留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拟南芥和油菜3-磷酸甘油酰基转移酶的关键活性位点鉴定

林怡馨 陈丹丹 刘宏波 柯星星 郑月萍 郑志富

林怡馨, 陈丹丹, 刘宏波, 柯星星, 郑月萍, 郑志富. 拟南芥和油菜3-磷酸甘油酰基转移酶的关键活性位点鉴定[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220764
引用本文: 林怡馨, 陈丹丹, 刘宏波, 柯星星, 郑月萍, 郑志富. 拟南芥和油菜3-磷酸甘油酰基转移酶的关键活性位点鉴定[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220764
LIN Yixin, CHEN Dandan, LIU Hongbo, KE Xingxing, ZHENG Yueping, ZHENG Zhifu. Identification of key amino acid residues controlling the activities of glycerol-3-phosphate acyltransferases in Arabidopsis thaliana and Brassica napus[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220764
Citation: LIN Yixin, CHEN Dandan, LIU Hongbo, KE Xingxing, ZHENG Yueping, ZHENG Zhifu. Identification of key amino acid residues controlling the activities of glycerol-3-phosphate acyltransferases in Arabidopsis thaliana and Brassica napus[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220764

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

拟南芥和油菜3-磷酸甘油酰基转移酶的关键活性位点鉴定

doi: 10.11833/j.issn.2095-0756.20220764
基金项目: 国家自然科学基金青年基金资助项目(32100209);浙江省自然科学基金青年基金资助项目(Q21C020003);国家自然科学基金面上资助项目(31871660,32071929)
详细信息
    作者简介: 林怡馨(ORCID: 0009-0007-3438-0354),从事植物生物技术研究。E-mail: 642402291@qq.com
    通信作者: 郑志富(ORCID: 0000-0002-8247-5629),教授,从事植物生化和代谢研究。E-mail: zzheng@zafu.edu.cn
  • 中图分类号: Q946.5

Identification of key amino acid residues controlling the activities of glycerol-3-phosphate acyltransferases in Arabidopsis thaliana and Brassica napus

  • 摘要:   目的  3-磷酸甘油酰基转移酶(GPAT)催化三酰甘油(TAG)生物合成途径中的第1步酰化反应,TAG合成能力是油料作物的关键性状,但亦与人类肥胖症密切相关,了解GPAT结构与功能的内在关系对于这一性状的遗传或化学遗传调控至关重要。本研究旨在鉴定调控植物GPAT活性的关键氨基酸位点。  方法  运用定点突变技术构建了58个GPAT9突变基因,结合GPAT特异的酵母遗传互补法,剖析单一和多个氨基酸位点改变对GPAT9酶活性的影响。  结果  通过对AtGPAT9和BnGPAT9的19个氨基酸残基进行分析发现:AtGPAT9的N端6个磷酸化位点的单独突变(T10A、S11A、S13A、S28A、S30A和S31A)不能增强AtGPAT9在酵母异源表达时的活性。相反,其他6个位于酰基转移酶保守结构域外的氨基酸残基(85、114、119、230、237、322位)的改变能够显著影响GPAT9酶活性。发现这些氨基酸残基之间存在交互作用,例如,3个位点同时突变(Y85W/N119H/S237N)能使AtGPAT9活性大幅上升,加速酵母的生长并促进TAG的合成,表达这一突变酶的酵母中的TAG含量比表达野生型BnGPAT9的增加了45.7%。更值得注意的是,在114和237位同时存在磷酸化氨基酸残基对酰基转移酶活性有害,暗示植物GPAT9活性可能受磷酸化和非磷酸化机制调节。  结论  本研究获得了6个未经报道的关键GPAT酶活性调控位点,其中W85和H119是GPAT9正常功能所必需的,而L114、D230、N237和A322有利于维持GAPT9活性。图7表2参37
  • 图  1  拟南芥AtGPAT9和油菜BnGPAT9氨基酸序列比对

    Figure  1  Alignment of the amino acid sequences of A. thaliana AtGPAT9 and B. napus BnGPAT9

