留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙二醇/纤维素纳米晶体复合液晶薄膜微观结构及湿度响应行为

徐蕴哲 陈一钒 林心怡 方鑫烨 吴强

凡婷婷, 张佳琦, 刘会君, 等. 核桃铵态氮转运蛋白基因JrAMT2的功能分析[J]. 浙江农林大学学报, 2024, 41(1): 79-91. DOI: 10.11833/j.issn.2095-0756.20230296
引用本文: 徐蕴哲, 陈一钒, 林心怡, 等. 聚乙二醇/纤维素纳米晶体复合液晶薄膜微观结构及湿度响应行为[J]. 浙江农林大学学报, 2024, 41(1): 169-175. DOI: 10.11833/j.issn.2095-0756.20230236
FAN Tingting, ZHANG Jiaqi, LIU Huijun, et al. Functional analysis of ammonium nitrogen transporter gene JrAMT2 in Juglans regia[J]. Journal of Zhejiang A&F University, 2024, 41(1): 79-91. DOI: 10.11833/j.issn.2095-0756.20230296
Citation: XU Yunzhe, CHEN Yifan, LIN Xinyi, et al. Microstructure and humidity response of polyethylene glycol/cellulose nanocrystal composite liquid crystal films[J]. Journal of Zhejiang A&F University, 2024, 41(1): 169-175. DOI: 10.11833/j.issn.2095-0756.20230236

聚乙二醇/纤维素纳米晶体复合液晶薄膜微观结构及湿度响应行为

DOI: 10.11833/j.issn.2095-0756.20230236
基金项目: 国家自然科学基金资助项目(21404092)
详细信息
    作者简介: 徐蕴哲(ORCID: 0009-0003-4884-6144),从事生物质复合材料研究。E-mail: 1696735702@qq.com
    通信作者: 吴强(ORCID: 0000-0003-4005-409X),教授,博士生导师,从事生物质复合材料研究。E-mail: wuqiang@zafu.edu.cn
  • 中图分类号: TQ35

Microstructure and humidity response of polyethylene glycol/cellulose nanocrystal composite liquid crystal films

  • 摘要:   目的  探索聚乙二醇(PEG)对纤维素纳米晶体(CNC)液晶薄膜湿度响应的影响,阐明其响应机制,旨在为开发低成本、可重复使用和高灵敏度的PEG/CNC复合薄膜湿度传感器提供理论基础。  方法  将CNC与PEG共组装,制备了一种具有湿度响应性能的虹彩色手性向列相光子液晶薄膜,系统考察了PEG质量分数对液晶薄膜的微观结构、显色、力学性能及湿度响应的影响,在此基础上,研究了PEG/CNC复合液晶薄膜在不同湿度条件下的响应循环性能。  结果  对于纯CNC体系,CNC质量分数由3%增加到7%,CNC液晶薄膜的螺距减小,最大反射光波长由596.5 nm蓝移至511.0 nm;对于添加PEG的CNC体系,随着PEG质量分数的增加,PEG/CNC复合液晶薄膜的螺距由394.0 nm减小到244.0 nm,最大反射光波长由613.5 nm蓝移至350.5 nm,韧性先提升后下降,PEG质量分数为5%时为最佳,断裂能为31.9 J·m−2,较纯CNC薄膜提升了138%;液晶薄膜经过5次吸湿-解湿,表现出良好的湿度响应重复性,平衡波长的变化率小于0.6%。  结论  制备了一种对湿度具有敏感响应的虹彩色光子PEG/CNC复合液晶薄膜,PEG可以调控复合薄膜螺距,起到调节结构色的作用。图6参25
  • 核桃Juglans regia 为胡桃科Juglandaceae胡桃属Juglans植物[1],其种仁含油量高,有“木本油料之王”的称号[2]。同时,核桃木材坚实,是良好的硬木材料。作为重要的经济林树种,核桃大多种植于土壤贫瘠的山坡沟坎,不与粮争地[3]。然而,核桃树体高大,与其他果树相比对矿质营养元素需求量较高,大量元素与核桃产量和品质形成紧密相关[4],因此,提高核桃树体对矿质元素的吸收能力对于提高核桃产量和品质至关重要[5]。研究表明:在核桃树各器官中种仁的氮素质量分数最高,核桃树吸收累积的矿质营养元素中氮素被商品核桃(种仁、硬壳)携走的比例也最高,叶片次之[6]。可见,氮素可能是提高核桃产量和品质的关键营养元素。然而,过量施用氮肥会导致严重的环境问题,因此,提高氮素利用效率是提高核桃产量与品质的重中之重[7]

    土壤中氮素主要分为无机氮和有机氮两大类,植物根系能够吸收利用的主要是无机氮,主要以硝态氮和铵态氮形式存在[89]。植物根系对无机氮转运调节途径可分为2种,即高亲和力(HATs)和低亲和力(LATs)的氮转运系统[10],HATs 在外部铵态氮( ${\rm{NH}}_4^ +$)、硝态氮(${\rm{NO}}^ -_3 $)浓度低于 0.5 mmol·L−1时介导吸收大部分的无机氮,而 LATs 则是在 ${\rm{NH}}_4^ + $、${\rm{NO}}_3^ - $浓度高于 0.5或 1.0 mmol·L−1时介导吸收无机氮[10]。植物对铵态氮和硝态氮的吸收主要由铵转运蛋白和硝酸转运蛋白介导。土壤中同时含有植物可吸收利用的硝态氮和铵态氮时,由于植物吸收硝态氮需要先将其还原成铵态氮后才能进行同化利用,消耗的能量更多,所以植物对铵态氮表现出明显的偏好性,而且当植物受盐胁迫及活性氧的伤害时,铵态氮具有缓解作用,因此,介导植物对铵态氮吸收的铵转运蛋白在植物氮同化中起着重要作用[11]。铵转运蛋白基因主要有两大类族,分为AMT1和AMT2。在已知的铵转运蛋白中大部分 AMT1 家族的转运蛋白属于高亲和转运体[12],如拟南芥Arabidopsis thaliana中有6个编码铵转运蛋白被鉴定,包括5个AMT1家族基因,1个AMT2家族基因。AMT1家族基因中,AtAMT1.1和AtAMT1.3对拟南芥根系铵态氮吸收的贡献率最高,为30%,AtAMT1.2、AtAMT1.5对拟南芥根系高亲和铵态氮吸收的贡献率略低于AtAMT1.1和AtAMT1.3[13]AtAMT1.4在花粉中特异性表达[14],在水稻Oryza sativa铵转运蛋白基因家族中AMT1家族有基因3个,其中OsAMT1.1和OsAMT1.2为高亲和力转运体[15];而 AMT2 家族以低亲和为主,在拟南芥AMT2家族基因中AtAMT2.1 在低亲和范围内适度促进拟南芥根系对铵态氮吸收,主要在铵从根部到地上部运输中发挥作用[16]。AMT2 型蛋白通常在植物的不同组织中包括根、芽和叶中都有表达,如AtAMT2.1基因在拟南芥各器官中均有表达,主要表达在拟南芥的维管束及上皮层[17],在拟南芥中AtAMT2.1与AtAMT1s之间还存在协同作用。此外,毛果杨Populus trichocarpa PtAMT2.1主要在叶片中,PtAMT2.2在叶柄中高表达。除此之外,玉米Zea mays[18]、番茄Lycopersicon esculentum [19]、欧洲油菜Brassica napus [20]等高等作物均鉴别出了AMT基因,但到目前为止,研究大多集中于高亲和的铵转运蛋白AMT1基因家族,对低亲和的铵转运蛋白AMT2基因家族的研究较少。因此,阐明AMT2的生物学功能和调控机制,对于提高核桃自身的氮效率和提高肥料利用效率都具有重要意义。

    本研究以核桃JrAMT2过表达株系为供试材料,采用实时荧光定量聚合酶链式反应(qRT-PCR)及生理检测的方法鉴定JrAMT2基因在核桃植株体内的表达模式,进一步对核桃JrAMT2基因进行生物学功能分析,为核桃优良品种选育提供理论依据。

    实验材料来自浙江农林大学省部共建亚热带森林培育国家重点实验室保存的核桃野生型(WT)以及课题组2019年获得的核桃JrAMT2过表达阳性植株 [21],其中JrAMT2基因构建于PCMBIA1300植物表达载体,载体抗性为卡那霉素(kanmycin,Kan),利用根癌农杆菌Agrobacterium tumefaciens GV3103菌株介导将构建好的35S::JrAMT2::GFP过表达载体转化到核桃野生型体细胞胚中,植物筛选标记为潮霉素(hygromycin,Hyg)。本研究所用核桃组培苗为野生型体胚和JrAMT2过表达阳性体胚经脱水萌发获得,温室苗则由上述组培苗经生根、炼苗、驯化获得。

