-
木材不仅具有广泛的经济价值,而且对人类生产生活也具有重要意义[1−2]。木本植物经历初生生长和次生生长2个发育阶段,初生生长是由茎尖干细胞(SAM)和根尖干细胞(RAM)分裂分化引起器官伸长的生长,次生生长是由维管形成层和木栓形成层细胞分裂分化促进器官加粗的生长[3]。由于维管形成层不断分裂和分化,树木才会逐年加粗[4]。木材是维管形成层细胞的增殖分化产生的次生木质部不断沉积、累加的结果。以上研究表明:以杨树Populus为主的木本植物形成层发育过程受到很多信号调控,例如一些植物激素、肽受体蛋白和转录因子等。本文围绕以上几个方面展开综述。
-
维管形成层的活性受到几种激素的调节,包括生长素(IAA)、细胞分裂素(CK)、乙烯(ET)、油菜素内脂(BR)、赤霉素(GA)等[22]。它们相互协调可以促进形成层增殖和木材发育。
许多证据表明:生长素的峰值累积主要出现在杨树形成层干细胞,生长素的极性流动与它的输出转运体PIN1蛋白相关,说明PIN1基因上调表达促进了形成层活性和次生生长[23]。BJÖRKLUND等[24]和AGUSTI等[25]研究证明:在去顶的杨树中外施生长素能正向调控形成层干细胞活性,促进形成层细胞的分裂分化。在红松Pinus koraiensis中,生长素积累诱导形成层细胞分化[26],生长素浓度升高促进木质部细胞数量增加[27]。NILSSON等[23]通过降低生长素响应性,扰乱了生长素信号传导,表明降低生长素水平会降低形成层细胞的分裂活性。生长素诱导的MP/ARF5抑制WOX4基因活性,并限制干细胞的数量[28]。QIU等[29]发现在杉木Cunninghamia lanceolata的形成层中,生长素响应因子ARF上调,表明ARF基因参与形成层和木材形成的调控。有研究发现:过表达IAA9抑制杨树次生生长,表现为形成层变窄,木质部层数大幅度减少,转录因子ARF5能与杨树中的IAA9蛋白互作,过表达IAA9抑制次生木质部发育,但IAA9-ARF5介导的生长素信号转导可以恢复过表达IAA9导致的木材形成和形成层活性受抑制的表型。由此可见:IAA9-ARF5模块可以调控木材发育[30]。研究发现:HD-ZIP Ⅲ基因家族中的HB7、HB8在过表达IAA9株系中受到明显抑制,IAA9-ARF5模块共同调控HB7、HB8对生长素的响应,促进木质部分化[30],还发现ARF7通过下游的WOX4提高形成层干细胞活性,促进形成层向次生木质部的分化[10]。
赤霉素峰值累积主要出现在木质部,内源赤霉素正向调控杨树形成层活性。MÄKILÄ等[31]报道:赤霉素通过诱导PIN1的表达,诱导形成层增殖。在红松中施加外源赤霉素促进形成层增殖,过表达赤霉素氧化酶GA20OXⅠ能促进木质部细胞分化及伸长,还能改善木质部纤维长度[32−34]。赤霉素对木材分化和次生木质部成熟的影响有待进一步探讨。细胞分裂素峰值累积主要出现在幼嫩的次生韧皮部。研究认为:细胞分裂素以一种非细胞自主依赖性的方式来正向调控形成层活性,通过激活CLE41/44基因,促进导管分化抑制因子TDIF在次生韧皮部的累积,移动到形成层干细胞位置维持形成层干细胞活性[35]。转录因子TMO5和LHW同系物在杨树的形成层区表达[36],TMO5-LHW复合物通过调控细胞分裂素生物合成基因LOG3和LOG4,促进原形成层周壁细胞分裂[37]。过表达IPT7通过升高细胞分裂素水平,刺激杨树形成层细胞分裂和增加生物量。然而,NIEMINEN等[38]通过研究毛白杨Populus tomentosa形成层细胞分裂素信号传导对树干生长的影响,揭示了细胞分裂素水平降低会导致形成层生长受损。
以上3种激素信号在木材发育相关组织中存在着特异的分布模式。此外,乙烯、油菜素内酯也能促进树木维管形成层的分裂和次生生长,乙烯是杨树形成层分生组织中细胞分裂的内源调节因子。乙烯信号传导与PXY/CLE41信号传导一样,乙烯水平升高促进形成层的发育[39−40]。油菜素内脂合成被抑制导致次生木质部分化减少,当油菜素内酯水平升高时会促进杨树次生生长和木材形成[41]。JIN等[42]发现:通过激活油菜素内脂信号传导,PtiCYP85A3正向调控杨树中木材凝胶纤维发育。近年来研究结果证明:内源赤霉素正向调控杨树形成层活性在很大程度上依赖于生长素信号转导,即生长素和赤霉素协同调控维管系统的发育过程[19]。由此可以看出:不同激素之间的相互作用形成了对形成层的复杂调控,因此,还需要更加深入地剖析形成层活动的激素调控。表1总结了参与调控木本植物维管形成层活动的植物激素及其表达部位。
表 1 参与调控木本植物维管形成层活动的植物激素