    图  2  AtGPAT9和BnGPAT9三维结构预测

    Figure  2  Prediction of three-dimensional structures of AtGPAT9 and BnGPAT9

    图  3  不同单位点突变对AtGPAT9和BnGPAT9酶活性的影响

    Figure  3  Effects of different single mutations on AtGPAT9 and BnGPAT9 activities

    图  4  亮氨酸替换114位的苏氨酸(T114L)对BnGPAT9活性的影响

    Figure  4  Effects of the substitution of threonine for leucine at residue 114 (T114L) on BnGPAT9 activity

    图  5  多位点突变对AtGPAT9酶活性的影响

    Figure  5  Effects of mutations at multiple sites on AtGPAT9 activity

    图  6  含不同突变位点的AtGPAT9表达对不同生长期酵母菌株ZAFU1的细胞密度影响

    Figure  6  Effects of expression of AtGPAT9 bearing different mutation sites on cell density of the yeast strain ZAFU1 in different periods of growth

    图  7  含不同突变位点的AtGPAT9表达对平台生长期酵母菌株ZAFU1的TAG含量影响

    Figure  7  Effects of expression of AtGPAT9 bearing different mutation sites on TAG content of the yeast strain ZAFU1 at the stationary phase

    表  1  拟南芥AtGPAT9和油菜BnGPAT9定点突变所用的引物序列

    Table  1.   Sequences of the primers used for site-directed mutagenesis of A. thaliana AtGPAT9 and B. napus BnGPAT9

    突变位点引物序列 (5′→3′)突变位点引物序列 (5′→3′)
    BnGPAT9(R40S) AGCCTCGTGGCAAGCTCAGCCTGCGTGATTTGCTAGACATAtGPAT9(N119H) TTTCATTGTTTATCCCTGTACACGCGTTGCTGAAAGGTCAAG
    BnGPAT9(W85Y) TCTACTTGTTTCCTTTATACTGCTGTGGTGTTGTTGTTAGAtGPAT9(D230N) TTGTAGCAAAAAAGTTAAGGAACCATGTCCAAGGAGCTGAC
    BnGPAT9(C87F) TTGTTTCCTTTATGGTGCTTTGGTGTTGTTGTTAGATACTAtGPAT9(A235T) TAAGGGACCATGTCCAAGGAACTGACAGTAATCCTCTTCTC
    BnGPAT9(I102F) TTCTCTTTCCCTTGAGGTGCTTCACTTTAGCTTTTGGATGAtGPAT9(S237N) ACCATGTCCAAGGAGCTGACAATAATCCTCTTCTCATATTTCC
    BnGPAT9(F109I) CATCACTTTAGCTTTTGGATGGATTATTTTCCTTTCAACGAtGPAT9(D230N/A235T) TTGTAGCAAAAAAGTTAAGGAACCATGTCCAAGGAACTGAC
    BnGPAT9(T114L) TGGTTTATTTTCCTTTCATTGTTTATCCCTGTACACTCTCAtGPAT9(A235T/ S237N) TAAGGGACCATGTCCAAGGAACTGACAATAATCCTCTTCTCATATTTC
    BnGPAT9(H119N) TTCAACGTTTATCCCTGTAAATTCTCTCCTGAAAGGTCAGAtGPAT9(D230N/A235T/S237N) TTGTAGCAAAAAAGTTAAGGAACCATGTCCAAGGAACTGAC
    BnGPAT9(N230D) GTAGCAAGAAAGTTAAGGGACCATGTTCAAGGAACTGACAAtGPAT9(G332A) CATAAGGCCCGGTGAAACAGCAATTGAATTTGCAGAGAGGG
    BnGPAT9(T235A) TAAGGAACCATGTTCAAGGAGCTGACAATAACCCTCTTCTAtGPAT9(L335H) GGTCAGAGACATGATATCTCATCGGGCGGGTCTCAAAAAGG
    BnGPAT9(N237S) CATGTTCAAGGAACTGACAGTAACCCTCTTCTTATATTTCAtGPAT9(P355S) TGAAGTATTCGAGACCAAGCTCCAAGCATAGTGAACGCAAG
    BnGPAT9(A322G) AAGGCCTGGTGAAACAGGAATTGAGTTTGCAGAGAGGGTCAtGPAT9(T10A) GTACGGCAGGGAGGCTCGTGGCTTCAAAATCCGAGCTTGAC
    AtGPAT9(S40R) ATGAACCTCGCGGCAAGCTCCGCCTGCGTGATTTGCTAGAAtGPAT9(S11A) CGGCAGGGAGGCTCGTGACTGCAAAATCCGAGCTTGACCTC
    AtGPAT9(Y85W) ATTTACTTATTCCCACTATGGTGCTTTGGGGTTGTTGTTAGAtGPAT9(S13A) GGAGGCTCGTGACTTCAAAAGCCGAGCTTGACCTCGATCAC
    AtGPAT9(F87C) CTTATTCCCACTATACTGCTGTGGGGTTGTTGTTAGATACTAtGPAT9(S28A) AACATCGAAGATTACCTTCCTGCTGGTTCTTCCATCAATGAAC
    AtGPAT9(F102I) TCCTCTTTCCCTTGAGGTGCATCACTTTAGCTTTTGGGTGGAtGPAT9(S30A) GAAGATTACCTTCCTTCTGGTGCTTCCATCAATGAACCTCGCG
    AtGPAT9(I109F) TCACTTTAGCTTTTGGGTGGTTTATTTTCCTTTCATTGTTTAtGPAT9(S31A) GATTACCTTCCTTCTGGTTCTGCCATCAATGAACCTCGCGGCA
    AtGPAT9(L114T) GGGTGGATTATTTTCCTTTCAACGTTTATCCCTGTAAATGCG
    下载: 导出CSV