    1.2.1   生物信息分析运用

    SOPMA(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html)网站在线分析JrAMT2蛋白质二级结构,运用TMHMM(http://www.cbs.dtu.dk/services/TMHMM/)在线软件对JrAMT2 蛋白进行跨膜结构域的预测,通过 GSDS(http://gsds.gao-lab.org/)软件在线分析JrAMT2基因结构。

    1.2.2   植株的培养

    同一JrAMT2过表达阳性体胚萌出的植株为1个株系,选取3个核桃JrAMT2阳性株系,命名为JrAMT2-1、JrAMT2-2、JrAMT2-3,每个株系继代培养至50株以上,培养条件:温度为 25 ℃,湿度为 75%~80%,光照强度为2~15 klx,光照周期为16 h光照8 h黑暗,培养基为Driver&Kunivuki&McGranahan (DKW)培养基。

    采用2步生根法获得核桃驯化植株,选取阳性体胚萌发后经4次继代培养的核桃组培苗作为实验材料。第1步进行根诱导,5~8 cm长的光生芽,转移到补充有10 mg·L−1吲哚丁酸钾(K-IBA)的DKW固体培养基,在黑暗中培养7 d,诱导根原基的发生;第2步,不定根诱导结束后将其转移到粗蛭石∶DKW培养基比例(体积比)为3∶2的固体培养基中,温度为25 ℃,湿度为75%~80%,光照强度为2~15 klx,光照周期为16 h光照8 h黑暗,培养时间为21~28 d,形成不定根,获得核桃不同株系生根植株[22]

    核桃苗不定根形成后取出用清水冲洗,多菌灵浸泡,移栽到泥炭∶蛭石∶珍珠岩比例(体积比)为2∶1∶1的混合土中,将移栽驯化成活后获得的核桃再生植株在温度为 25 ℃,湿度为 75%~80%,光照强度为2~15 klx,光照周期为16 h光照8 h黑暗的条件下培养[23],获得核桃不同株系温室植株。

    1.2.3   核桃JrAMT2基因阳性鉴定

    选用阳性体胚萌发后经4次继代培养的核桃组培苗进行绿色荧光蛋白(GFP) 检测、PCR及RT-qPCR验证,引物见表1。从再生植株顶芽开始向下截取 1.5 cm,培养14 d 后观察植株表型,每个株系均5个生物学重复。选取植株顶芽、叶片、茎段混样提取DNA及RNA。 PCR 反应程序为:94 ℃预变性 2 min;98 ℃变性10 s,55 ℃退火温度 30 s,68 ℃延伸 2 min,共 32 个循环;68 ℃延伸 7 min,PCR 反应产物进行质量分数为1.2%琼脂糖凝胶电泳。使用 The iQ5 Real-Time PCR Detection System 仪器进行RT-qPCR,测定转基因植株中JrAMT2的相对表达量。反应程序为:95 ℃ 10 min;95 ℃ 10 s,60 ℃ 31 s,40 个循环;95 ℃ 15 s;60 ℃ 1 min;95 ℃ 30 s;60 ℃ 15 s。通过 2−ΔΔCt方法计算定量结果[24]

    表 1  引物
    Table 1  Primers
    引物序列(5′→3′)用途
    Actin-F GCCGAACGGGAAATTGTC 内参
    Actin-R AGAGATGGCTGGAAGAGG 内参
    QJrAMT2-F AGCAAATGGGGTTCCAGGTT 定量
    QJrAMT2-R TGTCTCCCGCAGATAGAAGGTA 定量
    GFP-F ATGGTGAGCAAGGGCGAGGA 鉴定
    GFP-R TTACTTGTACAGCTCGTCCA 鉴定
    JrAMT2-F CATGAATACCACACCGGCCTA 鉴定
    下载: 导出CSV 
    | 显示表格

    取核桃野生型及核桃JrAMT2过表达株系组培苗的根、茎、小叶,根纵切、茎横切临时切片分别放置于体视荧光显微镜(Carl Zeiss Stereo D13covery V12,Axio Cam MRc system)在明场和蓝光(488 nm)激发条件下利用 ZEN lite 成像软件连续拍照[25-26]

    1.2.4   生长参数、铵态氮和硝态氮测定

    分别选取生长状态一致的核桃野生型与3个核桃JrAMT2过表达株系组培苗,从顶尖向下剪取1.5 cm茎段,含2~4片复叶,培养14 d,每个株系均5个生物学重复,测量株高及节间数。选取长势相同的核桃野生型及JrAMT2过表达植株采用2步生根法驯化,移栽后用直尺测量统计不同株系生长0、20、40 d的株高、节间长、叶片长度及叶片宽度。

    分别选取生长状态一致的核桃野生型与3个核桃JrAMT2过表达株系组培苗,培养14 d,采用2步生根法获得核桃生根植株,植株分为地上部分及地下部分2个部分,清洗植株,分别测定地上部分及地下部分鲜质量,于105 ℃下杀青,80 ℃烘干至恒量,称取干质量。使用苏州科铭生物技术有限公司的植物铵态氮(ZATD-1-G)和植物硝态氮(ZXTD-1-G)试剂盒测定地上部分及地下部分铵态氮和硝态氮质量分数,每个株系均5个生物学重复。

    1.2.5   植株叶绿体观察、叶绿素质量分数及叶绿素荧光测定

    分别选取生长状态一致的核桃野生型与3个核桃JrAMT2过表达株系组培苗,取顶尖向下第2节间处复叶。将该叶片置于0.35 mol·L−1氯化钠中研磨破碎至絮状,取悬液于高倍光学显微镜下观察,找到视野中单个完整的叶肉细胞,观察细胞中的叶绿体, 使用image J软件计算叶绿体表面积与单层细胞表面积比率。每个株系均5个生物学重复。

    采用丙酮浸取法测定叶绿素质量分数。分别取0.1 g核桃野生型与3个核桃JrAMT2过表达株系组培苗长势一致的叶片,剪碎,置于15 mL离心管中,加入10 mL体积分数 80%丙酮溶液,于室温黑暗处浸提,直至管内材料褪色变白,以80%丙酮溶液为对照,测定663和646 nm处吸光值,每个株系均5个生物学重复。wt=[(wa+8wbVt×(mFW×1 000)−1],叶绿素 a 质量分数(wa) =20.3×D(646),叶绿素 b 质量分数(Cb)=8.04×D(663)。其中:wt为叶绿素质量分数(mg·g−1),Vt为提取液总体积(mL),mFW为叶片鲜质量(g),D(646)和D(663)分别为646和663 nm处的吸光度。

    叶绿素荧光测定使用M-PEA(multi-function plant efficiency analyser)多功能植物效率分析仪(英国Hansatech公司)测定。选取生长状态一致的核桃野生型与3个核桃JrAMT2过表达株系温室苗由上向下第3片叶片暗处理30 min,在饱和脉冲光(5 000 μmol·m−2·s−1) 下进行快速叶绿素荧光诱导动力学曲线(OJIP曲线) 的测定和绘制。参照SCHANSKE等[27]的方法分析叶绿素荧光诱导动力学参数(JIP-test)。

    1.2.6   数据分析

    利用SPSS 26软件进行单因素方差分析(one-way ANOVA)和多重比较(邓肯法),显著性水平为0.05。使用GraphPad Prism 7.0软件绘图。

    核桃 JrAMT2基因的全长为 1 464 bp,起始密码子为 ATG,终止密码子为 TGA。经过美国国家生物技术信息中心(NCBI)在线序列比对显示:该基因的序列编码的氨基酸序列属于 Ammonium Transporter Family,编码487个氨基酸(图1),蛋白分子量为52.458 kD,预测分子式为C2433H3715N601O646S23,含有7 418个原子,理论等电点为7.11,不稳定指数为35.61,脂溶指数为101.56,亲水性平均值为0.472。该段蛋白质中包含20种常见氨基酸:亮氨酸质量分数最高,达到11.7%,其次分别为甘氨酸11.1%,丙氨酸10.9%,缬氨酸8.6%,半胱氨酸质量分数最低,仅为1.0%。JrAMT2蛋白中分别含有29个酸性氨基酸残基(Asp+Glu)和29个碱性氨基酸残基(Arg+Lys) (表2)。