Table 1. Plant hormones involved in regulating the activity of the vascular cambium of woody plants
-
肽受体通过与质膜上的受体激酶相互作用,控制植物的发育和生理过程,如植物维管形成层干细胞增殖分化[43]。其中WOX基因家族成员WOX4作为形成层活性的调控枢纽,调控形成层活性,WOX4蛋白正向调控杨树形成层细胞的增殖分化[44]。WOX14与WOX4协同作用于形成层细胞增殖[45]。WOX4和WOX14已被证明是TDIF/CLE41/44信号通路的下游靶点,正向调控形成层活性[44, 46]。在杨树中,对WOX4基因进行RNAi干涉,抑制转基因植株次生生长,结果表明:WOX4基因正向调控树木维管形成层活性[44, 47]。BUSH等[48]通过实验揭示了控制形成层维持的肽-受体-转录因子信号通路TDIF/CLE41/ CLE44-TDR/PXY,该信号通路正向调控WOX4和WOX14的表达,促进形成层活性提高[49]。KNOX基因家族KNAX I/BP影响形成层细胞分裂,过表达KNAX I/BP的同源基因ARK2,抑制杨树木材形成[50]。DU等[50]报道了ARK2负调控木质部分化的同时,也刺激形成层细胞分裂,表明ARK2与WOX4协同调控形成层活性。
三角状五肽重复蛋白(PPR)是线粒体编码基因RNA代谢的关键调控因子,PPR14编码RFL蛋白,并在杨树茎中高表达,其中RFL30过表达抑制生长素积累,形成层细胞和木质部细胞层数显著减少[51]。同时,通过生化实验发现:杨树ARF7蛋白通过直接结合WOX4和PIN1基因的启动子,整合赤霉素信号和生长素信号调控杨树维管形成层活性,促进生长素累积和形成层活性提高[52]。DELLA蛋白为赤霉素信号转导的阻遏子,可以发现它与ARK2、WOX4、赤霉素受体GID1发生互作,抑制杨树形成层分裂活性,赤霉素水平上升后,DELLA蛋白降解,促进ARK2与WOX4的表达,增强形成层的活性[3, 52]。
在转基因杨树中,TANG 等[53]鉴定到1个泛素化受体DA1,表明DA1负调控形成层活性,且酵母双杂筛选结果验证了DA1与WOX4拮抗作用于调控形成层活性,DA2介导的泛素化途径调控WOX4蛋白的稳定性,调控DA1-WOX4蛋白复合体以抑制形成层活性,揭示了转录水平上调控杨树形成层发育的新途径,可作为木材生物量改良的潜在方向。
短肽信号分子 CLE20蛋白在白杨 Populus alba木质部组织中表达并抑制形成层活性和细胞分裂相关基因表达,导致细胞层数减少[54]。在NAC结构域蛋白基因家族中,白杨VND和NST1/3参与木质部分化[55−57]。表2总结了参与调控木本植物维管形成层活动的多肽及其功能。
表 2 参与调控木本植物维管形成层活动的多肽
Table 2. Peptides involved in regulating the activities of the vascular cambium of woody plants
在杨树中发现了1种类受体蛋白激酶ASX,敲除后会导致木质部细胞中次生细胞壁的增厚,抑制形成层细胞向木质部细胞分化,SERK2/4通过催化ASX磷酸化,促进树木的木材形成[58]。细胞分裂素受体基因组氨酸激酶PtHK3a/3b在分裂的杨树形成层细胞中以高水平表达[38]。综上可以得出:PtHK3a/3b能够促进形成层细胞分裂分化,而ASX负调控形成层活性。以后需要加强这些受体激酶在维管形成层活动过程中功能差异的研究。在杨树中,HD-ZIP Ⅲ/HB基因家族中的HB4过表达能增强形成层活性和诱导束间形成层形成,HB4负调控PIN1表达,抑制了束间形成层发育[59]。此外发现HB5和HB7诱导形成层活性和木质部分化[60−61]。研究发现了2个来自杨树的MADS-box转录因子VCM1和VCM2,抑制维管形成层增殖活性和木材形成,且VCM1基因负调控PIN5表达,VCM 1和 VCM 2能抑制维管形成层增殖活性和次生生长[62]。研究鉴定出95个在维管形成层特异表达的转录因子VCS,其中VCS2负调控WOX4表达,表明VCS2负调控维管形成层增殖[63]。生长素响应因子ARF5与VCS2一样,抑制形成层活性[10, 44]。杨树中转录因子ANT在形成层中表达,细胞分裂素调控ANT和细胞周期蛋白CYCD3;1,通过形成层细胞的增殖实现根茎增粗[64]。MYB转录因子参与调控植物的发育和代谢,调节次生细胞壁的形成[65]。在柳杉Cryptomeria fortunei中,MYB转录因子和miRNA差异表达显著减少,使形成层细胞提前结束休眠。过表达MYB6显著抑制杨树次生木质部细胞壁的沉积[66−67]。表3总结了参与调控木本植物维管形成层活动的转录因子及其靶基因。
