENG Lijian, HUANG Huajun. An overview of the effect of pyrolysis process parameters on biochar stability [J]. Bioresource Technology, 2018, 270: 627 − 642. doi: 10.1016/j.biortech.2018.09.030 [15] PATRA B R, MUKHERJEE A, NANDA S, et al. Biochar production, activation and adsorptive applications: a review [J]. Environmental Chemistry Letters, 2021, 19(3): 2237 − 2259. doi: 10.1007/s10311-020-01165-9 [16] HUANG He, REDDY N G, HUANG Xilong, et al. Effects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil [J]. Scientific Reports, 2021, 11(1): 1 − 19. doi: 10.1038/s41598-020-79139-8 [17] FOONG S Y, LIEW R K, YANG Yafeng, et al. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges, and future directions[J/OL]. Chemical Engineering Journal, 2020, 389: 124401[2022-07-15]. doi: 10.1016/j.cej.2020.124401. [18] NANDA S, MOHANTY P, PANT K K, et al. Characterization of north American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels [J]. BioEnergy Research, 2013, 6(2): 663 − 677. doi: 10.1007/s12155-012-9281-4 [19] CHEN Dengyu, CEN Kehui, ZHUANG Xiaozhuang, et al. Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio-oil[J/OL]. Combustion and Flame, 2022, 242: 112142[2022-07-15]. doi: 10.1016/j.combustflame.2022.112142. [20] WEBER K, QUICKER P. Properties of biochar [J]. Fuel, 2018, 217: 240 − 261. doi: 10.1016/j.fuel.2017.12.054 [21] YANG Haiping, YAN Rong, CHEN Hanping, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis [J]. Fuel, 2007, 86(12/13): 1781 − 1788. [22] SIAL T A, LAN Zhilong, KHAN M N, et al. Evaluation of orange peel waste and its biochar on greenhouse gas emissions and soil biochemical properties within a loess soil [J]. Waste Management, 2019, 87: 125 − 134. doi: 10.1016/j.wasman.2019.01.042 [23] STELLA MARY G, SUGUMARAN P, NIVEDITHA S, et al. Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes [J]. International Journal of Recycling of Organic Waste in Agriculture, 2016, 5(1): 43 − 53. doi: 10.1007/s40093-016-0116-8 [24] ADENIYI A G, IGHALO J O, ONIFADE D V. Biochar from the thermochemical conversion of orange (Citrus sinensis) peel and albedo: product quality and potential applications [J]. Chemistry Africa, 2020, 3(2): 439 − 448. doi: 10.1007/s42250-020-00119-6 [25] OGUNKUNLE C O, VARUN M, OGUNDELE I G, et al. Citrus epicarp-derived biochar reduced Cd uptake and ameliorates oxidative stress in young Abelmoschus esculentus (L. ) Moench (okra) under low Cd stress [J]. Bulletin of Environmental Contamination and Toxicology, 2018, 100(6): 827 − 833. doi: 10.1007/s00128-018-2339-z [26] 逄玉万, 唐拴虎, 林焕嘉, 等. 酸性硫酸盐土壤对柑桔枝生物炭改良的响应[J]. 中国农学通报, 2018, 34(23): 86 − 91. PANG Yuwan, TANG Shuanhu, LIN Huanjia, et al. Response of acid sulfate soil to amelioration by citrus branch biochar [J]. Chinese Agricultural Science Bulletin, 2018, 34(23): 86 − 91. [27] KARIM A A, KUMAR M K, MOHAPATRA S, et al. Banana peduncle biochar: characteristics and adsorption of hexavalent chromium from aqueous solution [J]. International Research Journal of Pure and Applied Chemistry, 2015, 7(1): 1 − 10. doi: 10.9734/IRJPAC/2015/16163 [28] SIAL T A, KHAN M N, LAN Zhilong, et al. Contrasting effects of banana peels waste and its biochar on greenhouse gas emissions and soil biochemical properties [J]. Process Safety and Environmental Protection, 2019, 122: 366 − 377. doi: 10.1016/j.psep.2018.10.030 [29] 徐广平, 滕秋梅, 沈育伊, 等. 