-
全球每年有1/3~1/2的能源以各种形式消耗在摩擦上,不仅造成了能源浪费与经济损失,甚至会引起生产事故[1−2]。使用合适的润滑剂可以在相互作用的摩擦表面上形成油膜,降低摩擦与磨损,减少能源的浪费,延长机械使用寿命。润滑脂是一种将稠化剂分散到基础油中进行增稠得到的半固态润滑剂产品,具有黏度大、耐压性强、密封性好以及减震降噪等优点,在钢铁、化工、采矿以及冶金等行业得到了广泛的应用[3−5]。现在市面上的润滑脂是以不可再生的石化资源为原料生产的。随着全球石化资源的日益枯竭以及开采和使用过程中带来的环境污染问题,以可再生的生物基材料为原料制备润滑脂近年来成为了研究热点[6−8]。润滑脂主要由基础油(65%~95%)、稠化剂(5%~35%)以及添加剂(0~10%)组成。目前,关于生物基润滑脂的相关研究尚处于起步阶段,主要在基础油的开发,通常的做法是以植物油代替矿物油制备生物基润滑脂。用于制备润滑脂的常见植物油包括蓖麻油[9−11],大豆油[12−14]和菜籽油[15−17]等。RAWAT等[18]以蓖麻油为基础油制备了锂基润滑脂,并用二硫化钼(MoS2)和氧化石墨烯纳米片作为添加剂,发现二维片状纳米材料可以显著改善蓖麻油基润滑脂的摩擦学性能。LIU等[13]以环氧大豆油为基础油,锂皂和三乙醇铵聚皂的混合物为稠化剂制备了润滑脂,发现聚皂结构中的交联可以提供润滑脂更高的抗变形能力,并且摩擦系数显著低于未添加聚皂的润滑脂。但目前关于润滑脂生物基稠化剂的研究还较少,且以金属皂和聚脲稠化剂为主[19−22]。金属皂和聚脲稠化剂的价格不稳定,限制了润滑脂行业的可持续发展。在“碳达峰”和“碳中和”的背景下,纤维素凭借可再生可降解、绿色环保以及储量丰富等优点受到了人们的青睐[23−25]。本研究以天然纤维素和二氧化硅(SiO2)为稠化剂,利用硅羟基与纤维素羟基通过氢键物理交联制备了一种新型生物基润滑脂,并对其理化性质、流变特性以及摩擦性能进行了测试,旨在对生物降解型润滑脂的发展进行补充和完善,实现环保型润滑脂的可持续发展。
-
气相SiO2、矿物油由杭州得润宝油脂股份有限公司提供;纤维素由北方世纪(江苏)纤维素有限公司提供。锥入度仪(DFYF-308,大连分析仪器厂);宽温度范围滴点测定仪(ST3498-2,武汉研润科技发展有限公司);扫描电镜(SU 8010,株式会社日立制作所);流变仪(MCR 302,安东帕中国有限公司);四球摩擦试验机(MS-10JS,厦门天机自动化有限公司)。
-
纤维素润滑脂的制备:用电子秤称量320 g矿物油和225 g纤维素,在搅拌下将纤维素逐次加入矿物油中进行充分混匀,后将润滑脂放入三辊研磨机中反复研磨3次,得到质地均一的纤维素润滑脂。
SiO2润滑脂的制备:用电子秤称量550 g矿物油和30 g气相SiO2,将SiO2逐次加入矿物油中经过上述相同的搅拌和研磨操作后得到SiO2润滑脂。
纤维素/SiO2润滑脂的制备:用电子秤称量450 g矿物油,15 g气相SiO2以及165 g纤维素,将SiO2和纤维素逐次加入矿物油经过上述相同的搅拌和研磨操作后得到纤维素/SiO2润滑脂。
应用SPSS 26.0进行单因素完全方差分析比较3种润滑脂的分油率、锥入度以及摩擦学性能差异,用Duncan法进行显著性检验(α=0.05)。
-
对气相SiO2和纤维素表面喷金,用扫描电镜观察样品表面形貌。
-
锥入度是指在规定的负荷、时间和温度条件下锥体落入试样的深度,可以衡量润滑脂的稠度等级。按照GB/T 269—1991《润滑脂和石油脂锥入度测定法》,使用全尺寸的锥体测试3种润滑脂的锥入度,均为2#脂。
-
滴点是在规定的试验条件下,润滑脂在高温下从半固态转换为液态时第1次形成液滴并滴落下来的温度,可判断润滑脂的耐高温性能。采用标准GB/T 3498—2008《润滑脂宽温度范围滴定测定法》测定3种润滑脂的滴点。
-
钢网分油率是指润滑脂在受热条件下析出基础油的趋势,可体现润滑脂在受热条件下的胶体安定性。采用NB/SH/T 0324—2010《润滑脂分油的测定 锥网法》测定润滑脂的分油率。
-
润滑脂的流变特性主要研究润滑脂黏度、剪切应力和剪切应变等性能随温度和剪切速率变化的关系。采用安东帕(奥地利)MCR 302型旋转流变仪,测试过程中选择流变仪的控制应变、控制剪切速率以及控制应力模式。
-
采用四球摩擦试验机测试润滑脂的摩擦学性能,载荷为40×9.806 65 N,转速为1 200 r·min−1,运行时间为60 min。使用光学显微镜观察钢球的磨斑直径。
-
图1A~B为气相SiO2和纤维素的SEM照片,气相SiO2为纳米颗粒状,比表面积大,有利于与基础油的充分接触,具有良好的增稠作用。纤维素呈现微米级的短棒状,其表面的羟基可与SiO2的硅羟基形成氢键交联网络结构(图1C),改善润滑脂的胶体安定性,提升润滑脂的黏温性能和分油率。
-
润滑脂锥入度、分油率以及滴点等相关理化性质见表1,3种润滑脂的外观如图2所示。纤维素/SiO2润滑脂的分油率仅为0.6%,较SiO2润滑脂的3.6%有显著下降(P<0.05)。微量的分油可以保持设备润滑,对润滑有利;但过度的分油则会使润滑脂变稠变硬,破坏胶体结构,使润滑脂失去润滑作用,不能满足润滑要求。分油率测试结果表明:纤维素与SiO2的氢键作用赋予了润滑脂优异的胶体安定性。此外,在滴点测试中,纤维素润滑脂和SiO2润滑脂没有滴点(即330 ℃下无滴点),而纤维素/SiO2润滑脂的滴点为327 ℃,这说明纤维素的引入改善了SiO2润滑脂在高温下易失去流动性的缺点。
表 1 润滑脂的理化性质
Table 1. Physicochemical properties of greases
样品 SiO2添加量/% 纤维素添加量/% 锥入度(0.1 mm) 稠度等级 分油率/% 滴点/℃ 纤维素润滑脂 0 41.3 290 ± 5 a 2# 0.0 ± 0.0 c − SiO2润滑脂 5.2 0 282 ± 2 a 2# 3.6 ± 0.4 a − 纤维素/SiO2润滑脂 2.4 26.2 284 ± 6 a 2# 0.6 ± 0.1 b 327 说明:锥入度和分油率数据为平均值±标准差。同列不同字母表示不同润滑脂间差异显著(P<0.05)。−表示无。 -
图3为3种润滑脂在剪切速率为300 s−1下的黏度-温度曲线。在0 ℃以下时,纤维素润滑脂的黏度出现了剧烈的抖动,其原因可能是纤维素润滑脂在此温度下发生了冻结,说明纯纤维素润滑脂的低温性能较差。其中,纯纤维素和SiO2润滑脂分别在80 和60 ℃发生黏度升高的现象,这是因为稠化剂与基础油发生了溶胶-凝胶转变,导致黏度升高。纤维素/SiO2润滑脂在温度扫描过程中,其黏度在90 ℃以内始终高于纯纤维素和纯SiO2润滑脂,显示出了优异的黏温性能。
-
图4为3种润滑脂的应变扫描图。可以看出,应变值较小时,润滑脂的储能模量和损耗模量基本维持在一个恒定值,应变超过一定值时(A点),储能模量和损耗模量的线性规律不再保持,两者变化趋于相交。A点为润滑脂线性黏弹区和非线性黏弹区的临界点,其对应的应变为临界应变[26]。储能模量和损耗模量相交的B点称为润滑脂的流动点[27],此时润滑脂的储能模量和损耗模量相等。应变继续增加,损耗模量就开始大于储能模量,表示润滑脂黏性流动所消耗的能量大于弹性变形所存储的能量,呈流动状态[28]。从图4可以看出,纤维素/SiO2润滑脂的流动点所对应的应变值最大,表明润滑脂承受更大的应变时才能由固态转变为流动态。