表 3 参与调控木本植物维管形成层活动的转录因子
Table 3. Transcription factors involved in the regulation of vascular cambium activities in woody plants
Molecular regulatory mechanisms of cambium activity in woody plants
-
摘要: 维管形成层位于木质部和韧皮部之间,负责诸多生长和发育过程,在木材生产上也起重要作用。开展木本植物形成层活动的内部分子机制研究,对木本植物径向生长和林木生物量的增加具有重要的理论价值。深度成像结合基因表达分析技术是一种前沿研究方向,数学建模和仿真结合实时成像在模拟形成层生长和潜在的分子过程中有重要应用前景。基于该技术,总结了当前形成层活动分子层面的部分代表性成果,并对未来研究提出展望。目前植物形成层活动的分子研究主要集中在:①形成层活动受到植物激素信号的调控;②转录因子、肽受体信号调控形成层活动;③形成层活动受到受体激酶信号的调控。主要结论为:WOX4、WOX14、HB4、HB7、HB8、ANT等正向调控树木形成层活动,可作为木材增粗育种转基因的首选。未来通过计算机模型剖析形成层内细胞间通信联系,能够更全面地解析木本植物维管形成层发育分子机制。表3 参68Abstract: The vascular cambium is located between the xylem and phloem, which is responsible for many growth and development processes, and also plays an important role in wood production. In simulating cambium growth and potential molecular processes, deep imaging combined with gene expression analysis is a cutting-edge research direction, and mathematical modeling and simulation combined with real-time imaging have important application prospects. Based on this technique, some representative achievements at the molecular level of cambium activity are summarized, and the future research prospects are proposed. At present, molecular studies on cambium activity in plants mainly focus on: (1) cambium activity is regulated by plant hormone signaling; (2) cambium activity is regulated by transcription factors and peptide receptor signaling; (3) cambium activity is regulated by receptor kinase signals peptide receptor signaling. The main conclusions are that WOX4, WOX14, HB4, HB7, HB8 and ANT positively regulate the activities of tree cambium and can be used as the first choice for transgenic wood roughening breeding. In the future, the analysis of cell-to-cell communication connections in the cambium through computer models can better analyze the molecular mechanism of vascular cambium development in woody plants. [Ch, 3 tab. 68 ref.]