香蕉茎叶生物炭对香蕉枯萎病防控效果及土壤性状的影响[J]. 生态环境学报, 2020, 29(12): 2373 − 2384. XU Guangping, TENG Qiumei, SHEN Yuyi, et al. Effects of banana stems-leaves biochar on soil properties and control of banana fusarium wilt [J]. Ecology and Environmental Sciences, 2020, 29(12): 2373 − 2384. [30] 石钧元, 荀咪, 崔迎宾, 等. 炭化苹果枝皮和木材对水中硝态氮和铵态氮的差异吸附[J]. 水土保持学报, 2020, 34(2): 253 − 260. SHI Junyuan, XUN Mi, CUI Yingbin, et al. Differential sorption of nitrate and ammonium nitrogen in water by charred apple branch bark and wood [J]. Journal of Soil and Water Conservation, 2020, 34(2): 253 − 260. [31] 曹辉, 李燕歌, 周春然, 等. 炭化苹果枝对苹果根区土壤细菌和真菌多样性的影响[J]. 中国农业科学, 2016, 49(17): 3413 − 3424. CAO Hui, LI Yan’ge, ZHOU Chunran, et al. Effect of carbonized apple branches on bacterial and fungal diversities in apple root-zone soil [J]. Scientia Agricultura Sinica, 2016, 49(17): 3413 − 3424. [32] ZHAO Shixiang, TA Na, WANG Xudong. Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material[J/OL]. Energies, 2017, 10(9): 1293[2022-07-15]. doi: 10.3390/en10091293. [33] SUMAN S, GAUTAM S. Pyrolysis of coconut husk biomass: analysis of its biochar properties [J]. Energy Sources,Part A:Recovery,Utilization,and Environmental Effects, 2017, 39(8): 761 − 767. doi: 10.1080/15567036.2016.1263252 [34] USMAN A R A, ABDULJABBAR A, VITHANAGE M, et al. Biochar production from date palm waste: charring temperature induced changes in composition and surface chemistry [J]. Journal of Analytical and Applied Pyrolysis, 2015, 115: 392 − 400. doi: 10.1016/j.jaap.2015.08.016 [35] YOGALAKSHMI K N, POORNIMA D T, SIVASHANMUGAM P, et al. Lignocellulosic biomass-based pyrolysis: a comprehensive review[J/OL]. Chemosphere, 2022, 286: 131824[2022-07-15]. doi: 10.1016/j.chemosphere.2021.131824. [36] SAIT H H, HUSSAIN A, SALEMA A A, et al. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis [J]. Bioresource Technology, 2012, 118: 382 − 389. doi: 10.1016/j.biortech.2012.04.081 [37] CHAIWONG K, KIATSIRIROAT T, VORAYOS N, et al. Study of bio-oil and bio-char production from algae by slow pyrolysis [J]. Biomass and Bioenergy, 2013, 56: 600 − 606. doi: 10.1016/j.biombioe.2013.05.035 [38] FERNANDES E R K, MARANGONI C, SOUZA O, et al. Thermochemical characterization of banana leaves as a potential energy source [J]. Energy Conversion and Management, 2013, 75: 603 − 608. doi: 10.1016/j.enconman.2013.08.008 [39] MAIA B G D O, SOUZA O, MARANGONI C, et al. Production and characterization of fuel briquettes from banana leaves waste [J]. Chemical Engineering Transactions, 2014, 37: 439 − 444. [40] ABDULLAH N, SULAIMAN F, MISKAM M A, et al. Characterization of banana (Musa spp. ) pseudo-stem and fruit-bunch-stem as a potential renewable energy resource [J]. International Journal of Biological,Veterinary,Agricultural and Food Engineering, 2014, 8(8): 712 − 716. [41] BISWAS B, RAWEL S, KUMAR J, et al. Slow pyrolysis of prot, alkali and dealkaline lignins for production of chemicals [J]. Bioresource Technology, 2016, 213: 319 − 326. doi: 10.1016/j.biortech.2016.01.131 [42] KABENGE I, OMULO G, BANADDA N, et al. Characterization of banana