    图 1  JrAMT2基因氨基酸序列
    Figure 1  Amino acid sequence of JrAMT2 gene
    表 2  JrAMT2基因氨基酸组成
    Table 2  Composition of JrAMT2 amino acids
    氨基酸数量/个占比/%氨基酸数量/个占比/%氨基酸数量/个占比/%
    丙氨酸 53 10.90 组氨酸 9 1.80 苏氨酸 27 5.50
    精氨酸 11 2.30 异亮氨酸 25 5.10 色氨酸 18 3.70
    天冬酰胺 16 3.30 亮氨酸 57 11.70 酪氨酸 17 3.50
    天冬氨酸 15 3.10 赖氨酸 18 3.70 缬氨酸 42 8.60
    半胱氨酸 5 1.00 甲硫氨酸 18 3.70 吡咯赖氨酸 0 0.00
    谷氨酰胺 11 2.30 苯丙氨酸 24 4.90 晒半胱氨酸 0 0.00
    谷氨酸 14 2.90 脯氨酸 24 4.90
    甘氨酸 54 11.10 丝氨酸 29 6.00
    下载: 导出CSV 
    | 显示表格

    对核桃JrAMT2蛋白跨膜区的预测结果表明:该蛋白N端在膜外,C端存在膜内,共含有11个跨膜螺旋,跨膜螺旋区段分别位于24~46、59~81、129~151、158~180、195~214、227~244、254~276、288~310、314~333、346~368和398~420,推测JrAMT2属于跨膜蛋白,并在N端存在信号肽(图2A)。

    图 2  核桃JrAMT2基因生物信息学分析
    Figure 2  Bioinformatics analysis of JrAMT2 gene in J. regia

    对JrAMT2 蛋白二级结构的预测结果显示:JrAMT2的氨基酸组成中有4种构象,其中 α- 螺旋有 201 个氨基酸,占比 43.12%;延伸链有 93个氨基酸,占比19.10%;β- 转角有 30个氨基酸,占比 6.16%;无规则卷曲有154个氨基酸,占比 31.62%。JrAMT2 铵转运蛋白主要由 α- 螺旋和无规则卷曲组成(图2B)。

    JrAMT2基因结构的分析显示:JrAMT2基因由4个外显子,3个内含子组成。与拟南芥AtAMT2基因相比,拟南芥基因结构多了1个外显子和1个内含子,与山核桃Carya cathayensis CcAMT2基因[28]、栓皮栎Quercus suber QsAMT2基因[29]相比,外显子和内含子数量相同,同源性较高(图2C)。

    在成功构建35S::JrAMT2::GFP的过表达载体并通过农杆菌介导转化核桃体胚后,对同一无性系JrAMT2体胚经脱水萌发获得的再生植株进行阳性鉴定。利用PCR技术,以核桃JrAMT2过表达植株3个株系(JrAMT2-1、JrAMT2-2和JrAMT2-3) DNA为模板,进行外源GFP基因(729 bp)的PCR验证,检测到大小约为 750 bp的电泳条带,与GFP基因大小符合(图3A);进行目的基因JrAMT2加外源GFP基因全长(2193 bp)的PCR验证,检测到大小为2000 bp的电泳条带,与目的基因大小符合(图3B);以核桃JrAMT2过表达植株3个株系的cDNA为模板,利用实时定量PCR技术对JrAMT2基因表达量进行检测,结果显示:核桃JrAMT2过表达植株3个株系JrAMT2基因相对表达量分别为野生型的10.58、12.80和14.94倍,显著上调(图3C),表明核桃JrAMT2过表达植株中JrAMT2基因稳定表达。

    图 3  PCR 和RT-qPCR 对核桃组培苗的JrAMT2基因的检测
    Figure 3  Detection of JrAMT2 gene in J. regia tissue culture seedlings by PCR and qRT-PCR

    对获得的过表达株系进行GFP荧光阳性鉴定,分别将核桃过表达及野生型幼苗(图4A)的小叶、茎、根置于荧光体视显微镜下在波长为488 nm蓝光激发下拍摄。结果显示:过表达植株的小叶、茎、根表面呈现均匀的绿色荧光,其中腋芽处荧光更明亮(图4B1~6),野生型核桃幼苗的小叶、茎、根在荧光下拍摄无绿色荧光激发(图4B7~12),说明JrAMT2蛋白在腋芽处积累。为进一步研究JrAMT2基因在核桃幼苗中的表达,对过表达株系及野生型组培苗的茎段进行横切,根进行纵切后,进行GFP荧光检测,结果显示:核桃JrAMT2过表达植株茎段横切中呈现均匀的绿色荧光,其中在维管组织中荧光更明亮,野生型植株茎段横切面无绿色荧面光(图4B1~12);核桃JrAMT2过表达植株根段纵切面中呈现均匀的绿色荧光,且在维管组织中荧光更明亮,野生型植株根段纵切面无绿色荧光(图4C1~8)。表明JrAMT2基因在核桃幼苗的根和茎中均可稳定表达,其中JrAMT2蛋白在根和茎的维管束组织中积累。

    图 4  铵态氮转蛋白基因JrAMT2在核桃苗中稳定表达
    Figure 4  Stable expression of ammonium nitrogen transfer protein gene JrAMT2 in J. regia
    2.3.1   核桃JrAMT2过表达植株生长表型分析

    为了进一步研究核桃JrAMT2基因的生物学功能,将3个JrAMT2过表达植株与野生型核桃植株培养14 d。结果表明:与野生型相比,核桃JrAMT2过表达植株均生长旺盛,株高显著增加,节间显著增长(P<0.05,图5A)。3个JrAMT2过表达株系株高分别为3.87、4.23和4.12 cm,节间长分别为0.33、0.35和0.34 cm,野生型植株株高为3.30 cm,节间长为0.28 cm,与野生型相比,3个JrAMT2过表达株系株高分别增加了17.0%、28.0%和29.0% (图5B),节间长分别增加了19.0%、25.0%和24.0% (图5C)。综上所述,JrAMT2过表达对核桃幼苗的生长有显著提高作用。

    图 5  核桃JrAMT2过表达离体培养植株表型分析
    Figure 5  Phenotypic analysis of J. regia JrAMT2 overexpression plant in vitro culture

    对核桃JrAMT2过表达植株进一步驯化培养,成功获得核桃JrAMT2过表达温室苗。对其生长表型进行分析(图6A),定植后培养40 d,核桃JrAMT2过表达温室苗的株高、节间长、叶片长度、叶片宽度增加显著高于野生型(P<0.05)。培养至第20天时,与野生型相比,核桃JrAMT2过表达温室苗3个株系株高分别增加21.9%、26.0%和24.6% (图6B),节间长分别增加41.2%、27.7%和26.3% (图6C),叶片长度分别增加18.7%、16%和30.7% (图6D),叶片宽度分别增加41.3%、48.2%和55.1% (图6E);培养至第40天时,与野生型相比,JrAMT2过表达温室苗3个株系株高分别增加53.6%、68.2%和62.1%,节间长分别增加37.2%、50.3%和44.8%,叶片长度分别增加了27.8%、34.1%和49.3%,叶片宽度分别增加24.3%、19.5%和29.2%。综上所述,核桃JrAMT2过表达温室苗与野生型相比,株高、节间长、叶片大小均显著增加,进一步证明JrAMT2基因过表达加快了核桃的生长速度。

    图 6  核桃JrAMT2过表达阳性温室苗性状分析
    Figure 6  Character analysis of J. regia JrAMT2 overexpression positive greenhouse seedlings
    2.3.2   核桃JrAMT2过表达植株对氮素吸收分析

    为探究JrAMT2基因在核桃中是否存在差异表达,将核桃野生型及核桃JrAMT2过表达植株进行2步生根,获得核桃JrAMT2过表达生根植株,将其分为地上部分与地下部分。与野生型相比,核桃JrAMT2过表达生根植株地下部分不定根生长旺盛(图7A)。对核桃JrAMT2过表达植株地上部分及地下部分差异分析,分别提取3个核桃JrAMT2过表达株系生根植株地上部分及地下部分RNA,利用实时定量PCR技术,分析地上部分及地下部分JrAMT2基因表达的差异。结果表明:3个JrAMT2过表达株系地上部分JrAMT2基因表达量分别是野生型的11.94、12.70和15.06倍,地下部分JrAMT2基因表达量分别是野生型的19.07、23.34和24.00倍(图7B)。对核桃野生型及3个JrAMT2过表达株系地上部分及地下部分进行干质量和鲜质量测定。结果表明:3个JrAMT2过表达株系地上部分鲜质量和干质量显著高于野生型(P<0.05),与野生型相比,鲜质量分别增加23.45%、33.67%和56.26%,干质量分别增加23.45%、43.89%和56.26%;3个JrAMT2过表达株系地下部分干质量和鲜质量显著高于野生型(P<0.05),与野生型相比,鲜质量分别增加222.65%、199.24%和344.38%,干质量分别增加222.65%、199.24%和354.33%(图7C)。

    图 7  核桃JrAMT2过表达植株氮素吸收分析
    Figure 7  Character analysis of the regenerated plants with expression of JrAMT2 in J. regia