-
Key words:
- vascular cambium /
- hormone /
- peptide receptor signaling /
- transcription factors /
- woody plant /
- review
-
表 1 参与调控木本植物维管形成层活动的植物激素
Table 1. Plant hormones involved in regulating the activity of the vascular cambium of woody plants
表 2 参与调控木本植物维管形成层活动的多肽
Table 2. Peptides involved in regulating the activities of the vascular cambium of woody plants
表 3 参与调控木本植物维管形成层活动的转录因子
Table 3. Transcription factors involved in the regulation of vascular cambium activities in woody plants
-
[1] YE Zhenghua, ZHONG Ruiqin. Molecular control of wood formation in trees [J]. Journal of Experimental Botany, 2015, 66(14): 4119 − 4131. [2] WANG Dian, CHEN Yan, LI Wei, et al. Vascular cambium: the source of wood formation [J/OL]. Frontiers in Plant Science, 2021, 12: 700928[2023-08-15]. doi: 10.3389/fpls.2021.700928. [3] 曹慧. DELLA、ARK2与WOX4的蛋白互作介导赤霉素调控杨树形成层活性的分子机制探究[D]. 重庆: 西南大学, 2022. CHAO Hui. The Molecular Mechanism of Gibberellin Regulating Cambial Activity Mediated by Protein Interaction of DELLA, ARK2 and WOX4 in Poplar [D]. Chongqing: Southwest University, 2022. [4] 韩潇. 不同生长速率欧美杨形成层基因表达分析及杨树BELL基因功能研究[D]. 北京: 北京林业大学, 2017. HAN Xiao. Analysis of Gene Expression Profiles of Cambium of Different-stem-growth-rate Popilus euramericama Genotypes and Characterization of Populus BELL Gene [D]. Beijing: Beijing Forestry University, 2017. [5] LUCAS W J, GROOVER A, LICHTENBERGER R, et al. The plant vascular system: evolution, development and functions [J]. Journal of Integrative Plant Biology, 2013, 55(4): 294 − 388. [6] AGUSTI J, BLAZQUEZ M A. Plant vascular development: mechanisms and environmental regulation [J]. Cellular and Molecular Life Sciences, 2020, 77(19): 3711 − 3728. [7] SMET W, de RYBEL B. Genetic and hormonal control of vascular tissue proliferation [J]. Current Opinion in Plant Biology, 2016, 29: 50 − 56. [8] 葛颜锐, 赵冉, 徐静, 等. 植物维管形成层发育及其调控的研究进展[J]. 生物技术通报, 2023, 39(3): 13 − 25. GE Yanrui, ZHAO Ran, XU Jing, et al. Advances in the development and regulation of vascular cambium [J]. Biotechnology Bulletin, 2023, 39(3): 13 − 25. [9] 郑佳. 杨树维管形成层发的基因表达调控[D]. 南京: 南京林业大学, 2012. ZHENG Jia. Genomic Scale Transcriptome and Expression Analysis of Vascular Cambium in Poplar [D]. Nanjing: Nanjing Forestry University, 2012. [10] SMETANA O, MAKILA R, LYU M, et al. High levels of auxin signaling define the stem-cell organizer of the vascular cambium [J]. Nature, 2019, 565(7740): 485 − 489. [11] 李学琴. 樟树维管形成层的活动规律及次生木质部发育过程的研究[D]. 武汉: 华中农业大学, 2011. LI Xueqin. Studies on Activity Rhythm of Vascular Cambium and Development Process of Secondary Xylem in Cinnamomum camphora (L. ) Presl. [D]. Wuhan: Huazhong Agriculural University, 2011. [12] FISCHER U, KUCUKOGLU M, HELARIUTTA Y, et al. The dynamics of cambial stem cell activity [J]. Annual Review of Plant Biology, 2019, 70: 293 − 319. [13] NIEMINEN K, BLOMSTER T, HELARIUTTA Y, et al. Vascular cambium development [J/OL]. The Arabidopsis Book, 2015(13): e0177[2023-08-15]. doi: 10.1199/tab.0177. [14] MIZRACHI E, MYBURG A A. Systems genetics of wood formation [J]. Current Opinion in Plant Biology, 2016, 30: 94 − 100. [15] ZHANG Jing, ELO A, HELARIUTTA Y. Arabidopsis as a model for wood formation [J]. Current Opinion in Biotechnology, 2011, 22(2): 293 − 299. [16] MIYASHIMA S, SEBASTIAN J, LEE J Y, et al. Stem cell function during plant vascular development [J]. The EMBO Journal, 2013, 32(2): 178 − 193. [17] JOHNSSON C, FISCHER U. Cambial stem cells and their niche [J]. Plant Science, 2016, 252: 239 − 245. [18] SHI Dongbo, LEBOVKA I, LÓPEZ-SALMERÓN V, et al. Bifacial cambium stem cells generate xylem and phloem during radial plant growth [J/OL]. Development, 2019, 146: dev171355[2023-07-15]. doi: 10.1242/dev.171355. [19] 苏会丽. 