-
触变环是剪切速率按先增大后减小的规律变化时所形成的剪切应力变化曲线围成的封闭环。表明润滑脂结构的破坏速度显著高于恢复能力,即润滑脂的可恢复性较差。反之,表明润滑脂结构被破坏后的可恢复性越好。图5为3种润滑脂在25 ℃下的触变环曲线。可以看到,纤维素/SiO2润滑脂的面积为17 636 Pa·s−1,小于纯纤维素润滑脂的72 250 Pa·s−1和SiO2润滑脂的21 998 Pa·s−1,表明纤维素与SiO2复配后,润滑脂受剪切作用后的结构恢复性能得到了提升。
-
图6A为纤维素、SiO2以及纤维素/SiO2润滑脂黏度的剪切速率扫描图。随着剪切速率的增加,润滑脂的黏度下降,呈现出剪切变稀的特征,并且纤维素和纤维素/SiO2润滑脂的黏度高于SiO2润滑脂。图6B为3种润滑脂剪切应力随剪切速率的变化关系,3种润滑脂的剪切应力随着剪切速率的增加而增加,且纤维素/SiO2润滑脂的剪切应力在剪切过程中是始终高于纯SiO2润滑脂的,表明其能承受的剪切应力更大。
-
由表2可见:纤维素/SiO2润滑脂的摩擦系数和摩擦力平均值为0.078和3.798 N,显著低于纯纤维素润滑脂的0.093和4.578 N以及SiO2润滑脂的0.095和4.664 N(P<0.05)。其可能的减摩机制如图7所示,相比于纯纤维素润滑脂和SiO2润滑脂,纤维素/SiO2润滑脂在摩擦过程中受剪切力作用,纤维素与SiO2颗粒之间发生相对移动,进而发挥了协效作用,提高了润滑脂的减摩性能。但纤维素/SiO2润滑脂的磨斑直径显著高于纤维素润滑脂和SiO2润滑脂(P<0.05),这可能是因为纤维素与SiO2在相对运动摩擦表面会两相分离,在摩擦副表面发生团聚,产生了更大的磨损体积。
表 2 润滑脂的摩擦性能表
Table 2. Friction performance of 3 types of greases
润滑脂样品 摩擦系数 摩擦力/N 磨斑直径/mm 纤维素 0.093 ±0.020 a 4.578 ± 0.200 a 0.633 ± 0.030 c SiO2 0.095 ±0.030 a 4.664 ± 0.300 a 0.744 ± 0.040 b 纤维素/SiO2 0.078 ±0.030 b 3.798 ± 0.200 b 0.848 ± 0.040 a 说明:数据为平均值±标准差。同列不同字母表示不同润滑脂间差异显著(P<0.05)。 -
黏温性方面,纤维素、SiO2以及纤维素/SiO2润滑脂的黏度均随温度升高而呈现下降趋势,这是因为温度升高,油脂分子的运动加剧,使得粒子间的内摩擦力减小,润滑脂的黏度也随之降低[29]。纤维素与SiO2复配后,两者之间的氢键作用提高了稠化剂结构的强度。因此,纤维素/SiO2润滑脂的黏温性能优于纤维素和SiO2润滑脂。
黏弹性方面,纤维素与SiO2复配后,其流动点对应的应变值最大。这是因为纤维素与SiO2复配后,通过氢键交联构成了一个三维空间网络结构,在其受到应力产生变形直至流动的过程中,会受到氢键作用的约束,只有纤维素/SiO2润滑脂发生更大的变形,才能克服纤维素与SiO2之间的氢键作用力,使之趋于定向,进而流动。
触变性方面,润滑脂在受剪切作用时,其内部的微结构会逐渐被破坏,黏度会逐渐下降,而去除剪切应力后,其黏度又会逐渐恢复。不同的润滑脂在结构恢复中的速度及恢复程度不同,因此触变环的面积可以反映润滑脂结构恢复的快慢[30−31]。纤维素与SiO2复配后,氢键交联网络减缓了润滑脂结构的破坏速度,使得润滑脂受剪切作用后的结构更易恢复。因此,纤维素/SiO2润滑脂的触变环面积最小。
黏剪切性方面,3种润滑脂呈现相似的变化规律,即随着剪切速率的增加,润滑脂的黏度降低,并且在低剪切速率下黏度的下降趋势更为明显,而当剪切速率较高时,黏度趋于稳定。这是因为高剪切速率下,稠化剂粒子间趋于定向,黏度因此也趋于定向,剪切变稀效应逐渐变弱[32],并且由于纤维素之间以及纤维素与SiO2的氢键作用,使得纤维素和纤维素/SiO2润滑脂能够承受更高的剪切速率。
-
本研究利用SiO2表面的硅羟基与纤维素羟基之间的氢键相互作用制备了生物基润滑脂,探究了纤维素、SiO2以及纤维素/SiO2等3种润滑脂的理化性质、流变行为以及摩擦性能。结果表明:①纤维素/SiO2润滑脂的分油率较低,胶体安定性得到提高,并且在327 ℃附近出现了滴点,改善了SiO2润滑脂高温下易失去流动性的缺点。②纤维素/SiO2润滑脂黏温性能和抗剪切能力较SiO2润滑脂得到了提升,且剪切破坏后润滑脂的结构恢复速度变快,结构体系更加稳定。③纤维素/SiO2润滑脂具有较低的摩擦系数和摩擦力,减摩效果较纤维素和SiO2润滑脂有所提升,但磨损体积却较大,抗磨性能有待改进。本研究以天然大宗的纤维素为原料开发出性能可以与商用SiO2润滑脂相媲美的环保型润滑脂产品,具有很强的实际应用前景,有利于生态效益和经济效益的统一,符合国家的可持续发展战略。
Preparation and properties of cellulose/SiO2 grease
-
摘要:
目的 旨在以可再生的天然纤维素为稠化剂制备可持续发展的环保型润滑脂产品。 方法 分别以纯纤维素、气相二氧化硅(SiO2)以及纤维素/SiO2为稠化剂制备了3组稠度等级为2#的润滑脂产品,并对其进行了锥入度测试、滴点测试、分油率测试、流变性能测试以及摩擦学性能测试。 结果 SiO2表面的硅羟基与纤维素羟基可以发生氢键作用,改善了润滑脂的理化性质、流变性能以及摩擦学性能。理化性质方面:相较于纤维素润滑脂和SiO2润滑脂,纤维素/SiO2润滑脂具有较低的分油率,胶体安定性得到提高,并且在327 ℃时出现了滴点,改善了SiO2润滑脂在高温下易失去流动性的缺点。流变特性方面:纤维素/SiO2润滑脂的黏温性能和抗剪切能力较SiO2润滑脂得到了提高,且剪切破坏后的结构恢复速度更快,结构体系更加稳定。摩擦学性能方面:纤维素/SiO2润滑脂相较于纤维素润滑脂和SiO2润滑脂,其减摩性能得到了提高,具有最低的摩擦系数和摩擦力。 结论 获得了具有实用前景的纤维素基润滑脂,符合国家低碳及可持续发展战略。