    基于核桃JrAMT2过表达植株表型变化,本研究进一步测定核桃JrAMT2过表达植株对硝态氮及铵态氮吸收。结果表明:与野生型相比,核桃3个JrAMT2过表达株系地上部分及地下部分铵态氮质量分数显著增加(P<0.05),地上部分分别增加59.1%、32.3%和55.1%,地下部分别增加68.1%、61.9%和114.1% (图7D);核桃3个JrAMT2过表达株系地上部分硝态氮质量分数显著降低(P<0.05),地下部分硝态氮质量分数显著增加(P<0.05),地上部分分别降低10.1%、7.1%和13.6%,地下部分别增加63.5%、75.7%和70.3% (图7E)。综上所述,JrAMT2基因主要作用于核桃地下部分,且JrAMT2基因过表达促进植株地下部分对铵态氮和硝态氮的吸收,并介导了铵态氮从地下部到地上部的运输。

    2.3.3   核桃JrAMT2过表达植株叶绿素质量分数及叶绿素荧光特性分析

    对核桃JrAMT2过表达植株叶色与叶片细胞叶绿体进行观察。核桃JrAMT2过表达植株叶色与野生型相比颜色较深(图8A),在显微镜下观察3个核桃JrAMT2过表达植株株系及野生型叶绿体特征发现,3个核桃JrAMT2过表达株系扩张的栅栏叶肉细胞中的叶绿体更致密(图8B)。进一步分析发现:对3个阳性株系进行总叶绿素质量分数测定,3个核桃JrAMT2过表达株系叶绿素质量分数显著高于野生型(P<0.05),野生型总叶绿素质量分数为3.53 mg·g−1,核桃JrAMT2过表达阳性植株3个株系总叶绿素质量分数分别为4.64、4.69和6.10 mg·g−1,与野生型相比分别增加了32.6%、34.0%和74.3% (图8C);JrAMT2过表达株系叶绿体表面积在单层细胞表面积的占比显著高于野生型(P<0.05),野生型叶绿体表面积与单层细胞表面积的比率为0.56,3个核桃JrAMT2过表达株系叶绿体表面积与单层细胞表面积的比值分别为0.67、0.68和0.69,与野生型相比分别增加了19.41%、21.18%和22.94% (图8D)。综上所述,JrAMT2基因过表达提高了叶绿体表面积与单层细胞表面积的比率及核桃叶肉细胞内叶绿素的积累。

    图 8  核桃JrAMT2过表达植株叶绿体及叶绿素质量分数分析
    Figure 8  Analysis of chloroplast and chlorophyll content in J. regia with JrAMT2 overexpression

    对3个核桃JrAMT2过表达株系进行快速叶绿素荧光诱导动力学曲线测定。结果显示:与野生型相比,3个核桃JrAMT2过表达株系的O (Fo点)相、K相降低,J点、I点、P (Fm)及J~P点振幅均提高,OJIP曲线较陡,表明JrAMT2基因一定程度上提高了叶片的活性(图9A)。与野生型相比,3个核桃JrAMT2过表达株系暗适应后的最大荧光强度(Fm)、最大量子产额(Fv/Fm)均提高,Fm分别提高了47.1%、45.9%、50.2%,Fv/Fm分别提高了15.6%、13.4%、14.7%,表明JrAMT2基因一定程度上提高了光系统Ⅱ(PSⅡ)的光化学效率(图9B)。计算归一化处理的OJIP曲线(Vt)[Vt =(FtFo /(FmFo),Ft为任意时刻t的荧光值],并计算相对荧光差异ΔVtVt = Vt处理Vt对照,用ΔK、ΔJ值分别显示在300 μs和20 ms处的ΔVt值,表示放氧复活体的活性(OEC)]。结果显示:与野生型相比,3个核桃JrAMT2过表达株系ΔK、ΔJ值下降且<0 (图9C),表明JrAMT2基因一定程度上提升了核桃叶片PSⅡ供体侧及受体侧电子传递效率及放氧复活体的活性。

    图 9  铵态氮转运蛋白JrAMT2基因表达对核桃叶绿素荧光的影响
    Figure 9  Effect of ammonium nitrogen transporter JrAMT2 gene on chlorophyll fluorescence of J. regia

    用JIP-test参数对OJIP曲线进行定量分析,结果显示:核桃3个JrAMT2过表达株系在t=0时的最大光化学效率(φPo)、反应中心捕获的光能用于${\rm{Q}}_{\rm{A}}^- $下游电子传递的量子产量(ΨEo)、吸收的能量用于电子传递的量子产量(φEo)上升,分别上升了14.62%、44.59%、65.80%;在J点的相对可变荧光强度(VJ)、最小荧光强度与最大荧光强度比值(Fo/Fm)、反应中心关闭净速率(dV/dto)下降,分别下降了31.03%、35.29%、49.34% (图9D),表明JrAMT2基因一定程度上提高了PS反应中心的量子比率及产额;对单位PS反应中心比活性参数分析,结果显示:与野生型相比,3个核桃JrAMT2过表达株系在t=0 时的单位反应中心捕获的用于电子传递的能量(ETo/RC)、在t=0 时的单位反应中心传递到电子链末端的能量(REo/RC)无明显变化,在t=0 时单位反应中心吸收的能量(ABS/RC)、在t=0 时单位反应中心耗散的能量(DIo/RC)、在 t=0 时单位反应中心捕获的用于还原QA的能量(TRo/RC)显著下降,分别为36.43%、58.67%、27.22%,表明JrAMT2基因一定程度提高了核桃叶片反应中心活性和用于电子传递的能量份额,增强了电子传递能力(图9E);对单位受光截面比活性参数分析,结果显示:与野生型相比,3个核桃JrAMT2过表达株系在 t=tFM(暗适应后达到最大荧光强度时间点)时的单位受光截面耗散的能量(DIo/CSm)无明显变化,在 t=tFM时单位受光截面吸收的能量(ABS/CSm)、在t=tFM时单位受光截面捕获的用于还原QA的能量(TRo/CSm)、在 t=tFM时单位受光截面捕获的用于电子传递的能量(ETo/CSm)、在t=tFM时单位受光截面传递到电子链末端的能量(REo/CSm)上升,分别上升了 47.79%、69.39%、145.10%、303.62%(图9F),表明JrAMT2基因一定程度提高核桃叶片单位受光截面的电子传递的份额及电子传递效率。综上所述,JrAMT2基因过表达促进核桃的光合作用。

    氮素作为植物生长发育必不可少的营养元素,是核酸、蛋白质、酶、叶绿素、植物激素等的重要组成部分[30]。自然界中可供利用的氮素资源有限,作物高产就需要化肥的投入。中国的化肥投入总量逐渐升高,但化肥利用率很低,给自然环境带来极大的负担 [3132],因此合理使用化肥,提高作物对氮素的吸收效率是促进农业生态化发展的重要途径。铵转运蛋白基因AMTs是广泛存在于动物、植物、微生物中用于运输${\rm{NH}}_4^+ $的载体蛋白,从分子层面提高植物对氮素的利用具有重要意义。前人研究发现:在拟南芥中,氮饥饿能诱导AtAMT1.1、AtAMT2.1基因上调表达,并且AtAMT2基因的表达水平随着氮饥饿时间的延长而增加[33-34]。在充足或高氮条件下,观察到拟南芥中AtAMT2.1及水稻根中OsAMT1.2基因表达水平仍上调 [35-36],其中氮素形态对AMT基因转录水平的调控也取决于AMT基因个体和植物物种。

    本研究对核桃JrAMT2过表达植株进行初步的功能验证,对JrAMT2基因进行生物信息学分析表明:JrAMT2蛋白中含有29个酸性氨基酸残基(Asp+Glu)和29个碱性氨基酸残基(Arg+Lys)。该蛋白N端在膜外,C端存在膜内,共含有11个跨膜螺旋结构域,与李畅[36]预测的OsAMT2.1蛋白结构域特点相同,且与夏金泽等[37]研究的木薯Manihot esculenta MeAMT2.6基因的蛋白结构相似。AMT2 型蛋白通常在植物的各种组织中表达,包括根、芽和叶。前人研究发现:杜梨 Pyrus betulifolia PbAMT2基因在所有器官中均有表达,但在根部表达最高[38]。在拟南芥中发现:AtAMT2.1基因主要在维管组织中表达,在芽中的表达高于根[15]。本研究对核桃JrAMT2过表达植株进行绿色荧光观察发现:JrAMT2蛋白在核桃苗整株均有表达,且在芽及根茎的维管束中荧光更明亮,说明与拟南芥相同,核桃JrAMT2蛋白在所有器官中表达,且主要在维管组织中表达。