    表  2  AtGPAT9和BnGPAT9中单和多位点氨基酸残基的定点突变

    Table  2.   Site-directed mutagenesis of amino acid residues at single and multiple sites in AtGPAT9 and BnGPAT9

    单个氨基酸残基突变AtGPAT9氨基酸残基突变组合
    BnGPAT9AtGPAT9
    BnR40S** AtT10A AtF102I/S237N AtY85W/D230N
    BnW85Y AtS11A AtI109F/S237N AtY85W/A235T
    BnC87F** AtS13A AtD230N/A235T AtY85W/S237N**
    BnI102F** AtS28A AtD230N/S237N AtY85W/D230N/A235T
    BnF109I** AtS30A AtA235T/S237N AtY85W/D230N/S237N
    BnT114L*** AtS31A AtD230N/A235T/S237N AtY85W/A235T/S237N
    BnH119N AtS40R AtS237N/G322A AtY85W/D230N/A235T/S237N
    BnN230D*** AtY85W AtY85W/N119H*** AtS40R/Y85W/S237N**
    BnT235A** AtF87C AtY85W/L114T/N119H* AtN119H/D230N
    BnN237S* AtF102I AtY85W/N119H/S237N*** AtN119H/A235T
    BnA322G* AtI109F AtY85W/L114T/N119H/S237N*** AtN119H/S237N***
    AtL114T AtY85W/N119H/D230N** AtN119H/D230N/A235T
    AtN119H* AtY85W/N119H/A235T** AtN119H/D230N/S237N**
    AtD230N AtN119H/A235T/S237N***
    AtA235T AtN119H/D230N/A235T/S237N
    AtS237N
    AtG322A
    AtL335H
    AtP355S
      说明:每种突变以物种的首字母缩写和突变前后的氨基酸残基缩写表示,如AtS40R/S237N代表AtGPAT9 40位由丝氨酸(S)变为精氨酸(R),237位由丝氨酸(S)变为天冬酰胺(N)。*代表基因的异源表达能够恢复酵母双突变体ZAFU1的生长缺陷;*数目代表恢复能力的大小,数目越多,能力越强
    下载: 导出CSV
  • [1] ATHENSTAEDT K, DAUM G. Phosphatidic acid, a key intermediate in lipid metabolism [J]. European Journal of Biochemistry, 1999, 266(1): 1 − 16. doi:  10.1046/j.1432-1327.1999.00822.x
    [2] MURATA N, TASAKA Y. Glycerol-3-phosphate acyltransferase in plants [J]. Biochimica et Biophysica Acta, 1997, 1348(1/2): 10 − 16. doi:  10.1016/S0005-2760(97)00115-X
    [3] GIMENO R E, CAO Jingsong. Thematic review series: glycerolipids. mammalian glycerol-3-phosphate acyltransferases: new genes for an old activity [J]. Journal of Lipid Research, 2008, 49(10): 2079 − 2088. doi:  10.1194/jlr.R800013-JLR200
    [4] WENDEL A A, LEWIN T M, COLEMAN R A. Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis [J]. Biochimica et Biophysica Acta, 2009, 1791(6): 501 − 506. doi:  10.1016/j.bbalip.2008.10.010
    [5] ZHENG Zhifu, ZOU Jitao. The initial step of the glycerolipid pathway: identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae [J]. The Journal of Biological Chemistry, 2001, 276(45): 41710 − 41716. doi:  10.1074/jbc.M104749200
    [6] ZHENG Zhifu, XIA Qun, DAUK M, et al. Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility [J]. The Plant Cell, 2003, 15(8): 1872 − 1887. doi:  10.1105/tpc.012427
    [7] ZOU Jitao, WEI Yangdou, JAKO C, et al. The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene [J]. The Plant Journal, 1999, 19(6): 645 − 653. doi:  10.1046/j.1365-313x.1999.00555.x
    [8] DAHLQVIST A, STAHL U, LENMAN M, et al. Phospholipid: diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6487 − 6492. doi:  10.1073/pnas.120067297
    [9] STÅHL U, CARLSSON A S, LENMAN M, et al. Cloning and functional characterization of a phospholipid: diacylglycerol acyltransferase from Arabidopsis [J]. Plant Physiology, 2004, 135(3): 1324 − 1335. doi:  10.1104/pp.104.044354
    [10] ZHANG Meng, FAN Jilian, TAYLOR D C, et al. DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development [J]. The Plant Cell, 2009, 21(12): 3885 − 3901.