图7表2参32 Abstract:Objective With the increasing depletion of petrochemical resources and the environmental pollution caused by the extraction and use process, sustainable and environmentally friendly lubricating grease products have been prepared using renewable natural cellulose as a thickener. Method Three sets of lubricating grease products with a viscosity grade of 2# were prepared using pure cellulose, gas-phase SiO2, and cellulose/SiO2 as thickeners, and their penetration, drop point, oil separation rate, rheological properties, and tribological properties were tested. Result The silicon hydroxyl groups on the surface of SiO2 can undergo hydrogen bonding crosslinking with the hydroxyl groups of cellulose, improving the physicochemical properties, rheological properties, and tribological properties of lubricating grease. In terms of physicochemical properties, compared to cellulose grease and SiO2 grease, cellulose/SiO2 grease has a lower oil separation rate and improved colloidal stability; And a drop point appeared at 327 ℃, which improved the fluidity at high temperatures of silicone grease. In terms of rheological properties, the viscosity temperature performance and shear resistance of cellulose/SiO2 lubricating grease have been improved, and the structural recovery speed is faster than that of silicone grease, and the structural system is more stable. In terms of tribological performance, compared to cellulose grease and SiO2 grease, cellulose/SiO2 grease has an improved friction reduction effect, with the lowest friction coefficient and friction force. Conclusion A cellulose based grease with practical prospects has been obtained, which is in line with the national low-carbon and sustainable development strategy. [Ch, 7 fig. 2 tab. 32 ref.] -
Key words:
- lubricating grease /
- cellulose /
- rheology /
- friction /
- modification
-
香榧Torreya grandis ‘Merrilii’是红豆杉科Taxaceae榧树属Torreya裸子植物榧树Torreya grandis经无性繁殖形成的优良栽培品种,也是中国南方特有的集果用、药用、材用、油用和观赏于一体的珍贵经济树种,具有极高的经济和生态价值[1]。香榧种实风味香酥,余味浓郁,营养丰富,具有很强的健康功效,深受消费者的喜爱,且丰产期产值在30万元·hm−2以上[2]。与其他坚果不同,香榧种实需经过一段后熟过程以积累糖分、不饱和脂肪酸和氨基酸等营养成分[3],此过程对于香榧坚果采后品质的形成与提升极为关键[4]。
氨基酸是构建蛋白质的基本组成单元,不仅是人体生命活动的重要物质基础,也是决定食物风味与营养价值的关键成分[5−6]。在坚果中,游离氨基酸的含量及组成直接影响其营养品质和感官特性,尤其是呈味氨基酸的分布对坚果的风味特征具有重要贡献,如鲜味氨基酸赋予食物鲜味[7],甜味氨基酸增强甜感[8],而芳香味氨基酸则带来复杂味觉层次[9]。ZHANG等[10]研究表明:香榧种仁中含有17种游离氨基酸,其中,鲜味氨基酸占比最高,赋予其浓郁的鲜香风味,甜味和苦味氨基酸次之,形成独特的味觉平衡。长柄扁桃仁Amygdalus pedunculatus中,游离氨基酸质量分数较高,达21.74~32.35 mg·g−1,其必需氨基酸占总氨基酸比例为24.86%~28.22%,以鲜味氨基酸为主,甜味氨基酸次之[11]。鲜核桃Juglans regia中谷氨酸和天冬氨酸占比显著高于干核桃,其必需氨基酸占比高于扁桃仁,达30%~41%,营养价值更高[12]。花生Arachis hypogaea[13]和榛子Corylus heterophylla[14]等其他坚果,虽然氨基酸占比有差异,但游离氨基酸占比均少于扁桃仁。香榧受异花授粉、自然杂交、生态环境等方面因素影响,产生了许多变异,形成了不同品种(品系)。目前已研究发现:不同香榧品种的种实在形态和营养物质方面存在显著差异,如核形指数[15]、油脂[16]和蛋白质等[17]。氨基酸作为蛋白质的分解产物,它的组成和质量分数是衡量香榧品质优劣的重要指标[18]。
本研究选取当前主要栽培品种‘细榧’T. grandis‘Xi Fei’和主要推广品种‘象牙榧’T. grandis‘Xiangya Fei’,分析2个品种种实氨基酸积累的规律和差异,为香榧的品质评估和品种推广提供科学参考,以进一步提升香榧坚果的核心竞争力以及推动香榧产业的发展。
1. 材料与方法
1.1 材料
种实采集于浙江省湖州市安吉县上墅乡刘家塘村(30°38′N,119°41′E),选取突破种鳞后525 d的‘细榧’ 和‘象牙榧’种实。样品采摘后于4 h内运回实验室,人工去除假种皮后清洗干净,放置一晚去除田间热。选取大小、颜色、形状一致的香榧种实,将其分为3个生物学重复,每个重复20 kg,置于温度25 ℃和湿度90%的室内进行后熟处理。每天进行1次翻堆,保证种实处于均匀的后熟环境。分别于后熟的第0、5、10、15和20天进行采样,人工去除香榧种壳,并将2个品种香榧种仁切碎分装于50 mL离心管,立即置于液氮中冷却速冻,放置于−80 ℃冰箱中保存,用于后续研究。
1.2 试剂与仪器
茚三酮、乙酸、乙酸钠、盐酸、氢氧化钠、乙醇等分析纯试剂购自国药集团化学试剂有限公司,柠檬酸、柠檬酸钠等优级纯试剂购自日本和光公司,氨基酸混标购自Sigma公司。L-8900全自动氨基酸分析仪购自日本日立公司,天平为波兰RADWAG-AS 220.R2专业分析天平。
1.3 方法
1.3.1 标准曲线绘制