赤霉素与生长素协同调控毛白杨维管形成层分裂活性的分子机理[D]. 重庆: 西南大学, 2020. SU Huili. Molecular Mechanism of Gibberellin and Auxin Synergistic Regulating Vascular Cambial Activity in Populus tomentosa [D]. Chongqing: Southwest University, 2020. [20] BOSSINGER G, SPOKEVICIUS A V. Sector analysis reveals patterns of cambium differentiation in poplar stems [J]. Journal of Experimental Botany, 2018, 69(18): 4339 − 4348. [21] DU Juan, WANG Yichen, CHEN Wenfan, et al. High-resolution anatomical and spatial transcriptome analyses reveal two types of meristematic cell pools within the secondary vascular tissue of poplar stem [J]. Molecular Plant, 2023, 16(5): 809 − 828. [22] NGUYEN T T T, BAE E K, TRAN T N A, et al. Exploring the seasonal dynamics and molecular mechanism of wood formation in gymnosperm trees [J/OL]. International Journal of Molecular Sciences, 2023, 24(10): 8624[2023-07-15]. doi: 10.3390/ijms24108624. [23] NILSSON J, KARLBERG A, ANTTI H, et al. Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen [J]. The Plant Cell, 2008, 20(4): 843 − 855. [24] BJÖRKLUND S, ANTTI H, UDDESTRAND I, et al. Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin [J]. The Plant Journal, 2007, 52(3): 499 − 511. [25] AGUSTI J, HEROLD S, SCHWARZ M, et al. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20242 − 20247. [26] HUANG Jianguo, GUO Xiali, ROSSI S, et al. Intra-annual wood formation of subtropical Chinese red pine shows better growth in dry season than wet season [J]. Tree Physiology, 2018, 38(8): 1225 − 1236. [27] GUO Xiali, HUANG Jianguo, BUTTÒ V, et al. Auxin concentration and xylem production of Pinus massoniana in a subtropical forest in south China [J]. Tree Physiology, 2022, 42(2): 317 − 324. [28] BRACKMANN K, QI Jiyan, GEBERT M, et al. Spatial specificity of auxin responses coordinates wood formation [J/OL]. Nature Communications, 2018, 9: 875[2023-07-15]. doi: 10.1038/s41467-018-03256-2. [29] QIU Zongbo, WAN Lichuan, CHEN Tong, et al. The regulation of cambial activity in Chinese fir (Cunninghamia lanceolata) involves extensive transcriptome remodeling [J]. New Phytologist, 2013, 199(3): 708 − 719. [30] XU Changzheng, SHEN Yun, HE Fu, et al. Auxin-mediated Aux/IAA-ARF-HB signaling cascade regulates secondary xylem development in Populus [J]. New Phytologist, 2019, 222(2): 752 − 767. [31] MÄKILÄ R, WYBOUW B, SMETANA O, et al. Gibberellins promote polar auxin transport to regulate stem cell fate decisions in cambium [J]. Nature Plants, 2023, 9(4): 631 − 644. [32] ISRAELSSON M, SUNDBERG B, MORITZ T. Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen [J]. The Plant Journal, 2005, 44(3): 494 − 504. [33] PARK E J, KIM H T, CHOI Y I, et al. Overexpression of gibberellin 20-oxidase1 from Pinus densiflora results in enhanced wood formation with gelatinous fiber development in a transgenic hybrid poplar [J]. Tree Physiology, 2015, 35: 1264 − 1277. [34] MAURIAT M, MORITZ T. Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation [J]. The Plant Journal, 2009, 58(6): 989 − 1003. [35] MATSUMOTO-KITANO M, KUSUMOTO T, TARKOWSKI P, et al. Cytokinins are central regulators of cambial activity [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(50): 20027 − 20031. [36] SUNDELL D, STREET N R, KUMAR M, et al. AspWood: high-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula [J]. The Plant Cell, 2017, 29(7): 1585 − 1604. [37] OHASHI-ITO K, SAEGUSA M, IWAMOTO K, et al. A bHLH complex activates vascular cell division via cytokinin action in root apical meristem [J]. Current Biology, 2014, 24(17): 2053 − 2058. [38] NIEMINEN K, IMMANEN J, LAXELL M, et al. Cytokinin signaling regulates cambial development in poplar [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(50): 20032 − 20037. [39] LOVE J, BJÖRKLUND S, VAHALA J, et al. Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(14): 5984 − 5989. [40] ETCHELLS J P, PROVOST C M, TURNER S R. Plant vascular cell division is maintained by an interaction between PXY and ethylene signalling [J/OL]. PLoS Genetics, 2012, 8(11): e1002997[2023-07-15]. doi: 10.1371/journal.pgen.1002997. [41] DU Juan, GERTTULA S, LI Zehua, et al. Brassinosteroid regulation of wood formation in poplar [J]. New Phytologist, 2020, 225(4): 1516 − 1530. [42] JIN Yanli, YU Chunyan, JIANG Chunmei, et al. PtiCYP85A3, a BR C-6 oxidase gene, plays a critical role in brassinosteroid-mediated tension wood formation in poplar [J/OL]. Frontiers in Plant Science, 2020, 11: 468[2023-07-15]. doi: 10.3389/fpls. 2020.00468. [43] KUCUKOGLU M, NILSSON O. CLE peptide signaling in plants: the power of moving around [J]. Physiologia Plantarum, 2015, 155(1): 74 − 87. [44] KUCUKOGLU M, NILSSON J, ZHENG Bo, et al. WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees [J]. New Phytologist, 2017, 215(2): 642 − 657. [45] ZHANG Jing, ESWARAN G, ALONSO-SERRA J, et al. Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots [J]. Nature Plants, 2019, 5(10): 1033 − 1042. [46] ETCHELLS J P, PROVOST C M, MISHRA L, et al. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation [J]. Development, 2013, 140(10): 2224 − 2234. [47] JI Jiabing, STRABLE J, SHIMIZU R, et al. WOX4 promotes procambial development [J]. Plant Physiology, 2010, 152(3): 1346 − 1356. [48] BUSH M, SETHI V, SABLOWSKI R. A phloem-expressed PECTATE LYASE-LIKE gene promotes cambium and xylem development [J/OL]. Frontiers in Plant Science, 2022, 13: 888201[2023-07-15]. doi: 10.3389/fpls.2022.888201. [49] ZHANG Jing, NIEMINEN K, SERRA J A, et al. The formation of wood and its control [J]. Current Opinion in Plant Biology, 2014, 17: 56 − 63. [50] DU Juan, MANSFIELD S D, GROOVER A T. The Populus homeobox gene ARBORKNOX2 regulates cell differentiation during secondary growth [J]. The Plant Journal, 2009, 60(6): 1000 − 1014. [51] 杨紫薇. 线粒体定位的RFL30蛋白调控杨树形成层和次生木质部发育的分子机制研究[D]. 重庆: 西南大学, 2022. YANG Ziwei. PtoRFL30, a Mitochondrion-localized Protein, Regulates Secondary Vascular Development of Stem in Poplar [D]. Chongqing: Southwest University, 2022. [52] 胡建. 杨树ARF7蛋白整合生长素与赤霉素通路调控形成层活性的分子机制[D]. 重庆: 西南大学, 2022. HU Jian. Molecular Mechanism of ARF7 Protein Integrates Auxin and Gibberellin Signaling to Regulate Cambium Activity in Poplar [D]. Chongqing: Southwest University, 2022. [53] TANG Xianfeng, WANG Congpeng, CHAI Guohua, et al. Ubiquitinated DA1 negatively regulates vascular cambium activity through modulating the stability of WOX4 in Populus [J]. The Plant Cell, 2022, 34(9): 3364 − 3382. [54] KIM M H, BAE E K, LEE H, et al. Current understanding of the genetics and molecular mechanisms regulating wood formation in plants [J/OL]. Genes, 