    [11] WYDYSH E A, MEDGHALCHI S M, VADLAMUDI A, et al. Design and synthesis of small molecule glycerol 3-phosphate acyltransferase inhibitors [J]. Journal of Medicinal Chemistry, 2009, 52(10): 3317 − 3327. doi:  10.1021/jm900251a
    [12] WYDYSH E A, VADLAMUDI A, MEDGHALCHI S M, et al. Design, synthesis, and biological evaluation of conformationally constrained glycerol 3-phosphate acyltransferase inhibitors [J]. Bioorganic &Medicinal Chemistry, 2010, 18(17): 6470 − 6479.
    [13] ELLIS J M, PAUL D S, DEPETRILLO M A, et al. Mice deficient in glycerol-3-phosphate acyltransferase-1 have a reduced susceptibility to liver cancer [J]. Toxicologic Pathology, 2012, 40(3): 513 − 521. doi:  10.1177/0192623311432298
    [14] CAO Jingsong, PEREZ S, GOODWIN B, et al. Mice deleted for GPAT3 have reduced GPAT activity in white adipose tissue and altered energy and cholesterol homeostasis in diet-induced obesity [J/OL]. American Journal of Physiology. Endocrinology and Metabolism, 2014, 306(10): E1176-1187[2022-12-12]. doi:  10.1152/ajpendo.00666.2013.
    [15] OUTLAW V K, WYDYSH E A, VADLAMUDI A, et al. Design, synthesis, and evaluation of 4- and 5-substituted o-(octanesulfonamido)benzoic acids as inhibitors of glycerol-3-phosphate acyltransferase [J]. Medchemcomm, 2014, 5(6): 826 − 830. doi:  10.1039/c4md00126e
    [16] PELLON-MAISON M, MONTANARO M A, LACUNZA E, et al. Glycerol-3-phosphate acyltranferase-2 behaves as a cancer testis gene and promotes growth and tumorigenicity of the breast cancer MDA-MB-231 cell line [J/OL]. PLoS One, 2014, 9(6): e100896[2022-12-12]. doi:  10.1371/journal.pone.0100896.
    [17] TURNBULL A P, RAFFERTY J B, SEDELNIKOVA S E, et al. Analysis of the structure, substrate specificity, and mechanism of squash glycerol-3-phosphate (1)-acyltransferase [J]. Structure, 2001, 9(5): 347 − 353. doi:  10.1016/S0969-2126(01)00595-0
    [18] LEWIN T M, WANG Ping, COLEMAN R A. Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction [J]. Biochemistry, 1999, 38(18): 5764 − 5771. doi:  10.1021/bi982805d
    [19] YANG S U, KIM J, KIM H, et al. Functional characterization of Physcomitrellapatens glycerol-3-phosphate acyltransferase 9 and an increase in seed oil content in arabidopsis by its ectopic expression [J]. Plants, 2019, 8(8): 284[2022-12-12]. doi:  10.3390/plants8080284.
    [20] GIDDA S K, SHOCKEY J M, ROTHSTEIN S J, et al. Arabidopsis thaliana GPAT8 and GPAT9 are localized to the ER and possess distinct ER retrieval signals: functional divergence of the dilysine ER retrieval motif in plant cells [J]. Plant Physiology and Biochemistry, 2009, 47(10): 867 − 879. doi:  10.1016/j.plaphy.2009.05.008
    [21] SHOCKEY J, REGMI A, COTTON K, et al. Identification of Arabidopsis GPAT9 (At5g60620) as an essential gene involved in triacylglycerol biosynthesis [J]. Plant Physiology, 2016, 170(1): 163 − 179.
    [22] SINGER S D, CHEN Guanqun, MIETKIEWSKA E, et al. Arabidopsis GPAT9 contributes to synthesis of intracellular glycerolipids but not surface lipids [J]. Journal of Experimental Botany, 2016, 67(15): 4627 − 4638. doi:  10.1093/jxb/erw242
    [23] 陈丹丹. 拟南芥3-磷酸甘油酰基转移酶2/3/9的结构与功能分析[D]. 杭州: 浙江农林大学, 2019.