准确吸取Type B、Type AN-Ⅱ氨基酸混标(日本和光)各0.20、0.40、0.60、0.80、1.00 mL于25 mL容量瓶中,用0.02 mol·L−1盐酸溶液定容,4 ℃冷藏保存。取配制好的17种氨基酸混标,进样20 µL,以氨基酸浓度为横坐标,峰面积为纵坐标,绘制标准曲线。
1.3.2 氨基酸测定
取5 g液氮研磨好的香榧种实粉末鲜样,溶于10 mL去离子水,混匀成匀浆。再将该匀浆移至100 mL的容量瓶中,并添加60 mL的去离子水,摇匀后沸水浴1 h,期间每15 min涡旋1次。待冷却到室温后,定容到100 mL。从中取5 mL的定容液置于15 mL的离心管中,再加入等体积质量浓度为10%的磺酸水杨酸溶液混匀后,在4 ℃、10 000 r·min−1的条件下离心15 min。离心后用注射器吸取上清液,取上清液过0.22 μm水膜,待测。采用L-
8900 全自动氨基酸分析仪测定香榧种实游离氨基酸。1.3.3 色谱条件
色谱柱为Na+型阳离子交换柱;离子交换树脂2622,检测器为紫外可见光检测器;显色剂为茚三酮;缓冲液系统为柠檬酸钠缓冲液B1 (pH 3.2),B2 (pH 3.0),B3 (pH 4.0),B4 (pH 4.9);缓冲液流速为0.40 mL·min−1,茚三酮流速为0.35 mL·min−1;柱温为57 ℃,室温为135 ℃。进样体积为20 μL。用外标法测定样品溶液中的游离氨基酸,其中脯氨酸检测波长为440 nm,其他氨基酸检测波长为570 nm。
1.4 数据处理
数据通过Excel进行计算并绘图,方差分析采用SPSS 26.0。对数据进行标准化处理,进一步计算特征值和特征向量,基于累积方差贡献率进行主成分分析(PCA);数据分析过程在Origin 2022平台完成,采用内置的PCA分析模块进行处理,并绘制相应的得分图(Score Plot),以直观展示各类氨基酸在主成分空间中的分布特征及其相互关系。
2. 结果与分析
2.1 游离氨基酸的质量分数及组成分析
以17种游离氨基酸为对照,分别检测后熟过程中‘细榧’和‘象牙榧’种实的氨基酸组分。如图1所示:在‘细榧’和‘象牙榧’种实中氨基酸种类无差异,均检测到了包含天冬氨酸、苏氨酸等14种蛋白质氨基酸以及γ-氨基丁酸,但组氨酸和精氨酸未检出(表1和表2)。
表 1 在后熟过程中‘细榧’和‘象牙榧’种实非必需氨基酸质量分数的变化Table 1 Non-essential amino acid content of ‘Xi Fei’ and ‘Xiangya Fei’ seeds during post-ripening process品种 时间/d 非必需氨基酸质量分数/(µg·g−1) 天冬氨酸 丝氨酸 谷氨酸 脯氨酸 甘氨酸 丙氨酸 酪氨酸 γ-氨基丁酸 总计 ‘细榧’ 0 40.90±1.15 c 46.37±2.56 b 72.80±5.89 de 44.01±7.91 a 9.43±0.65 b 29.90±1.43 cd 52.87±2.78 f 156.33±8.06 d 433.67±23.61 f 5 42.77±8.77 c 38.90±0.80 cd 89.63±2.79 bc 23.82±3.82 bc 30.20±6.22 a 28.87±2.21 d 114.67±4.99 d 320.00±24.91 a 665.03±36.97 cd 10 42.77±8.77 c 41.60±0.36 bcd 84.83±8.86 cde 14.03±4.24 c 32.73±5.89 a 35.13±0.69 bc 139.67±8.99 abc 331.67±21.70 a 731.30±28.72 abc 15 78.97±3.76 b 40.37±2.74 cd 72.47±5.42 de 15.23±0.97 c 32.07±5.53 a 34.93±3.46 bc 149.33±18.57 a 358.67±33.81 a 766.80±76.40 ab 20 79.27±6.31 b 36.57±1.03 d 81.20±2.97 cde 37.17±9.61 ab 33.47±4.18 a 30.80±0.59 cd 146.00±8.64 ab 353.67±14.50 a 798.13±19.70 a ‘象牙榧’ 0 106.23±8.32 a 51.53±1.67 a 71.97±5.15 e 40.77±8.34 a 12.63±1.24 b 40.53±1.10 a 72.30±5.46 ef 166.67±5.79 d 562.63±13.31 e 5 83.83±4.25 b 38.87±1.95 cd 87.70±13.71 bcd 42.77±7.89 a 26.40±0.45 a 34.60±2.32 bc 79.27±5.78 e 225.33±3.86 c 618.77±39.21 de 10 102.37±4.88 a 42.53±1.46 bc 92.63±5.24 bc 36.37±7.33 ab 29.43±1.00 a 33.27±1.09 cd 104.57±7.73 d 263.67±9.74 bc 704.83±27.31 bc 15 121.67±2.05 a 38.17±5.45 cd 100.20±2.29 b 42.47±7.98 a 26.33±4.22 a 39.03±4.71 ab 117.67±7.32 cd 270.33±16.74 b 755.86±21.37 abc 20 121.00±11.43 a 36.80±2.55 cd 119.33±6.13 a 22.40±12.01 bc 34.30±6.64 a 30.10±0.08 cd 124.67±19.62 bcd 255.67±30.71 bc 744.27±75.48 abc 说明:数值为平均值±标准差。不同小写字母表示‘细榧’和‘象牙榧’在同一物质不同后熟时间间差异显著(P<0.05)。 表 2 在后熟过程中‘细榧’和‘象牙榧’种实必需氨基酸质量分数的变化Table 2 Essential amino acid content of ‘Xi Fei’ and ‘Xiangya Fei’ seeds during post-ripening process品种 时间/d 必需氨基酸质量分数/(µg·g−1) 苏氨酸 缬氨酸 蛋氨酸 异亮氨酸 亮氨酸 苯丙氨酸 赖氨酸 总计 ‘细榧’ 0 23.37±1.34 b 28.63±2.43 c 10.07±1.11 cd 24.13±0.17 d 37.97±0.87 cd 57.80±2.38 d 38.53±3.82 b 220.50±14.06 c 5 35.63±2.47 a 44.23±4.76 ab 10.23±0.45 cd 31.70±2.49 abc 44.57±5.82 abcd 89.60±6.73 a 62.33±2.36 a 318.30±27.81 ab 10 38.83±2.25 a 48.60±2.29 a 11.97±0.88 bc 34.73±2.41 ab 48.87±5.57 