    在植物生长发育重要阶段充足的氮素营养供给可以促进其生长发育,增加产量,对植物外施氮素能增加植株株高及叶面积[39]。本研究对核桃JrAMT2过表达植株生长性状分析发现:JrAMT2基因在核桃中过表达对植株生长发育有调控作用,主要表现在过表达植株株高、节间长显著增加。对过表达植株生根驯化结果显示:过表达植株生物量显著增加,根系发达。对核桃JrAMT2过表达植株移栽驯化,定植后植株生长速率显著高于野生型,主要表现在节间伸长快,叶面积增加。AMT2是具有铵吸收功能的铵转运蛋白,且在维管组织表达,暗示着该基因可能参与铵向木质部的装载,介导铵在植物中的长距离运输。研究发现:拟南芥AtAMT2.1除了对根吸收氮素有一定贡献外,主要作用于${\rm{NH}}_4^+ $从根部到茎部的运输[40]。本研究对核桃JrAMT2过表达植株地上部分和地下部分基因表达测定发现:植株地下部分JrAMT2基因表达量显著高于地上部分,且植株地下部分生物量的增加显著高于地下部分,说明核桃JrAMT2基因主要在地下部分表达。对核桃JrAMT2过表达植株对铵态氮和硝态氮吸收测定结果表明:核桃JrAMT2过表达植株地上部分仅对铵态氮的吸收显著上调,地下部分对铵态氮与硝态氮的吸收均显著上调,说明JrAMT2基因促进植株对铵态氮和硝态氮的吸收,并介导了铵态氮从地下部分到地上部分的运输。氮素营养还会通过影响叶绿素合成和叶绿素荧光参数的变化来参与光能的利用和调控[41]。有研究表明:水稻OsAMT2.1基因敲除株系的光合特性与野生型相比出现下降趋势,同样说明了AMT2基因对植物光合作用有调控作用[36]。本研究对核桃JrAMT2过表达植株叶绿素质量分数及叶绿素荧光参数变化的测定结果显示:JrAMT2基因显著提高了核桃的叶绿体表面积与单层细胞表面积比率、叶绿素质量分数及叶绿素荧光参数中叶片放氧复活体活性、量子产额、电子传递效率。

    JrAMT2作为铵态氮转运基因,促进核桃对铵态氮和硝态氮的吸收,且介导铵态氮从根部到茎部的运输,对核桃生长发育、光合作用等有积极作用,对研究核桃高效利用氮素及良种的筛选有重要意义。

  • 图  1  CNC透射电镜图

    Figure  1  Transmission electron microscope image of CNC

    图  2  CNC和PEG/CNC液晶薄膜的UV-vis及图像

    Figure  2  UV-vis absorbance spectra and images of CNC and PEG/CNC liquid crystal films

    图  3  PEG/CNC液晶薄膜的应力-应变曲线(A)和力学性能参数变化(B)

    Figure  3  Stress-strain curves (A) and variations of mechanical properties (B) of PEG/CNC liquid crystal films

    图  4  不同湿度环境下PEG/CNC液晶薄膜λmax随时间的变化

    Figure  4  Changes of λmax over time of PEG/CNC liquid crystal films in different humidity environments

    图  5  水汽浸入及螺距变化机制示意图

    Figure  5  Schematic diagram of water vapor immersion and pitch variation mechanism

    图  6  不同湿度环境下PEG/CNC液晶薄膜λmax变化(A)、达到平衡波长所需时间(B)及湿度响应(C)

    Figure  6  λmax variation (A) and time for PEG/CNC liquid crystal films to reach the equilibrium wavelength (B) in different humidity environments, and humidity response (C)

  • [1] 安邦, 徐明聪, 马春慧, 等. 纤维素纳米晶体手性复合材料: 结构色的调控与应用[J]. 高分子学报, 2022, 53(3): 211 − 226.

    AN Bang, XU Mingcong, MA Chunhui, et al. Tuning and application of structural color of cellulose nanocrystals chiral composite materials [J]. Acta Polymerica Sinica, 2022, 53(3): 211 − 226.
    [2] DUAN Ran, LIU Mengli, TANG Ruiqi, et al. Structural color controllable humidity response chiral nematic cellulose nanocrystalline film [J/OL]. Biosensors, 2022, 12(9) : 707[2023-03-20]. doi:10.3390/bios12090707.
    [3] ROBERT J M, ASHLIE M, JOHN N, et al. Cellulose nanomaterials review: structure, properties and nanocomposites [J]. Chemical Society Reviews, 2011, 40(7): 3941 − 3994.
    [4] 万轩, 张亚运, 孙誉飞, 等. 抗静电纤维素纳米晶体彩虹防伪标签膜的制备[J]. 包装工程, 2017, 38(9): 53 − 58.

    WAN Xuan, ZHANG Yayun, SUN Yufei, et al. Preparation of iridescence anti-counterfeiting label films of anti-electrostatic nanocrystaline celluloses [J]. Packaging Engineering, 2017, 38(9): 53 − 58.
    [5] 林涛, 王乐, 魏潇瑶, 等. 基于纤维素纳米晶体的比色传感器研究进展[J]. 中国造纸, 2022, 41(6): 95 − 102.

    LIN Tao, WANG Le, WEI Xiaoyao, et al. Research progress of colorimetric sensors based on cellulose nanocrystal [J]. China Pulp &Paper, 2022, 41(6): 95 − 102.
    [6] GRAY D G. Recent advances in chiral nematic structure and iridescent color of cellulose nanocrystal films [J/OL]. Nanomaterials, 2016, 6(11): 213[2023-03-20]. doi:10.3390/nano6110213.
    [7] 李金召, 李政, 庄旭品, 等. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293 − 1310.

    LI Jinzhao, LI Zheng, ZHUANG Xupin, et al. Preparation of cellulose nanocrystalline and their applications in composite materials [J]. Progress in Chemistry, 2021, 33(8): 1293 − 1310.
    [8] ZHAO Guoming, HUANG Yanping, MEI Changtong, et al. Chiral nematic coatings based on cellulose nanocrystals as a multiplexing platform for humidity sensing and dual anticounterfeiting [J/OL]. Small, 2021, 17(50): e2103936[2023-03-20]. doi: 10.1002/smll.202103936.
    [9] 卿彦, 王礼军, 吴义强, 等. 纤维素纳米晶体胆甾相液晶形成与应用[J]. 林业科学, 2019, 55(4): 152 − 159.

    QING Yan, WANG Lijun, WU Yiqiang, et al. Formation and application of cellulose nanocrystalline cholesteric liquid crystals [J]. Forestry Science, 2019, 55(4): 152 − 159.
    [10] MARCHESSAULT R H, MOREHEAD F F, WALTER N M. Liquid crystal systems from fibrillar polysaccharides [J]. Nature, 1959, 184(4686): 632 − 633.
    [11] WANG Peixi, MACLAXHLAN M J. Liquid crystalline tactoids: ordered structure, defective coalescence and evolution in confined geometries [J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376(2112): 20170042[2023-07-03]. doi:10.1098/rsta.2017.0042.
    [12] AMIN B, BISHNU A. Humidity-responsive photonic films and coatings based on tuned cellulose nanocrystals/glycerol/polyethylene glycol [J]. Polymers, 2021, 13(21): 3695[2023-07-03]. doi: 10.3390/polym13213695.
    [13] CHEN Huanghuang, HOU Aiqin, ZHENG Changwu, et al. Light and humidity-responsive chiral nematic photonic crystal films based on cellulose nanocrystals [J]. ACS Applied Materials &Interfaces, 2020, 12(21): 24505 − 24511.
    [14] LIN Maoqi, SINGH R V, CHRISTINE B, et al. Tailoring the humidity response of cellulose nanocrystal-based films by specific ion effects [J]. Journal of Colloid and Interface Science, 2023, 629(PB): 694 − 704.
    [15] 张亚运, 万轩, 莫梦敏, 等. 纤维素纳米晶体膜及胆甾型液晶图案的制备[J]. 林业工程学报, 2017, 2(4): 103 − 108.

    ZHANG Yayun, WAN Xuan, MO Mengmin, et al. Preparation of cellulose nanocrystal film and cholesteric liquid crystal pattern [J]. Journal of Forestry Engineering, 2017, 2(4): 103 − 108.
    [16] YOUSSEF H, LUCIAN A L, ORLANDO J R. Cellulose nanocrystals: chemistry, self-assembly, and applications [J]. Chemical Reviews, 2010, 110(6): 3479 − 3500.
    [17] ZHANG Pengju, WANG Qian, GUO Rui, et al. Self-assembled ultrathin film of CNC/PVA liquid metal composite as a multifunctional Janus material [J]. Materials Horizons, 2019, 6(8): 1643 − 1653.
    [18] 王大伟. 基于纳米晶纤维素手性液晶薄膜的制备与研究 [D]. 无锡: 江南大学, 2021.

    WANG Dawei. Preparation and Study of Chiral Liquid Crystal Films Based on Cellulose Nanocrystal [D]. Wuxi: Jiangnan University, 2021.
    [19] 陈戴玮, 白绘宇, 王大伟. 具有手性液晶特性的纳米晶纤维素在智能包装材料中的应用展望[J]. 塑料包装, 2021, 31(4): 7 − 10, 30.