    CHEN Dandan. Structure and Functional Analysis of Arabidopsis thaliana Glycerol-3-phosphate Acyltransferase 2/3/9 [D]. Hangzhou: Zhejiang A&F University, 2019.
    [24] 段芊芊, 林怡馨, 丁硕, 等. 13个甘蓝型油菜GPATs编码基因的酵母遗传互补功能鉴定[J]. 农业生物技术学报, 2020, 28(7): 1156 − 1164.

    DUAN Qianqian, LIN Yixin, DING Shuo, et al. Functional identification of 13 Brassica napus GPATs encoding genes by genetic complementation in yeast (Saccharomyces cerevisiae) [J]. Journal of Agricultural Biotechnology, 2020, 28(7): 1156 − 1164.
    [25] LEI Jie, MIAO Yingchun, LAN Yu, et al. A novel complementation assay for quick and specific screen of genes encoding glycerol-3-phosphate acyltransferases [J/OL]. Frontiers in Plant Science, 2018, 9: 353[2022-12-12]. doi:  10.3389/fpls.2018.00353.
    [26] WASCHBURGER E, KULCHESKI F R, VETO N M, et al. Genome-wide analysis of the glycerol-3-phosphate acyltransferase (GPAT) gene family reveals the evolution and diversification of plant GPATs [J]. Genetics and Molecular Biology, 2018, 41(suppl 1): 355−370.
    [27] 邢蔓, 周雪晴, 何婷, 等. 甘蓝型油菜BnGPAT9基因表达模式及其苗期非生物胁迫表达分析[J]. 中国油料作物学报, 2017, 39(4): 454 − 461. doi:  10.7505/j.issn.1007-9084.2017.04.004