ab 89.53±1.30 a 72.23±2.15 a 344.77±19.50 a 15 37.43±3.60 a 47.43±4.92 a 9.63±0.74 cd 34.60±3.60 ab 41.73±6.21 abcd 82.07±7.93 ab 67.43±7.71 a 320.33±40.59 ab 20 34.47±2.13 a 44.73±4.72 a 8.20±0.00 de 29.03±1.80 c 36.67±2.32 d 73.00±2.44 bc 63.07±5.31 a 289.17±18.78 b ‘象牙榧’ 0 33.93±0.85 a 37.13±1.90 b 16.00±0.67 a 29.97±0.54 bc 48.67±2.38 abc 87.93±5.41 a 65.50±2.09 a 319.13±8.33 ab 5 34.40±1.24 a 41.60±1.55 ab 11.37±2.38 bc 32.30±2.34 abc 45.63±2.00 abcd 77.33±10.14 abc 59.87±10.17 a 302.50±35.60 ab 10 37.17±1.23 a 47.63±1.28 a 12.70±1.39 b 36.30±2.48 a 51.63±3.41 a 80.73±3.80 ab 67.57±7.62 a 333.73±24.24 ab 15 38.30±1.44 a 48.00±1.14 a 10.30±0.49 cd 35.80±0.41 a 43.07±8.13 abcd 71.00±2.62 bc 66.60±2.87 a 313.07±16.31 ab 20 34.20±3.47 a 43.43±3.52 ab 7.03±0.40 e 32.67±3.18 abc 38.50±3.24 bcd 65.10±7.86 cd 65.17±7.85 a 286.10±33.01 b 说明:数值为平均值±标准差。不同小写字母表示‘细榧’和‘象牙榧’在同一物质不同后熟时间间差异显著(P<0.05)。 根据标准曲线计算得到每种氨基酸的质量分数,结果显示:2个品种种实在后熟过程中的总游离氨基酸质量分数均显著(P<0.05)增加,‘细榧’种实的总游离氨基酸质量分数为673.11~1 102.36 µg·g−1,‘象牙榧’种实为881.77~1 068.93 µg·g−1(图2)。后熟过程开始后,‘细榧’和‘象牙榧’种实总非必需氨基酸质量分数显均呈现上升趋势,‘细榧’在第20天积累达到最多,而‘象牙榧’种实则在第15天达时达到最大值后下降(表1)。‘细榧’种实总必需氨基酸质量分数显著高于‘象牙榧’(P<0.05,表2),然而,‘细榧’种实总必需氨基酸占比(26.59%~32.76%)却小于‘象牙榧’的占比(27.77%~36.19%)。在这2个品种中,γ-氨基丁酸质量分数最高,其次是谷氨酸和酪氨酸。γ-氨基丁酸在后熟过程中显著积累,且在第20天‘细榧’种实中γ-氨基丁酸质量分数为‘象牙榧’的1.38倍。
2.2 呈味氨基酸的差异分析
2.2.1 总呈味氨基酸分析
甜味氨基酸包括脯氨酸、赖氨酸、丙氨酸、甘氨酸、丝氨酸和苏氨酸;芳香味氨基酸包括酪氨酸和苯丙氨酸;鲜味氨基酸包括谷氨酸和天冬氨酸;苦味氨基酸包括蛋氨酸、亮氨酸、异亮氨酸和缬氨酸。在‘细榧’和‘象牙榧’种实中,总呈味氨基酸的质量分数从大到小排序为甜味氨基酸>芳香族氨基酸>鲜味氨基酸>苦味氨基酸。鲜味氨基酸在‘象牙榧’种实中的占比高于‘细榧’,而芳香族氨基酸占比则相反,即在‘细榧’种实中的占比高于‘象牙榧’(图3A)。PCA结果(图3B)显示:鲜味、甜味、苦味和芳香族氨基酸在这2个品种中显示出明显的分离,且‘细榧’种实具有较高的芳香族氨基酸,而‘象牙榧’种实具有较高的鲜味氨基酸和甜味氨基酸。
2.2.2 甜味氨基酸分析
在后熟过程中,‘细榧’种实的总甜味氨基酸质量分数无显著变化,在第20天时最高,为235.53 µg·g−1;‘象牙榧’种实的总甜味氨基酸逐渐积累,在第15天时达到最大值,为250.89 µg·g−1(图4A)。在‘象牙榧’种实中,赖氨酸的质量分数最高,在‘细榧’中,赖氨酸逐渐积累且在第15天达到最高。PCA结果(图4B)显示:2个品种种实的甜味氨基酸在第0天差异明显,其中丝氨酸在‘象牙榧’中的贡献较大。随着后熟时间的推移,2个品种的甜味氨基酸质量分数差异不明显。
2.2.3 芳香族氨基酸分析
如图5A所示:后熟第0天时,‘细榧’种实的芳香族氨基酸质量分数低于‘象牙榧’。在后熟过程中,2个品种种实的芳香族氨基酸质量分数均呈上升趋势,但‘象牙榧’到第10天后趋于稳定,不再增加,而‘细榧’仍不断增加,在第15天达到最大值,且高于‘象牙榧’。‘细榧’种实的芳香族氨基酸质量分数介于110.67~231.40 µg·g−1,‘象牙榧’则介于156.60~189.77 µg·g−1。苯丙氨酸和酪氨酸是构成香榧芳香族氨基酸的重要成分,其中酪氨酸在后熟过程中质量分数增加更为显著,这2种氨基酸都对‘细榧’种实后熟过程中芳香味的形成有较大贡献(图5B)。
2.2.4 鲜味氨基酸分析
在后熟过程中,2个品种种实总鲜味氨基酸质量分数的变化趋势与芳香族氨基酸相似,均呈上升的趋势。然而,‘象牙榧’种实的鲜味氨基酸质量分数在整个后熟期间始终高于‘细榧’,特别是在后熟的第20天时,‘象牙榧’种实的鲜味氨基酸质量分数比‘细榧’高79.86 µg·g−1(图6A)。谷氨酸和天冬氨酸是构成香榧鲜味氨基酸的关键成分,均在后熟过程中逐渐积累。相比而言,‘细榧’种实的谷氨酸变化较小,这说明天冬氨酸可能是影响‘细榧’鲜味变化的主要因素。而在‘象牙榧’种实中,天冬氨酸和谷氨酸的质量分数则相对接近。PCA结果(图6B)进一步显示:谷氨酸和天冬氨酸均对‘象牙榧’种实在后熟过程中的鲜味有着较大的贡献。
2.2.5 苦味氨基酸分析
如图7A所示:‘细榧’和‘象牙榧’的苦味氨基酸质量分数接近,在后熟过程中的变化趋势也相似,均在后熟第10天达到最高值,后逐渐降低。亮氨酸、异亮氨酸和缬氨酸占‘细榧’和‘象牙榧’苦味氨基酸的90%。2个品种在PCA分析(图7B)中呈现一定的分离,说明2个品种在后熟过程中苦味氨基酸组成的变化模式存在差异,其中亮氨酸和蛋氨酸对‘象牙榧’种实苦味贡献较大。
3. 讨论
近年来,香榧坚果因其高营养价值和独特风味,深受消费者青睐[19]。本研究发现:香榧种实中总游离氨基酸质量分数为673.11~