    CHEN Daiwei, BAI Huiyu, WANG Dawei, et al. Application prospects of nanocrystals cellulose with chiral liquid crystal characteristics in smart packaging materials [J]. Plastic Packaging, 2021, 31(4): 7 − 10, 30.
    [20] 郭梦娜. 胆甾相纤维素纳米晶的手性光学调控 [D]. 南京: 南京信息工程大学, 2022.

    GUO Mengna. Chiral Optical Regulation of Cholesteric Cellulose Nanocrystals [D]. Nanjing: Nanjing University of Information Science and Technology, 2022.
    [21] 黄伟杰, 高萌, 张正健, 等. 纤维素纳米晶手性向列液晶在颜色防伪中的应用[J]. 包装工程, 2019, 40(23): 85 − 93.

    HUANG Weijie, GAO Meng, ZHANG Zhengjian, et al. Application of cellulose nanocrystal chiral nematic liquid crystal in color anti-counterfeiting [J]. Packaging Engineering, 2019, 40(23): 85 − 93.
    [22] 王释玉, 李海明. CNC手性向列型液晶结构的形成、调控与应用[J]. 大连工业大学学报, 2022, 41(4): 261 − 268.

    WANG Shiyu, LI Haiming. Formation, tuning, and application of chiral nematic liquid crystal structure of cellulose nanocrystal [J]. Journal of Dalian Polytechnic University, 2022, 41(4): 261 − 268.
    [23] 于佳酩. 纳米晶纤维素胆甾型液晶相的结构色及光学性能调控 [D]. 哈尔滨: 东北林业大学, 2021.

    YU Jiaming. Regulation of Structure Color and Optical Properties of Cholesteric Liquid Crystal Phase Based on Nanocrystalline Cellulose [D]. Harbin: Northeast Forestry University, 2021.
    [24] HUANG Yiyan, CHEN Gaowen, LIANG Qianmin, et al. Multifunctional cellulose nanocrystal structural colored film with good flexibility and water-resistance [J]. International Journal of Biological Macromolecules, 2020, 149: 819 − 825.
    [25] ANDREW J L, WALTERS M C, HAMAMD Y W, et al. Coassembly of cellulose nanocrystals and neutral polymers in iridescent chiral nematic films [J]. Biomacromolecules, 2023, 24(2): 896 − 908.
  • [1] 张宇航, 章漫漫, 马宇航, 王克涛, 胡恒康, 黄坚钦, 张启香.  核桃脱水素JrDHN基因对干旱胁迫的响应 . 浙江农林大学学报, 2024, 41(6): 1150-1159. doi: 10.11833/j.issn.2095-0756.20240282
    [2] 楼高波, 刘丽娜, 傅深渊, 李亮, 曹森科, 程型国.  纤维素/SiO2润滑脂的制备及性能分析 . 浙江农林大学学报, 2024, 41(3): 644-650. doi: 10.11833/j.issn.2095-0756.20230492
    [3] 曹婷婷, 侯守鹏, 袁晓栋, 何影.  纤维素饵料对白蚁的诱杀效果 . 浙江农林大学学报, 2018, 35(1): 178-182. doi: 10.11833/j.issn.2095-0756.2018.01.024
    [4] 李秀云, 陈晓沛, 徐英武, 曹友志.  毛竹生长过程中纤维素合成酶基因的时空表达和功能预测 . 浙江农林大学学报, 2017, 34(4): 565-573. doi: 10.11833/j.issn.2095-0756.2017.04.001
    [5] 石莉莉, 谭贤, 郦行杰, 郭明.  新型催化功能纤维素的制备及催化降解四环素机制 . 浙江农林大学学报, 2016, 33(5): 881-889. doi: 10.11833/j.issn.2095-0756.2016.05.022
    [6] 李秀雯, 姜学泓, 王静芳, 李强, 钱俊, 吴强, 王思群.  TEMPO氧化法制备五节芒纤维素纳米纤丝及其悬浮液稳定性和流变行为表征 . 浙江农林大学学报, 2016, 33(4): 667-672. doi: 10.11833/j.issn.2095-0756.2016.04.016
    [7] 司马晓娇, 郑炳松.  植物生长素原初响应基因Aux/IAA研究进展 . 浙江农林大学学报, 2015, 32(2): 313-318. doi: 10.11833/j.issn.2095-0756.2015.02.021
    [8] 庞景, 童再康, 黄华宏, 林二培, 刘琼瑶.  杉木纤维素合成酶基因CesA的克隆及表达分析 . 浙江农林大学学报, 2015, 32(1): 40-46. doi: 10.11833/j.issn.2095-0756.2015.01.006
    [9] 蒋玉俭, 李新鑫, 孙飞飞, 余学军.  竹林土壤中纤维素降解菌的筛选及产酶条件优化 . 浙江农林大学学报, 2015, 32(6): 821-828. doi: 10.11833/j.issn.2095-0756.2015.06.001
    [10] TONGThiPhuong, 马中青, 陈登宇, 张齐生.  基于热重红外联用技术的竹综纤维素热解过程及动力学特性 . 浙江农林大学学报, 2014, 31(4): 495-501. doi: 10.11833/j.issn.2095-0756.2014.04.001
    [11] 郦宜斌, 郭明, 燕冰宇, 郭斌, 王春歌.  新型水热方法降解纤维素及降解产物分析 . 浙江农林大学学报, 2014, 31(5): 730-738. doi: 10.11833/j.issn.2095-0756.2014.05.011
    [12] 陈宇飞, 吴强, 徐光密, 王静芳, 傅深渊, 钱俊.  五节芒纤维素纳米晶体制备工艺的正交分析 . 浙江农林大学学报, 2014, 31(3): 399-403. doi: 10.11833/j.issn.2095-0756.2014.03.011
    [13] 谢镇, 吾中良, 朱云峰, 王勇军.  松林生态系统调控日本松干蚧的自组织平衡特性 . 浙江农林大学学报, 2013, 30(3): 392-395. doi: 10.11833/j.issn.2095-0756.2013.03.014
    [14] 方佳, 何勇清, 余敏芬, 郑炳松.  植物生长素响应因子基因的研究进展 . 浙江农林大学学报, 2012, 29(4): 611-616. doi: 10.11833/j.issn.2095-0756.2012.04.020
    [15] 彭沙沙, 童再康, 黄华宏, 周厚君, 时剑, 林二培.  杉木纤维素合成酶类似蛋白基因ClCslD1的克隆及其生物信息学分析 . 浙江农林大学学报, 2012, 29(1): 1-6. doi: 10.11833/j.issn.2095-0756.2012.01.001
    [16] 郭明, 宋传虎, 卢迪, 王欢, 孙立苹.  羟丙基纤维素接枝甲基丙烯酸丁酯共聚物的合成与表征 . 浙江农林大学学报, 2011, 28(1): 132-138. doi: 10.11833/j.issn.2095-0756.2011.01.021
    [17] 郭明, 张璐颖, 王鹏, 余婧.  羟丙基纤维素乙酰乙酰化改性材料的制备及表征 . 浙江农林大学学报, 2010, 27(4): 595-600. doi: 10.11833/j.issn.2095-0756.2010.04.020
    [18] 郭明, 王鹏, 李铭慧, 杨君, 王春鹏, 储富祥.  三甲基硅羟乙基纤维素醚的合成、表征及性能 . 浙江农林大学学报, 2008, 25(1): 1-6.
    [19] 吴石金, 罗锡平, 夏一峰.  里氏木霉产纤维素酶系各组分分泌特性 . 浙江农林大学学报, 2003, 20(2): 146-150.
    [20] 刘力, 周建钟, 余世袁, 单谷.  高节竹笋加工废料的纤维素酶水解及饲料开发 . 浙江农林大学学报, 1997, 14(3): 262-266.
  • 期刊类型引用(0)

    其他类型引用(13)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230236

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2024/1/169

图(6)
计量
  • 文章访问数:  607
  • HTML全文浏览量:  109
  • PDF下载量:  31
  • 被引次数: 13
出版历程
  • 收稿日期:  2023-04-10
  • 修回日期:  2023-07-03
  • 录用日期:  2023-07-05
  • 网络出版日期:  2024-01-19
  • 刊出日期:  2024-02-20

聚乙二醇/纤维素纳米晶体复合液晶薄膜微观结构及湿度响应行为

doi: 10.11833/j.issn.2095-0756.20230236
    基金项目:  国家自然科学基金资助项目(21404092)
    作者简介:

    徐蕴哲(ORCID: 0009-0003-4884-6144),从事生物质复合材料研究。E-mail: 1696735702@qq.com

    通信作者: 吴强(ORCID: 0000-0003-4005-409X),教授,博士生导师,从事生物质复合材料研究。E-mail: wuqiang@zafu.edu.cn
  • 中图分类号: TQ35

摘要:   目的  探索聚乙二醇(PEG)对纤维素纳米晶体(CNC)液晶薄膜湿度响应的影响,阐明其响应机制,旨在为开发低成本、可重复使用和高灵敏度的PEG/CNC复合薄膜湿度传感器提供理论基础。  方法  将CNC与PEG共组装,制备了一种具有湿度响应性能的虹彩色手性向列相光子液晶薄膜,系统考察了PEG质量分数对液晶薄膜的微观结构、显色、力学性能及湿度响应的影响,在此基础上,研究了PEG/CNC复合液晶薄膜在不同湿度条件下的响应循环性能。  结果  对于纯CNC体系,CNC质量分数由3%增加到7%,CNC液晶薄膜的螺距减小,最大反射光波长由596.5 nm蓝移至511.0 nm;对于添加PEG的CNC体系,随着PEG质量分数的增加,PEG/CNC复合液晶薄膜的螺距由394.0 nm减小到244.0 nm,最大反射光波长由613.5 nm蓝移至350.5 nm,韧性先提升后下降,PEG质量分数为5%时为最佳,断裂能为31.9 J·m−2,较纯CNC薄膜提升了138%;液晶薄膜经过5次吸湿-解湿,表现出良好的湿度响应重复性,平衡波长的变化率小于0.6%。  结论  制备了一种对湿度具有敏感响应的虹彩色光子PEG/CNC复合液晶薄膜,PEG可以调控复合薄膜螺距,起到调节结构色的作用。图6参25

English Abstract

凡婷婷, 张佳琦, 刘会君, 等. 核桃铵态氮转运蛋白基因JrAMT2的功能分析[J]. 浙江农林大学学报, 2024, 41(1): 79-91. DOI: 10.11833/j.issn.2095-0756.20230296
引用本文: 徐蕴哲, 陈一钒, 林心怡, 等. 聚乙二醇/纤维素纳米晶体复合液晶薄膜微观结构及湿度响应行为[J]. 浙江农林大学学报, 2024, 41(1): 169-175. DOI: 10.11833/j.issn.2095-0756.20230236
FAN Tingting, ZHANG Jiaqi, LIU Huijun, et al. Functional analysis of ammonium nitrogen transporter gene JrAMT2 in Juglans regia[J]. Journal of Zhejiang A&F University, 2024, 41(1): 79-91. DOI: 10.11833/j.issn.2095-0756.20230296
Citation: XU Yunzhe, CHEN Yifan, LIN Xinyi, et al. Microstructure and humidity response of polyethylene glycol/cellulose nanocrystal composite liquid crystal films[J]. Journal of Zhejiang A&F University, 2024, 41(1): 169-175. DOI: 10.11833/j.issn.2095-0756.20230236
  • 自然界许多生物能对环境变化做出反应,改变自身的颜色,这种颜色被称为结构色[12],是由光子晶体的微结构周期性排列,通过光干涉效应产生的[3]。这种根据环境产生颜色的功能可用于智能材料的开发,在防伪商标[4]、化学传感[5]和生物技术[6]等领域具有广阔的应用潜力。纤维素纳米晶体(CNC)可由木质纤维素经强酸水解法、酶水解法、磷酸水热法和2, 2, 6, 6 -四甲基哌啶氧化物(TEMPO)氧化法等[7]方法获得,具有精细的纳米结构、丰富的表面活性基团、优异的力学性能以及可再生和降解的特点[89],是一种重要的生物基纳米材料。CNC悬浮液达到某一临界浓度时,会自发进行有序排列,形成手性向列相液晶结构[10]。通过溶剂蒸发的方法制备CNC薄膜,手性向列相结构得以保留。随着溶剂的蒸发,CNC的浓度逐渐增大,螺距减小,最大反射光波长(λmax)蓝移至可见光范围,赋予薄膜结构色[11],因此,CNC是一种生物质光子晶体材料,成为近期的研究热点。

    CNC光子材料的螺距会随环境湿度变化,从而影响其光学性质及结构色,具有湿度敏感性[1215]。纯CNC液晶薄膜,由于CNC的刚性,非常脆,还存在薄膜湿度灵敏度低,结构色变化不均匀的缺点。为了提高CNC液晶薄膜的韧性,YOUSSEF等[16]将聚乙二醇(PEG)和CNC自组装,形成了具有均匀结构色且柔性的复合膜,在不同的湿度条件下,复合膜的结构色发生可逆均匀改变,由于PEG与CNC良好的相容性,在提升液晶薄膜韧性的基础上,PEG还提升了薄膜的湿度敏感性。研究者们向CNC体系中引入水溶性聚合物,如PEG[12]、聚乙烯醇(PVA)[17]、水性聚氨酯(WPU)[18]等,研究复合CNC液晶薄膜力学和湿度响应行为。

    目前针对CNC复合薄膜湿度响应方面的研究主要关注于湿度-结构-变色之间的构效关系,对CNC复合薄膜湿度响应速度和重复性研究不够深入,因此,本研究以CNC为原料,通过将PEG与CNC共组装,制备具有手性向列结构的虹彩色PEG/CNC复合液晶薄膜,系统考察PEG质量分数对复合液晶薄膜的微观结构、显色、力学性能以及吸湿行为的影响,通过饱和电解质溶液控制环境湿度,重点考察复合薄膜在不同湿度下的吸湿-解湿过程和性能变化,阐明PEG/CNC复合薄膜湿度响应机制,为制备低成本、可重复使用和高灵敏度的PEG/CNC复合薄膜湿度传感器提供理论基础。

    • 木质纤维素纳米晶体(CNC,美国缅因大学),从木浆中提取并通过硫酸水解,固含量为10.3% (质量分数),含质量分数为1.1%的硫和钠离子;PEG 4000、氯化锂(LiCl)、氯化钠(NaCl)、溴化钠(NaBr)和氯化镁(MgCl2)均为分析纯。

    • 首先按照所需比例称取一定质量的CNC与PEG,加入一定量的去离子水稀释后,用玻璃棒搅拌2 min,再用超声波细胞粉碎机超声5 min,得CNC与PEG的混合液,混合液的流动性较好,在剪切速率为1 s−1时,黏度为0.01~0.02 Pa·s。随后,将混合液倒入塑料培养皿,置于35 ℃烘箱中干燥约36 h,得PEG/CNC液晶薄膜。在溶液浇筑过程中控制固含量,控制所得复合薄膜的厚度约为150 μm。制备CNC悬浮液质量分数分别为3%、5%和7%的CNC液晶薄膜,分别标记为3%CNC、5%CNC和7%CNC; PEG/CNC复合体系中,CNC悬浮液质量分数为5%,添加的PEG质量分数分别为0%、5%、10%和15%,分别标记为5%CNC 、5%CNC+5%PEG、5%CNC+10%PEG和5%CNC+15%PEG。

    • 采用透射电子显微镜(JEM-1200EX)观察CNC的形貌。用滴管吸取1滴待测CNC悬浮液,滴在电镜铜网上,用体积分数为2%醋酸双氧铀染色,干燥2 min后进行观察并拍摄图像。再使用ImageJ软件处理图像,统计CNC悬浮液微粒的长度与宽度,最终得出长径比分布。

    • 使用偏光显微镜(Nikon ECLIPSE LV100ND)拍摄液晶薄膜的显微照片。用裁刀剪取少许CNC液晶薄膜,置于载玻片上,随后将载玻片放置在POM上观察。

    • 采用紫外可见分光光度计(UV2400)对所制备液晶薄膜的λmax进行测试,波长范围为200~800 nm。

    • 采用冷场发射扫描电子显微镜(SU8010)观察所制得液晶薄膜截面的微观结构。通过液氮淬断的方法制备薄膜样品横截面,并将其安装在样品支架上,成像前样品需喷金45~60 s,电子加速电压为5 kV。

    • 采用微机控制电子万能试验机(CMT6104)表征添加不同质量分数的PEG的CNC液晶薄膜的拉伸性能。将样品薄膜剪裁成长度约25 mm,宽度约5 mm的样条,安装样条于试验机上,以2 mm·min−1拉伸速率测试,测定样条断裂时的拉伸强度、弹性模量和断裂伸长率等。

    • 在密闭空间中,过饱和盐溶液可以调控环境相对湿度。采用饱和LiCl、MgCl2、NaBr和NaCl溶液分别调控环境相对湿度为20%、40%、60%与80%。①湿度响应时间。将样品薄膜剪裁成样条状,分别放置于不同相对湿度的密闭环境中,每隔一段时间,采用紫外可见分光光度计测定其λmax,得出达到平衡状态下的λmax及所需时间。②吸湿-解湿响应行为研究。将样品薄膜剪裁成样条状,放置于相对湿度为80%的密闭环境中2 h,采用紫外可见分光光度计测定其λmax;随后放入烘箱中干燥2 h,再次测定其λmax,多次重复此过程即可得到其循环性能。