    XING Man, ZHOU Xueqing, HE Ting, et al. Expression pattern of BnGPAT9 gene in Brassica napus and its expression under abiotic stresses [J]. Chinese Journal of Oil Crop Sciences, 2017, 39(4): 454 − 461. doi:  10.7505/j.issn.1007-9084.2017.04.004
    [28] KROGH A, LARSSON B, von HEIJINE G, et al. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes [J]. Journal of Molecular Biology, 2001, 305(3): 567 − 580. doi:  10.1006/jmbi.2000.4315
    [29] OMASITS U, AHRENS C H, MÜLLER S, et al. Protter: interactive protein feature visualization and integration with experimental proteomic data [J]. Bioinformatics, 2014, 30(6): 884 − 886. doi:  10.1093/bioinformatics/btt607
    [30] YANG Jianxi, YAN Renxiang, ROY A, et al. The I-TASSER Suite: protein structure and function prediction [J]. Nature Methods, 2015, 12(1): 7 − 8. doi:  10.1038/nmeth.3213
    [31] 陈丹丹, 刘宏波. 筛选GPAT基因的酵母遗传互补体系的优化[J]. 江苏农业科学, 2019, 47(13): 64 − 66.

    CHEN Dandan, LIU Hongbo. Optimization of yeast genetic complementary system for screening GPAT genes [J]. Jiangsu Agricultural Sciences, 2019, 47(13): 64 − 66.
    [32] SUN Baocheng, GUO Xuejie, FAN Chengming, et al. Newly identified essential amino acids affecting Chlorella ellipsoidea DGAT1 function revealed by site-directed mutagenesis [J/OL]. International Journal of Molecular Sciences, 2018, 19(11): 3462[2022-12-12].doi:  10.3390/ijms19113462.
    [33] HEATH R J, ROCK C O. A conserved histidine is essential for glycerolipid acyltransferase catalysis [J]. Journal of Bacteriology, 1998, 180(6): 1425 − 1430. doi:  10.1128/JB.180.6.1425-1430.1998
    [34] BRONNIKOV G E, ABOULAICH N, VENER A V, et al. Acute effects of insulin on the activity of mitochondrial GPAT1 in primary adipocytes [J]. Biochemical and Biophysical Research Communications, 2008, 367(1): 201 − 207. doi:  10.1016/j.bbrc.2007.12.127
    [35] BRATSCHI M W, BURROWES D P, KULAGA A, et al. Glycerol-3-phosphate acyltransferases gat1p and gat2p are microsomal phosphoproteins with differential contributions to polarized cell growth [J]. Eukaryotic Cell, 2009, 8(8): 1184 − 1196. doi:  10.1128/EC.00085-09
    [36] MITON C M, BUDA K, TOKURIKI N. Epistasis and intramolecular networks in protein evolution [J]. Current Opinion in Structural Biology, 2021, 69: 160 − 168. doi:  10.1016/j.sbi.2021.04.007
    [37] HEATH R J, ROCK C O. A missense mutation accounts for the defect in the glycerol-3-phosphate acyltransferase expressed in the plsB26 mutant [J]. Journal of Bacteriology, 1999, 181(6): 1944 − 1946. doi:  10.1128/JB.181.6.1944-1946.1999