1102.36 µg·g−1,均值为991.06 µg·g−1,低于核桃,但高于山核桃Carya cathayensis和巴西松子Araucaria angustifolia [12]。香榧中的氨基酸组成与联合国粮食及农业组织/世界卫生组织(FAO/WHO)推荐的理想模式非常接近,易被人体吸收利用[2]。本研究检测到15种游离氨基酸,与ZHANG等[10]的研究相比,相差2种,可能是由于香榧品种及产地的不同,造成氨基酸组成成分和质量分数的差异。在后熟过程中,2个品种种实的游离氨基酸质量分数均显著提高,‘细榧’种实的整体游离氨基酸质量分数高于‘象牙榧’。其中,质量分数较高的氨基酸从高到低依次为γ-氨基丁酸、酪氨酸、天冬氨酸和谷氨酸。这些氨基酸不仅对香榧的营养价值有重要贡献,还通过参与美拉德反应等化学反应,生成多种风味化合物[20],能显著提升香榧的风味品质。已有研究表明:天冬氨酸能改善心肌收缩功能、促进能量代谢、保护线粒体功能以及降低缺血性心脏病风险[21−22]。谷氨酸作为中枢神经系统中主要的兴奋性神经递质[23],参与神经信号传递,调节学习和记忆功能[24]。酪氨酸作为芳香族氨基酸,与降低血压相关,尤其是在高血压患者中,其水平与心血管健康指标之间存在关联[25]。质量分数最高的γ-氨基丁酸能通过调节自主神经系统[26],降低血压[27]。这说明后熟过程不仅能提升香榧的氨基酸质量分数,还能优化其营养成分。
氨基酸的多样性和组成差异是香榧独特口感的重要基础[28]。呈味氨基酸在食物的风味调节中发挥重要作用,它们赋予食品甜味、鲜味和苦味等多种风味特征,显著影响食品的整体风味和决定食品的可接受性[29]。在种实后熟过程中香榧的游离氨基酸,特别是鲜味和芳香族氨基酸的积累,显著提升了香榧的风味品质。本研究发现:香榧中各类呈味氨基酸的质量分数从高到低排序为:甜味>芳香族>鲜味>苦味。‘细榧’种实中γ-氨基丁酸与酪氨酸质量分数较高,芳香风味更突出。有研究表明:在柑橘Citrus中,酪氨酸和苯丙氨酸也是重要的芳香味氨基酸,是柑橘风味多样性的重要来源[30]。酪氨酸和苯丙氨酸会通过参与挥发性化合物的合成,影响果实的香气特征[31]。‘象牙榧’种实因天冬氨酸与谷氨酸质量分数高,鲜味更足。谷氨酸具有明显的鲜味,是发酵食物和调味品中最丰富的氨基酸,也是其中最重要的风味成分物质[32],间接影响蔬菜的风味形成[33]。番茄Solanum lycopersicum中的谷氨酸和天冬氨酸为它提供了特有的鲜味,其含量随着果实成熟逐渐增加,有助于番茄果实风味的形成[34]。综上,后熟过程使香榧种实具有了不同于其他坚果的独特呈味。
4. 结论
本研究结果显示:香榧不同品种种实的氨基酸组成和质量分数存在较大差异,在香榧种实的后熟过程中,游离氨基酸质量分数逐渐增加,‘细榧’和‘象牙榧’种实氨基酸差异主要体现在芳香族氨基酸和鲜味氨基酸上。未来可进一步优化检测方法,深入研究不同香榧品种种实游离氨基酸差异的形成机制,并结合转录组分析不同香榧品种后熟过程中氨基酸合成代谢机制。
-
表 1 润滑脂的理化性质
Table 1. Physicochemical properties of greases
样品 SiO2添加量/% 纤维素添加量/% 锥入度(0.1 mm) 稠度等级 分油率/% 滴点/℃ 纤维素润滑脂 0 41.3 290 ± 5 a 2# 0.0 ± 0.0 c − SiO2润滑脂 5.2 0 282 ± 2 a 2# 3.6 ± 0.4 a − 纤维素/SiO2润滑脂 2.4 26.2 284 ± 6 a 2# 0.6 ± 0.1 b 327 说明:锥入度和分油率数据为平均值±标准差。同列不同字母表示不同润滑脂间差异显著(P<0.05)。−表示无。 表 2 润滑脂的摩擦性能表
Table 2. Friction performance of 3 types of greases
润滑脂样品 摩擦系数 摩擦力/N 磨斑直径/mm 纤维素 0.093 ±0.020 a 4.578 ± 0.200 a 0.633 ± 0.030 c SiO2 0.095 ±0.030 a 4.664 ± 0.300 a 0.744 ± 0.040 b 纤维素/SiO2 0.078 ±0.030 b 3.798 ± 0.200 b 0.848 ± 0.040 a 说明:数据为平均值±标准差。同列不同字母表示不同润滑脂间差异显著(P<0.05)。 -
[1] LIANG Zhao, WANG Siyuan, ZHU Kaiji, et al. Enhancing the tribological properties and corrosion resistance of graphene-based lubricating grease via ultrasonic-assisted ball milling[J/OL]. Colloids and Surfaces A : Physicochemical and Engineering Aspects, 2022, 633: 127889[2023-10-04]. doi: 10.1016/j.colsurfa.2021.127889. [2] SHAHNAZAR S, BAGHERI S, ABD HAMID S B. Enhancing lubricant properties by nanoparticle additives [J]. International Journal of Hydrogen Energy, 2016, 41(4): 3153 − 3170. [3] SUN Zheng, XU Chunming, PENG Yuxing, et al. Fretting tribological behaviors of steel wires under lubricating grease with compound additives of graphene and graphite[J/OL]. Wear, 2020, 454/455: 203333[2023-10-04]. doi: 10.1016/j.wear.2020.203333. [4] WEI Xiaofeng, LI Wen, FAN Xiaoqiang, et al. MoS2-functionalized attapulgite hybrid toward high-performance thickener of lubricating grease[J/OL]. Tribology International, 2023, 179: 108135[2023-10-04]. doi: 10.1016/j.triboint.2022.108135. [5] SENATORE A, HONG H, D’URSO V, et al. Tribological behavior of novel CNTs-based lubricant grease in steady-state and fretting sliding conditions[J/OL]. Lubricants, 2021, 9(11): 107[2023-10-04]. doi: 10.3390/lubricants9110107. [6] SU Chang, GUO Jianfang, CHENG Jue, et al. Heterogeneous epoxidation of microcrystalline cellulose and the toughening effect toward epoxy resin [J]. Industrial &Engineering Chemistry Research, 2023, 62(6): 2671 − 2686. [7] WU Zhipeng, THORESEN