peels wastes as potential slow pyrolysis feedstock[J/OL]. Journal of Sustainable Development, 2018, 11(2): 14[2022-07-15]. doi: 10.5539/jsd.v1n2p14. [43] WAN Jiang, LIU Lin, AYUB K S, et al. Characterization and adsorption performance of biochars derived from three key biomass constituents[J/OL]. Fuel, 2020, 269: 117142[2022-07-15]. doi: 10.1016/j.fuel.2020.117142. [44] JANKOVIĆ B, MANIĆ N, DODEVSKI V, et al. Physico-chemical characterization of carbonized apricot kernel shell as precursor for activated carbon preparation in clean technology utilization[J/OL]. Journal of Cleaner Production, 2019, 236: 117614[2022-07-15]. doi: 10.1016/j.jclepro.2019.117614. [45] ZHANG Zhongqing, ZHOU Chenhui, YANG Jingmin, et al. Preparation and characterization of apricot kernel shell biochar and its adsorption mechanism for atrazine[J/OL]. Sustainability, 2022, 14(7): 4082[2022-07-15]. doi: 10.3390/su14074082. [46] KARIM A A, KUMAR M, SINGH S K, et al. Potassium enriched biochar production by thermal plasma processing of banana peduncle for soil application [J]. Journal of Analytical and Applied Pyrolysis, 2017, 123: 165 − 172. doi: 10.1016/j.jaap.2016.12.009 [47] PARK J H, OK Y S, KIM S H, et al. Characteristics of biochars derived from fruit tree pruning wastes and their effects on lead adsorption [J]. Journal of the Korean Society for Applied Biological Chemistry, 2015, 58(5): 751 − 760. doi: 10.1007/s13765-015-0103-1 [48] 李金文, 顾凯, 唐朝生, 等. 生物炭对土体物理化学性质影响的研究进展[J]. 浙江大学学报(工学版), 2018, 52(1): 192 − 206. LI Jinwen, GU Kai, TANG Chaosheng, et al. Advances in effects of biochar on physical and chemical properties of soil [J]. Journal of Zhejiang University (Engineering Science) , 2018, 52(1): 192 − 206. [49] 郭茜, 陆扣萍, 胡国涛, 等. 死猪炭和竹炭对菜地土壤理化性质和蔬菜产量的影响[J]. 浙江农林大学学报, 2017, 34(2): 244 − 252. GUO Xi, LU Kouping, HU Guotao, et al. Greenhouse soil properties and vegetable yield with dead pig and bamboo biochars [J]. Journal of Zhejiang A&F University, 2017, 34(2): 244 − 252. [50] 王瑞峰, 赵立欣, 沈玉君, 等. 生物炭制备及其对土壤理化性质影响的研究进展[J]. 中国农业科技导报, 2015, 17(2): 126 − 133. doi: 10.13304/j.nykjdb.2014.624 WANG Ruifeng, ZHAO Lixin, SHEN Yujun, et al. Research progress on preparing biochar and its effect on soil physio-chemical properties [J]. Journal of Agricultural Science and Technology, 2015, 17(2): 126 − 133. doi: 10.13304/j.nykjdb.2014.624 [51] 何秀峰, 赵丰云, 于坤, 等. 生物炭对葡萄幼苗根际土壤养分、酶活性及微生物多样性的影响[J]. 中国土壤与肥料, 2020(6): 19 − 26. HE Xiufeng, ZHAO Fengyun, YU Kun, et al. Effect of biochar on nutrient, enzyme activities and microbial diversity of rhizosphere soil of grape seedlings [J]. Soil and Fertilizer Sciences in China, 2020(6): 19 − 26. [52] 颜永毫, 郑纪勇, 张兴昌, 等. 生物炭添加对黄土高原典型土壤田间持水量的影响[J]. 水土保持学报, 2013, 27(4): 120 − 124, 190. YAN Yonghao, ZHENG Jiyong, ZHANG Xingchang, et al. Impact of biochar addition into typical soil on field capacity in loess plateau [J]. Journal of Soil and Water Conservation, 2013, 27(4): 120 − 124, 190. [53] ZHANG Yafu, WANG Jinman, FENG Yu. The effects of biochar addition on soil physicochemical properties: a review[J/OL]. Catena, 2021, 202: 105284[2022-07-15]. doi: 10.1016/j.catena.2021.105284. [54] ATKINSON C J, FITZGERALD J D, HIPPS N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review [J]. Plant and Soil, 2010, 337(1/2): 1 − 18. [55] GASKIN J W, STEINER C, HARRIS K, et al. Effect of low-temperature pyrolysis conditions on biochar for agricultural use [J]. Transactions of the ASABE, 2008, 51(6): 2061 − 2069. doi: 10.13031/2013.25409 [56] van ZWIETEN L, KIMBER S, MORRIS S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility [J]. Plant and Soil, 2010, 327(1/2): 235 − 246. [57] 包骏瑶, 赵颖志, 严淑娴, 等. 