2022, 13(7):1181[2023-07-15]. doi: 10.3390/genes13071181. [55] OHTANI M, NISHIKUBO N, XU Bo, et al. A NAC domain protein family contributing to the regulation of wood formation in poplar [J]. The Plant Journal, 2011, 67(3): 499 − 512. [56] TAKATA N, AWANO T, NAKATA M T, et al. Populus NST/SND orthologs are key regulators of secondary cell wall formation in wood fibers, phloem fibers and xylem ray parenchyma cells [J]. Tree Physiology, 2019, 39(4): 514 − 525. [57] YANG Y, YOO C G, ROTTMANN W, et al. PdWND3A, a wood-associated NAC domain-containing protein, affects lignin biosynthesis and composition in Populus [J/OL]. BMC Plant Biology, 2019, 19: 486[2023-07-15]. doi: 10.1186/s12870-019-2111-5. [58] XIE Zhi, GUI Jinshan, ZHONG Yu, et al. Screening genome-editing knockouts reveals the receptor-like kinase ASX role in regulations of secondary xylem development in Populus [J]. New Phytologist, 2023, 238(5): 1972 − 1985. [59] ZHU Yingying, SONG Dongliang, XU Peng, et al. A HD-ZIP Ⅲ gene, PtrHB4, is required for interfascicular cambium development in Populus [J]. Plant Biotechnology Journal, 2018, 16(3): 808 − 817. [60] ZHU Yingying, SONG Dongliang, SUN Jiayan, et al. PtrHB7, a class Ⅲ HD-Zip gene, plays a critical role in regulation of vascular cambium differentiation in Populus [J]. Molecular Plant, 2013, 6(4): 1331 − 1343. [61] DU Juan, MIURA E, ROBISCHON M, et al. The Populus class Ⅲ HD ZIP transcription factor POPCORONA affects cell differentiation during secondary growth of woody stems [J/OL]. PLoS One, 2011, 6(2): e17458[2023-07-15]. doi: 10.1371/journal.pone.0017458. [62] ZHENG Shuai, HE Jiajia, LIN Zengshun, et al. Two MADS-box genes regulate vascular cambium activity and secondary growth by modulating auxin homeostasis in Populus [J/OL]. Plant Communications, 2021, 2(5): 100134[2023-07-15]. doi: 10.1016/j.xplc.2020.100134. [63] DAI Xiufang, ZHAI Rui, LIN Jiaojiao, et al. Cell-type-specific PtrWOX4a and PtrVCS2 form a regulatory nexus with a histone modification system for stem cambium development in Populus trichocarpa [J]. Nature Plants, 2023, 9(1): 96 − 111. [64] RANDALL R S, MIYASHIMA S, BLOMSTER T, et al. AINTEGUMENTA and the D-type cyclin CYCD3;1 regulate root secondary growth and respond to cytokinins [J]. Biology Open, 2015, 4(10): 1229 − 1236. [65] XIAO Ruixue, ZHANG Chong, GUO Xiaorui, et al. MYB transcription factors and its regulation in secondary cell wall formation and lignin biosynthesis during xylem development [J/OL]. International Journal of Molecular Sciences, 2021, 22(7): 3560[2023-07-15]. doi: 10.3390/ijms.22073560. [66] HU Hailiang, GUO Zhenhao, YANG Junjie, et al. Transcriptome and microRNA sequencing identified miRNAs and target genes in different developmental stages of the vascular cambium in Cryptomeria fortunei Hooibrenk [J/OL]. Frontiers in Plant Science, 2021, 12: 751771[2023-07-15]. doi: 10.3389/fpls.2021.751771. [67] WANG Lijun, LU Wanxiang, RAN Lingyu, et al. R2R3-MYB transcription factor MYB6 promotes anthocyanin and proanthocyanidin biosynthesis but inhibits secondary cell wall formation in Populus tomentosa [J]. The Plant Journal, 2019, 99(4): 733 − 751. [68] LEBOVKA I, MELE B H, LIU Xiaomin, et al. Computational modeling of cambium activity provides a regulatory framework for simulating radial plant growth [J/OL]. eLife, 2023, 12: e66627[2023-07-15]. doi: 10.7554/eLife.66627. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230473