P P, MATSAKAS L, et al. Facile synthesis of lignin-castor oil-based oleogels as green lubricating greases with excellent lubricating and antioxidation properties [J]. ACS Sustainable Chemistry &Engineering, 2023, 11(34): 12552 − 12561. [8] BORREGO M, MARTíN-ALFONSO J, VALENCIA C, et al. Impact of the morphology of electrospun lignin/ethylcellulose nanostructures on their capacity to thicken castor oil[J/OL]. Polymers, 2022, 14(21): 4741[2023-10-04]. doi: 10.3390/polym14214741. [9] MARTíN-ALFONSO J E, MARTíN-ALFONSO M J, VALENCIA C, et al. Rheological and tribological approaches as a tool for the development of sustainable lubricating greases based on nano-montmorillonite and castor oil [J]. Friction, 2021, 9(2): 415 − 428. [10] VAFAEI S, JOPEN M, JACOBS G, et al. Synthesis and tribological behavior of bio-based lubrication greases with bio-based polyester thickener systems[J/OL]. Journal of Cleaner Production, 2022, 364: 132659[2023-10-04]. doi: 10.1016/j.jclepro.2022.132659. [11] CHEN Jiale, YU Jinying, LIU Danlian, et al. Tribological properties and synergistic lubrication mechanism of 3D graphene/nano-TiO2 (G@TiO2) composite castor oil: a microscopic view and molecular dynamics perspective[J/OL]. Tribology International, 2023, 188: 108821[2023-10-04]. doi: 10.1016/j.triboint.2023.108821. [12] KOZDRACH R. The tribological properties of lubricating greases based on renewable oils [J]. Tribologia, 2016, 266(2): 61 − 72. [13] LIU Zengshe, BIRESAW G, BISWAS A, et al. Effect of polysoap on the physical and tribological properties of soybean oil-based grease [J]. Journal of the American Oil Chemists Society, 2018, 95(5): 629 − 634. [14] SAXENA A, KUMAR D, TANDON N. Development of eco-friendly nano-greases based on vegetable oil: an exploration of the character via structure[J/OL]. Industrial Crops and Products, 2021, 172: 114033[2023-10-04]. doi: 10.1016/j.indcrop.2021.114033. [15] KREIVAITIS R, PADGURSKAS J, GUMBYTĖ M, et al. An assessment of beeswax as a thickener for environmentally friendly lubricating grease production [J]. Lubrication Science, 2015, 27(6): 347 − 358. [16] 何忠义, 朱星星, 唐骏, 等. 纳米氧化镧在纯菜籽油锂基脂中的摩擦学性能研究[J]. 稀土, 2017, 38(4): 23 − 29. HE Zhongyi, ZHU Xingxing, TANG Jun, et al. Study on the tribological properties of nano lanthanum oxide in pure rapeseed oil lithium based fats [J]. Chinese Rare Earth, 2017, 38(4): 23 − 29. [17] 康健, 赵玉贞, 宗明. 生物降解型润滑脂的进展[J]. 合成润滑材料, 2012, 39(1): 21 − 24. KANG Jian, ZHAO Yuzhen, ZONG Ming. Progress in biodegradable lubricating greases [J]. Synthetic Lubricants, 2012, 39(1): 21 − 24. [18] RAWAT S S, HARSHA A P, KHATRI O P. Tribological investigations of two-dimensional nanostructured lamellar materials as additives to castor-oil-derived lithium grease[J/OL]. Journal of Tribology-transactions, 2022, 144(9): 091902[2023-10-04]. doi: 10.1115/1.4054102. [19] KUMAR N, SAINI V, BIJWE J. Tribological investigations of nano and micro-sized graphite particles as an additive in lithium-based grease[J/OL]. Tribology Letters, 2020, 68(4): 124[2023-10-04]. doi: 