不同农林废弃物生物质炭对雷竹林酸化土壤的改良效果[J]. 浙江农林大学学报, 2018, 35(1): 43 − 50. BAO Junyao, ZHAO Yingzhi, YAN Shuxian, et al. Soil amelioration with biochars pyrolyzed from different feedstocks of an acidic bamboo (Phyllostachys violascens) plantation [J]. Journal of Zhejiang A&F University, 2018, 35(1): 43 − 50. [58] 宿贤超, 胡杨勇, 赵薇, 等. 添加竹炭对土壤化学性质和重金属有效性及水稻生长的影响[J]. 浙江农业学报, 2014, 26(2): 439 − 443. SU Xianchao, HU Yangyong, ZHAO Wei, et al. Effects of addition of bamboo charcoal on soil chemical properties, heavy metal availability, and rice growth [J]. Acta Agriculturae Zhejiangensis, 2014, 26(2): 439 − 443. [59] TAGHIZADEH-TOOSI A, CLOUGH T J, SHERLOCK R R, et al. Biochar adsorbed ammonia is bioavailable [J]. Plant and Soil, 2012, 350(1/2): 57 − 69. [60] VENTURA M, SORRENTI G, PANZACCHI P, et al. Biochar reduces short-term nitrate leaching from a horizon in an apple orchard [J]. Journal of Environmental Quality, 2013, 42(1): 76 − 82. doi: 10.2134/jeq2012.0250 [61] KNICKER H. How does fire affect the nature and stability of soil organic nitrogen and carbon? a review [J]. Biogeochemistry, 2007, 85(1): 91 − 118. doi: 10.1007/s10533-007-9104-4 [62] SUN Wei, GU Jie, WANG Xiaojuan, et al. Impacts of biochar on the environmental risk of antibiotic resistance genes and mobile genetic elements during anaerobic digestion of cattle farm wastewater [J]. Bioresource Technology, 2018, 256: 342 − 349. doi: 10.1016/j.biortech.2018.02.052 [63] LI Shuailin, LIANG Chutao, SHANGGUAN Zhouping. Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N [J]. Science of The Total Environment, 2017, 607/608: 109 − 119. doi: 10.1016/j.scitotenv.2017.06.275 [64] SRIDHAR A, KAPOOR A, KUMAR P S, et al. Conversion of food waste to energy: a focus on sustainability and life cycle assessment[J/OL]. Fuel, 2021, 302: 121069[2022-07-15]. doi: 10.1016/j.fuel.2021.121069. [65] GARCÍA A J, ESTEBAN M B, MÁRQUEZ M C, et al. Biodegradable municipal solid waste: characterization pand potential use as animal feedstuffs [J]. Waste Management, 2005, 25(8): 780 − 787. doi: 10.1016/j.wasman.2005.01.006 [66] DENG Guifang, SHEN Chen, XU Xiangrong, et al. Potential of fruit wastes as natural resources of bioactive compounds [J]. International Journal of Molecular Sciences, 2012, 13(7): 8308 − 8323. doi: 10.3390/ijms13078308 [67] SAYARA T, BASHEER-SALIMIA R, HAWAMDE F, et al. Recycling of organic wastes through composting: process performance and compost application in agriculture[J/OL]. Agronomy, 2020, 10(11): 1838[2022-07-15]. doi: 10.3390/agronomy10111838. [68] CHATTERJEE B, MAZUMDER D. New approach of characterizing fruit and vegetable waste (FVW) to ascertain its biological stabilization via two-stage anaerobic digestion (AD)[J/OL]. Biomass and Bioenergy, 2020, 139: 105594[2022-07-15]. doi: 10.1016/j.biombioe.2020.105594. [69] KAUR S, KAUR H P, PRASAD B, et al. Production and optimization of pectinase by Bacillus sp. isolated from vegetable waste soil [J]. Indo American Journal of Pharmaceutical Research, 2016, 6(1): 4185 − 4190. [70] 杜国栋, 刘志琨, 赵玲, 等. 