  • [1] 柯星星, 刘亚坤, 徐雪珍, 林怡馨, 郑志富, 郑月萍.  功能丧失突变透示ATS1对拟南芥种子发育的非必需作用 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20220738
    [2] 上官方京, 赵明水, 张博纳, 汤璐瑶, 钱海蓉, 谢江波, 王忠媛.  亚热带植物水力性状与木质部解剖结构的关系 . 浙江农林大学学报, 2022, 39(2): 252-261. doi: 10.11833/j.issn.2095-0756.20210813
    [3] 张恒, 赵德先, 吕志坤, 刘慧, 王嘉楠.  合肥城市森林结构与秋季鸟类栖息的关系 . 浙江农林大学学报, 2022, 39(3): 571-581. doi: 10.11833/j.issn.2095-0756.20210453
    [4] 黄恺翔, 俞重阳, 钱海蓉, 上官方京, 汤璐瑶, 张博纳, 谢江波.  鸡公山国家级自然保护区散孔材、环孔材树种木质部结构和功能的关系 . 浙江农林大学学报, 2022, 39(2): 244-251. doi: 10.11833/j.issn.2095-0756.20210628
    [5] 陈森, 陆世通, 李彦, 谢江波, 叶琳峰, 王忠媛.  杉科植物枝/根木质部水分运输功能、机械强度与解剖结构的关系 . 浙江农林大学学报, 2022, 39(2): 233-243. doi: 10.11833/j.issn.2095-0756.20210248
    [6] 李丹丹, 林蓉, 李新国, 郑月萍.  AtJAR1基因在拟南芥耐盐性中的功能分析 . 浙江农林大学学报, 2022, 39(5): 998-1009. doi: 10.11833/j.issn.2095-0756.20210742
    [7] 李启程, 余学军.  外源油菜素内酯对毛竹实生苗生理特性的影响 . 浙江农林大学学报, 2021, 38(1): 120-127. doi: 10.11833/j.issn.2095-0756.20200161
    [8] 杨帆, 汤孟平.  毛竹林立地与结构的关系及其对生物量的影响 . 浙江农林大学学报, 2020, 37(5): 823-832. doi: 10.11833/j.issn.2095-0756.20190572
    [9] 唐思嘉, 汤孟平, 沈钱勇, 杜秀芳, 庞春梅.  毛竹林空间结构与更替动态的关系 . 浙江农林大学学报, 2018, 35(1): 1-9. doi: 10.11833/j.issn.2095-0756.2018.01.001
    [10] 陆军, 孙丽娟, 王晓荣, 吉泓睿, 倪晓详, 程龙军.  巨桉糖基转移酶基因EgrGATL1序列特征及表达分析 . 浙江农林大学学报, 2018, 35(4): 604-611. doi: 10.11833/j.issn.2095-0756.2018.04.004
    [11] 王金平, 张金池, 岳健敏, 尤炎煌, 张亮.  油菜素内酯对氯化钠胁迫下樟树幼苗光合色素和叶绿素荧光参数的影响 . 浙江农林大学学报, 2017, 34(1): 20-27. doi: 10.11833/j.issn.2095-0756.2017.01.004
    [12] 刘艳艳, 朱芳明, 刘小珍, 张汉尧.  兔眼蓝莓组培红色突变株CHS基因的克隆与分析 . 浙江农林大学学报, 2017, 34(5): 864-870. doi: 10.11833/j.issn.2095-0756.2017.05.013
    [13] 李国栋, 田曼青, 沈仁芳.  拟南芥独脚金内酯突变体叶绿素荧光特性分析 . 浙江农林大学学报, 2017, 34(1): 36-41. doi: 10.11833/j.issn.2095-0756.2017.01.006
    [14] 施泉, 陈晓沛, 林新春, 徐永汉, 徐英武.  雷竹和拟南芥SOC1多聚体差异性分析 . 浙江农林大学学报, 2016, 33(2): 183-190. doi: 10.11833/j.issn.2095-0756.2016.02.001
    [15] 慎家辉, 秦安, 李甲明, 刘伦, 吴俊.  甲基磺酸乙酯诱变杜梨种子突变的鉴定与分析 . 浙江农林大学学报, 2014, 31(6): 892-897. doi: 10.11833/j.issn.2095-0756.2014.06.010
    [16] 周佳平, 林新春, 徐英武.  拟南芥SEPALLATA3蛋白质原核表达与纯化 . 浙江农林大学学报, 2014, 31(1): 14-18. doi: 10.11833/j.issn.2095-0756.2014.01.003
    [17] 张晓燕, 沈月琴, 毛玉香, 傅志真.  浙江省竹子现代科技园区结构与社会经济功能分析 . 浙江农林大学学报, 2008, 25(5): 650-655.
    [18] 郑炳松, 黄有军, 王正加, 褚怀亮, 黄坚钦.  植物磷酸运转器的结构与功能研究进展 . 浙江农林大学学报, 2007, 24(2): 225-230.
    [19] 岳春雷, 高智慧, 陈顺伟.  湿地松等3 种树种的光合特性及其与环境因子的关系 . 浙江农林大学学报, 2002, 19(3): 247-250.
    [20] 谢寅峰, 沈惠娟.  水分胁迫下3 种针叶树幼苗抗旱性与硝酸还原酶和超氧化物歧化酶活性的关系 . 浙江农林大学学报, 2000, 17(1): 24-27.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220764