10.1007/s11249-020-01362-1. [20] WANG Tao, LI Zhanjun, LI Jingbin, et al. Impact of boron nitride nanoparticles on the wear property of lithium base grease [J]. Journal of Materials Engineering and Performance, 2020, 29(8): 4991 − 5000. [21] KUMAR N, SAINI V, BIJWE J. Exploration of talc nanoparticles to enhance the performance of lithium grease[J/OL]. Tribology International, 2021, 162: 107107[2023-10-04]. doi: 10.1016/j.triboint.2021.107107. [22] REN Guanlin, ZHOU Changjiang, FAN Xiaoqiang, et al. Investigating the rheological and tribological properties of polyurea grease via regulating ureido amount[J/OL]. Tribology International, 2022, 173: 107643[2023-10-04]. doi: 10.1016/j.triboint.2022.107643. [23] LOU Gaobo, MA Zhewen, DAI Jinfeng, et al. Fully biobased surface-functionalized microcrystalline cellulose via green self-assembly toward fire-retardant, strong, and tough epoxy biocomposites [J]. ACS Sustainable Chemistry &Engineering, 2021, 9(40): 13595 − 13605. [24] AZIZ T, FARID A, HAQ F, et al. A review on the modification of cellulose and its applications[J/OL]. Polymers, 2022, 14(15): 3206[2023-10-04]. doi: 10.3390/polym14153206. [25] LI Jingwen, LIN Ning, DU Chen, et al. Tribological behavior of cellulose nanocrystal as an eco-friendly additive in lithium-based greases[J/OL]. Carbohydrate Polymers, 2022, 290: 119478[2023-10-04]. doi: 10.1016/j.carbpol.2022.119478. [26] LI Yong, ZHOU Weidong, XUE Wanan, et al. The enhancement of overall performance of lubricating grease by adding layered double hydroxides[J/OL]. Lubricants, 2023, 11(6): 260[2023-10-04]. doi: 10.3390/lubricants11060260. [27] BARTOLOMÉ M, GONÇALVES D, TUERO A G, et al. Greases additised with phosphonium-based ionic liquids - Part I: Rheology, lubricant film thickness and stribeck curves[J/OL]. Tribology International, 2021, 156: 106851[2024-03-04]. doi: 10.1016/j.triboint.2020.106851. [28] ZAKANI B, ANSARI M, GRECOV D. Dynamic rheological properties of a fumed silica grease [J]. Rheologica Acta, 2018, 57: 83 − 94. [29] PENG Han, LI Songyin, SHANGGUAN Linjian, et al. Research on the rheological characteristics of wind power grease based on rheological parameters[J/OL]. Lubricants, 2023, 11(7): 299[2023-10-04]. doi: 10.3390/lubricants11070299. [30] DAI Wenting, ZUO Jinghao, LIU Dehao, et al. Tribological properties and seasonal freezing damage evolution of rotating spherical hinge self-lubricating coating[J/OL]. Applied Science, 2022, 12(16): 8329[2023-10-04]. doi: 10.3390/app12168329. [31] REN Guanlin, ZHOU Changjiang, WANG Siyuan, et al. Improving the rheological and tribological properties of lithium complex grease via complexing agent[J/OL]. Tribology International, 2022, 175: 107826[2023-10-04]. doi: 10.1016/j.triboint.2022.107826. [32] WANG Yanshuang, ZHANG Pu, LIN Jianghai, et al. Rheological and tribological properties of lithium grease and polyurea grease with different consistencies[J/OL]. Coatings, 2022, 12(4): 527[2023-10-04]. doi: 10.3390/coatings12040527. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230492