生物炭减缓干旱胁迫对秋子梨根系呼吸生理功能的影响[J]. 果树学报, 2016, 33(增刊1): 90 − 97. DU Guodong, LIU Zhikun, ZHAO Ling, et al. Biochar alleviates effects of drought stress on root respiration in Pyrus ussuriensis[J]. Journal of Fruit Science, 2016, 33(suppl 1): 90 − 97. [71] OO A Z, SUDO S, WIN K T, et al. Influence of pruning waste biochar and oyster shell on N2O and CO2 emissions from Japanese pear orchard soil[J/OL]. Heliyon, 2018, 4(3): e00568[2022-07-15]. doi: 10.1016/j.heliyon.2018.e00568. [72] LIU Yinghao, MA Zhiting, CHEN Ran, et al. Biochar promotes the growth of apple seedlings by adsorbing phloridzin[J/OL]. Scientia Horticulturae, 2022, 303: 111187[2022-07-15]. doi: 10.1016/j.scienta.2022.111187. [73] CAO Hui, JIA Mingfang, XUN Mi, et al. Nitrogen transformation and microbial community structure varied in apple rhizosphere and rhizoplane soils under biochar amendment [J]. Journal of Soils and Sediments, 2021, 21(2): 853 − 868. doi: 10.1007/s11368-020-02868-w [74] 秦亚旭. 生物质炭基专用肥对苹果产量品质及土壤肥力的影响[D]. 杨凌: 西北农林科技大学, 2020. QIN Yaxu. Effects of Biochar-based Special Compound Fertilizer on Yield and Quality of Apple and Soil Fertility [D]. Yangling: Northwest A&F University, 2020. [75] FRENE J P, FRAZIER M, RUTTO E, et al. Early response of organic matter dynamics to pine-biochar in sandy soil under peach trees[J/OL]. Agrosystems, Geosciences & Environment, 2020, 3(1): e20094[2022-07-15]. doi: 10.1002/agg2.20094. [76] 王健宁, 文晓鹏, 洪怡, 等. 生物炭对玛瑙红樱桃苗期生理生化特征的影响[J]. 华中农业大学学报, 2019, 38(3): 19 − 24. WANG Jianning, WEN Xiaopeng, HONG Yi, et al. Effects of biochar on physiological and biochemical characteristics of Prunus pseudocerasus ‘Manaohong’ seedling [J]. Journal of Huazhong Agricultural University, 2019, 38(3): 19 − 24. [77] ZHANG Yuchan, WANG Xiao, LIU Bingjie, et al. Comparative study of individual and co-application of biochar and wood vinegar on blueberry fruit yield and nutritional quality[J/OL]. Chemosphere, 2020, 246: 125699[2022-07-15]. doi: 10.1016/j.chemosphere.2019.125699. [78] HARHASH M M, AHAMED M M M, MOSA W F A. Mango performance as affected by the soil application of zeolite and biochar under water salinity stresses[J/OL]. Environmental Science and Pollution Research, 2022[2022-07-15]. doi: 10.1007/s11356-022-21503-4. [79] BARONTI S, VACCARI F P, MIGLIETTA F, et al. Impact of biochar application on plant water relations in Vitis vinifera (L. ) [J]. European Journal of Agronomy, 2014, 53: 38 − 44. doi: 10.1016/j.eja.2013.11.003 [80] CHANG Yuru, ROSSI L, ZOTARELLI L, et al. Greenhouse evaluation of pinewood biochar effects on nutrient status and physiological performance in muscadine grape (Vitis rotundifolia L. ) [J]. HortScience, 2021, 56(2): 277 − 285. doi: 10.21273/HORTSCI15428-20 [81] GENESIO L, MIGLIETTA F, BARONTI S, et al. Biochar increases vineyard productivity without affecting grape quality: Results from a four years field experiment in Tuscany [J]. Agriculture,Ecosystems &Environment, 2015, 201: 20 − 25. [82] 王明元, 侯式贞, 董涛, 等. 香蕉假茎生物炭对根际土壤细菌丰度和群落结构的影响[J]. 