    • 图1可知:经过醋酸双氧铀染色后的CNC在TEM中呈现均匀的棒状结构,彼此之间排列松散,未出现明显的团聚现象,经统计:CNC的长度为(163.6 ± 60.0) nm,宽度为(8.6 ± 3.2) nm,长径比约19。

      图  1  CNC透射电镜图

      Figure 1.  Transmission electron microscope image of CNC

    • 采用溶液浇筑的手段,可获得具有手性向列结构的虹彩色薄膜。由图2A图2B1可知:所得薄膜都具有光滑表面及虹彩色,其中,3%CNC和5%CNC所得的薄膜颜色为橙红色,分别对应的λmax为596.5和597.0 nm,7%CNC所得的薄膜部分表现出蓝绿色,对应的λmax为511.0 nm。这是因为随着CNC质量分数的提高,CNC排列更加紧密,分子层间距离减小,从而导致螺距减小,λmax发生蓝移[19]

      图  2  CNC和PEG/CNC液晶薄膜的UV-vis及图像

      Figure 2.  UV-vis absorbance spectra and images of CNC and PEG/CNC liquid crystal films

      图2B2和B3观察到:3种不同质量分数的CNC薄膜都表现出显著的双折射特性,在高倍率下可以观察到手性向列相液晶特有的指纹织构。指纹织构出现的原因是CNC的螺旋轴与显微镜基片平行,观测到明暗相间的指纹状衍射条纹,形成了像指纹一样的织构图案[20]图2B4为CNC液晶薄膜断面的SEM图,所有液晶薄膜都呈现出手性向列相液晶特有的层状螺旋结构,相邻层之间的距离是螺距的一半[21]。测量统计100段CNC液晶薄膜的螺距,3%CNC、5%CNC和7%CNC所得的螺距分别为401.0、394.0、335.0 nm。手性光子晶体的λmax与螺距(P)的关系可以用布拉格方程来描述[22]:$ {\lambda }_{\mathrm{m}\mathrm{a}\mathrm{x}}=nP\mathrm{sin}\theta $。其中,n为平均折射率,θ为反射光与平面夹角。以5%CNC液晶薄膜为例,n=1.52,θ=90°,因此λmax=599.0 nm,橙色的可见光波长范围为580.0~610.0 nm,液晶薄膜的颜色与之对应,这与UV-vis测得的λmax基本符合。

    • 图2C图2D1可知:所有薄膜都具有光滑表面和均匀的虹彩色,随着PEG质量分数的增加,所制得的液晶薄膜的颜色由橙红色转变为黄绿色、蓝绿色,最后变为蓝紫色,复合薄膜的λmax从613.5 nm下降到350.5 nm,这是由于PEG分子中含有大量的羟基,羟基之间会形成氢键,进而形成微交联结构,使CNC分子层间距离减小,导致螺距减小,λmax发生显著蓝移[23]。与纯CNC液晶薄膜相比,PEG/CNC复合薄膜的颜色更均匀。

      图2D2和D3可见:与纯CNC液晶薄膜相同,复合薄膜也表现出双折射特性,且能观察到手性向列相指纹织构;由图2D4可见:与纯CNC液晶薄膜相同,所有液晶薄膜都能呈现出手性向列相液晶特有的层状螺旋结构。POM和SEM的结果都表明:PEG的加入保留了CNC的手性向列相特征。测量统计100段PEG/CNC液晶薄膜的螺距,PEG质量分数为0、5%、10%和15%的液晶薄膜螺距分别为394.0、361.0、263.0、244.0 nm。以PEG质量分数为5%的CNC液晶薄膜为例,n=1.52,θ=90°,因此λmax=549.0 nm,而黄绿色的可见光波长范围为540.0~570.0 nm,液晶薄膜的颜色与之对应,这与UV-vis测得的λmax基本符合。

    • 图3可见:5%CNC液晶薄膜的断裂伸长率为1.60%,添加PEG显著提升CNC液晶薄膜断裂伸长率,5%CNC+5%PEG液晶薄膜的断裂伸长率为6.00%,对应力-应变曲线进行积分可得断裂能,断裂能为31.9 J·m−2,较纯CNC薄膜提升了138%,这主要是由于PEG能与CNC形成氢键,构成三维网络结构,进而提高薄膜的韧性[24]。然而,随着PEG质量分数的增加,CNC液晶薄膜的断裂伸长率会有所下降,5%CNC+15%PEG断裂伸长率下降到3.20%,断裂能较5%CNC+5%PEG 降低了65.4%,这是由于过量加入PEG在一定程度上破坏了复合薄膜的手性向列结构[25]。虽然PEG提升了CNC复合薄膜韧性,但使其拉伸强度及弹性模量下降,5%CNC+5%PEG 薄膜的拉伸强度下降了49.7 %,弹性模量下降了81.6%。

      图  3  PEG/CNC液晶薄膜的应力-应变曲线(A)和力学性能参数变化(B)

      Figure 3.  Stress-strain curves (A) and variations of mechanical properties (B) of PEG/CNC liquid crystal films

    • 图4可知:在所有环境湿度下,随时间增加,薄膜的λmax会发生红移,到达一定时间后,λmax恒定,因此,可以估算PEG/CNC液晶薄膜的湿度响应时间。此外,对于同一个PEG/CNC液晶薄膜,环境相对湿度越大,λmax红移程度就越明显,这是随着环境相对湿度提高,进入PEG/CNC液晶薄膜的水汽增多所致[13],也表明PEG/CNC液晶薄膜具有优异的湿度响应性。图5显示:PEG/CNC液晶薄膜纤维素表面存在大量的羟基,当环境湿度增加,水汽进入CNC液晶薄膜,使单个CNC分子之间的距离增大,螺距增大,λmax出现了红移[23]

      图  4  不同湿度环境下PEG/CNC液晶薄膜λmax随时间的变化

      Figure 4.  Changes of λmax over time of PEG/CNC liquid crystal films in different humidity environments

      图  5  水汽浸入及螺距变化机制示意图

      Figure 5.  Schematic diagram of water vapor immersion and pitch variation mechanism

      图6A可知,随着PEG质量分数的提高,薄膜的λmax发生蓝移,这与2.3.1中的研究结果相一致。所有种类的薄膜均随环境湿度的提高而发生红移,说明其具有湿度响应性能。由图6B可知:随着PEG质量分数和湿度的增加,平衡时间增加,这是因为PEG/CNC液晶薄膜的湿度响应来自于CNC螺距的变化,PEG的加入限制了CNC分子的运动,因此需要更多的时间才能观察到平衡;同时周围环境的相对湿度越高,PEG/CNC液晶薄膜达到平衡波长所需要的时间也越长,这是由于薄膜需要吸收更多的水汽达到平衡所致。

      图  6  不同湿度环境下PEG/CNC液晶薄膜λmax变化(A)、达到平衡波长所需时间(B)及湿度响应(C)

      Figure 6.  λmax variation (A) and time for PEG/CNC liquid crystal films to reach the equilibrium wavelength (B) in different humidity environments, and humidity response (C)

      随着环境相对湿度的提高,水汽能够进入CNC液晶薄膜中,λmax发生红移;在干燥过程中,进入CNC液晶薄膜的水汽又重新蒸发出来,λmax回复到原始状态[23]。由图6C可知,CNC和PEG/CNC液晶薄膜经过5次反复吸湿-解湿实验,均表现出良好的湿度响应重复性,平衡波长的变化率小于0.6%,说明其湿度响应性能很稳定。

    • 本研究将木质CNC与PEG共组装,制备了一种对湿度具有敏感响应的虹彩色光子液晶薄膜。PEG可以调控复合薄膜螺距,从而起到调节结构色的作用。随着PEG质量分数的增加,复合薄膜螺距减小,结构色发生蓝移。PEG还可以提高复合薄膜的韧性,当PEG质量分数为5%时,所制得的液晶薄膜具有最大的断裂伸长率及韧性,断裂能提高了138%。PEG/CNC液晶薄膜具有良好的湿度响应性能,随环境相对湿度变化,复合薄膜的颜色相应改变,其中PEG质量分数为5%的复合薄膜的颜色变化最显著,λmax由545.0 nm变为595.0 nm。另外,随着PEG质量分数的增加,复合薄膜对湿度的响应时间增加,但不影响吸湿-解湿重复响应行为,因此,这种基于木质CNC的低成本响应光子材料在湿度监测领域具有重要的潜在应用。

参考文献 (25)

目录

/

返回文章
返回