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023//1

计量
  • 文章访问数:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-15
  • 修回日期:  2023-03-02

拟南芥和油菜3-磷酸甘油酰基转移酶的关键活性位点鉴定

doi: 10.11833/j.issn.2095-0756.20220764
    基金项目:  国家自然科学基金青年基金资助项目(32100209);浙江省自然科学基金青年基金资助项目(Q21C020003);国家自然科学基金面上资助项目(31871660,32071929)
    作者简介:

    林怡馨(ORCID: 0009-0007-3438-0354),从事植物生物技术研究。E-mail: 642402291@qq.com

    通信作者: 郑志富(ORCID: 0000-0002-8247-5629),教授,从事植物生化和代谢研究。E-mail: zzheng@zafu.edu.cn
  • 中图分类号: Q946.5

摘要:   目的  3-磷酸甘油酰基转移酶(GPAT)催化三酰甘油(TAG)生物合成途径中的第1步酰化反应,TAG合成能力是油料作物的关键性状,但亦与人类肥胖症密切相关,了解GPAT结构与功能的内在关系对于这一性状的遗传或化学遗传调控至关重要。本研究旨在鉴定调控植物GPAT活性的关键氨基酸位点。  方法  运用定点突变技术构建了58个GPAT9突变基因,结合GPAT特异的酵母遗传互补法,剖析单一和多个氨基酸位点改变对GPAT9酶活性的影响。  结果  通过对AtGPAT9和BnGPAT9的19个氨基酸残基进行分析发现:AtGPAT9的N端6个磷酸化位点的单独突变(T10A、S11A、S13A、S28A、S30A和S31A)不能增强AtGPAT9在酵母异源表达时的活性。相反,其他6个位于酰基转移酶保守结构域外的氨基酸残基(85、114、119、230、237、322位)的改变能够显著影响GPAT9酶活性。发现这些氨基酸残基之间存在交互作用,例如,3个位点同时突变(Y85W/N119H/S237N)能使AtGPAT9活性大幅上升,加速酵母的生长并促进TAG的合成,表达这一突变酶的酵母中的TAG含量比表达野生型BnGPAT9的增加了45.7%。更值得注意的是,在114和237位同时存在磷酸化氨基酸残基对酰基转移酶活性有害,暗示植物GPAT9活性可能受磷酸化和非磷酸化机制调节。  结论  本研究获得了6个未经报道的关键GPAT酶活性调控位点,其中W85和H119是GPAT9正常功能所必需的,而L114、D230、N237和A322有利于维持GAPT9活性。图7表2参37

English Abstract

林怡馨, 陈丹丹, 刘宏波, 柯星星, 郑月萍, 郑志富. 拟南芥和油菜3-磷酸甘油酰基转移酶的关键活性位点鉴定[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220764
引用本文: 林怡馨, 陈丹丹, 刘宏波, 柯星星, 郑月萍, 郑志富. 拟南芥和油菜3-磷酸甘油酰基转移酶的关键活性位点鉴定[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220764
LIN Yixin, CHEN Dandan, LIU Hongbo, KE Xingxing, ZHENG Yueping, ZHENG Zhifu. Identification of key amino acid residues controlling the activities of glycerol-3-phosphate acyltransferases in Arabidopsis thaliana and Brassica napus[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220764
Citation: LIN Yixin, CHEN Dandan, LIU Hongbo, KE Xingxing, ZHENG Yueping, ZHENG Zhifu. Identification of key amino acid residues controlling the activities of glycerol-3-phosphate acyltransferases in Arabidopsis thaliana and Brassica napus[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220764

返回顶部

目录

    /

    返回文章
    返回