微生物学报, 2019, 59(7): 1363 − 1372. WANG Mingyuan, HOU Shizhen, DONG Tao, et al. Effects of banana pseudostem biochar on bacterial abundance and community structure in rhizosphere soil [J]. Acta Microbiologica Sinica, 2019, 59(7): 1363 − 1372. [83] 李航, 董涛, 王明元. 生物炭对香蕉苗根际土壤微生物群落与代谢活性的影响[J]. 微生物学杂志, 2016, 36(1): 42 − 48. LI Hang, DONG Tao, WANG Mingyuan. Effects of biochar on microbial communities and metabolic activity in rhizospheric soil of banana seedlings [J]. Journal of Microbiology, 2016, 36(1): 42 − 48. [84] ABO-OGIALA A. Impact of biochar on vegetative parameters, leaf mineral content, yield and fruit quality of grande naine banana in saline-sodic soil [J]. Egyptian Journal of Horticulture, 2018, 45(2): 315 − 330. doi: 10.21608/ejoh.2018.4754.1074 [85] SATTAR A, SHER A, IJAZ M, et al. Interactive effect of biochar and silicon on improving morpho-physiological and biochemical attributes of maize by reducing drought hazards [J]. Journal of Soil Science and Plant Nutrition, 2020, 20(4): 1819 − 1826. doi: 10.1007/s42729-020-00253-7 [86] MÖLLER K, SCHULTHEIΒ U. Chemical characterization of commercial organic fertilizers [J]. Archives of Agronomy and Soil Science, 2015, 61(7/9): 989 − 1012. [87] PLAZA C, GIANNETTA B, FERNÁNDEZ J M, et al. Response of different soil organic matter pools to biochar and organic fertilizers [J]. Agriculture,Ecosystems &Environment, 2016, 225: 150 − 159. [88] BOLAN N, HOANG S A, BEIYUAN J, et al. Multifunctional applications of biochar beyond carbon storage [J]. International Materials Reviews, 2022, 67(2): 150 − 200. doi: 10.1080/09506608.2021.1922047 [89] 王璐, 朱占玲, 刘照霞, 等. 多种有机物料混施对苹果幼苗生长、氮素利用及土壤特性的影响[J]. 水土保持学报, 2021, 35(5): 362 − 368. WANG Lu, ZHU Zhanling, LIU Zhaoxia, et al. Effects of mixtures of diffierent organic materials on apples seeding growth, nitrogen utilization and soil properties [J]. Journal of Soil and Water Conservation, 2021, 35(5): 362 − 368. [90] SÁNCHEZ-GARCÍA M, SÁNCHEZ-MONEDERO M A, ROIG A, et al. Compost vs biochar amendment: a two-year field study evaluating soil C build-up and N dynamics in an organically managed olive crop [J]. Plant and Soil, 2016, 408(1/2): 1 − 14. [91] AL-SAYED H M, ALI A M, MOHAMED M A, et al. Combined effect of prickly pear waste biochar and azolla on soil fertility, growth, and yield of roselle (Hibiscus sabdariffa L. ) plants [J]. Journal of Soil Science and Plant Nutrition, 2022, 22: 3541 − 3552. doi: 10.1007/s42729-022-00908-7 [92] EYLES A, BOUND S A, OLIVER G, et al. Impact of biochar amendment on the growth, physiology and fruit of a young commercial apple orchard [J]. Trees, 2015, 29(6): 1817 − 1826. doi: 10.1007/s00468-015-1263-7 [93] HAN Jiale, ZHANG Afeng, KANG Yanhong, et al. Biochar promotes soil organic carbon sequestration and reduces net global warming potential in apple orchard: a two-year study in the Loess Plateau of China[J/OL]. Science of The Total Environment, 2022, 803: 150035[2022-07-15]. doi: 10.1016/j.scitotenv.2021.150035. [94] LEHMANN J, COWIE A, MASIELLO C A, et al. Biochar in climate change mitigation [J]. Nature Geoscience, 2021, 14(12): 883 − 895. doi: 10.1038/s41561-021-00852-8 -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220535

计量
- 文章访问数: 18
- 被引次数: 0