-
森林蒸散与许多生态水文功能紧密相关,尤其在旱区森林水量平衡中往往占据主导地位,其大小同时受林分密度、郁闭度、叶面积指数等植被特征[1−3]及气候、地形、土壤等环境因子[4−6]的影响。为实现森林与水资源的协调管理,减少生态耗水成本,提高水分利用效率,保障供水安全,需深入理解不同蒸散组分变化与林分结构和环境因子(如土壤湿度)的关系。为便于观测分析,通常把森林蒸散划分为林冠截留、林木蒸腾、林下蒸散3个组分[7],其中林下蒸散包含林下草灌的截持与蒸腾、土壤蒸发等。间伐降低林分密度是减少森林蒸散的常用措施,这可直接减少林木蒸腾和林冠截持,但却增大了林下蒸散,使森林蒸散不随林分密度呈相同比例线性下降[8]。相比林冠截持和林木蒸腾,对林下蒸散的研究还不足,需要加深对林下蒸散变化规律的理解。
林下蒸散测定方法较多,其中优先选用的是微型蒸渗仪(Micro-Lysimeter),它可直接观测林下蒸散[9−10]。以往有限的研究表明:林下蒸散在森林蒸散中的占比往往较高且变化范围较大[8, 11−18]。这说明林下蒸散的影响因素和作用机制都具有高度复杂性。以往相关研究主要集中于林地蒸散特征及其与林分结构、环境条件的关系。在旱区,土壤水分状况对林地蒸散的影响机制的相关研究成果较少。
在气候变化背景下,降水的年际波动和季节性波动较大,导致林下蒸散的关键影响因子(降水、土壤湿度等)多变,这就增加了定量描述和定性理解林下蒸散变化机制及对多个环境因子响应特征的难度。为此,本研究在宁夏六盘山北部半干旱区的叠叠沟小流域,选择当地主要造林树种华北落叶松Larix principis-rupprechtii人工林,利用微型蒸渗仪监测林下蒸散的日变化规律,并通过设置防水措施形成人为土壤湿度梯度,探究土壤水分对林下蒸散的影响,为科学调控林水关系提供科学依据。
-
研究期间日均气温和日潜在蒸散量总体呈逐渐降低的波浪状变化(图1),其均值分别为12.02 ℃和2.61 mm·d−1,极差分别为18.69 ℃和5.53 mm·d−1,变异系数分别为41.43%和51.86%;降水量总和为297.0 mm,其中,8和9月分别为145.0和119.0 mm,占比分别为48.82%和40.07%;林地土壤体积含水量呈波浪状变化,平均为37.57%,在8、9、10月分别为35.69%、38.93%、38.13%。
-
由图2可见:在8、9、10月,自然降水的平均土壤体积含水量分别为42.85%、45.66%、40.67%,总蒸散量分别为67.06、36.32、29.49 mm;土壤体积含水量因降水不断输入干扰而呈波动范围大和减幅较小的变化特征,与林下日蒸散量的变化趋势不同且相关不显著(图2)。在8、9、10月,防水条件的平均土壤体积含水量分别为38.93%、24.60%、17.36%,总蒸散量分别为54.22、20.07、11.35 mm;土壤体积含水量连续降低,波动幅度小且降幅逐渐减小,8、9、10月的减幅分别为21.81%、8.17%、4.62%,与林下日蒸散量的变化趋势基本相同,且与林下日蒸散量极显著正相关(P<0.01)。
-
相关分析(图3)显示:2种水分条件的林下日蒸散量与多个环境因子的相关性呈相似的变化特征。林下日蒸散量与空气相对湿度、降水量、自然条件的土壤湿度呈显著负相关(P<0.05),与其他环境因子均呈正相关。自然条件的林下日蒸散量与降水量显著负相关(P<0.05),与空气相对湿度、风速、饱和水汽压、降水量的相关性强于防水条件的林下日蒸散量,与太阳辐射、土壤温度、气温、潜在蒸散的相关性弱于防水条件的林下日蒸散;防水条件的林下日蒸散量与土壤体积含水量显著正相关(P<0.05)。
-
从8月1日至10月31日,有无雨水输入造成的不同土壤水分条件下的林下日蒸散量差值的变化见图4A。在8月,除了前2 d内因人为浇水导致自然降水的日蒸散量低于防水条件从而使两者差值为负值外,之后的两者差值均为正值。2种土壤水分条件的林下日蒸散量差值总体在中期较大,前期、后期相对较小,主要是因前期两者的土壤湿度差异较小,后期的潜在蒸散能力减弱。在8、9、10月,自然降水与防水条件下日蒸散量之差的均值依次为0.41、0.54、0.59 mm·d−1。在9、10月,两者的差值较大,甚至高于防水条件日蒸散量,说明8—10月随着土壤水分差异的增大(8、9、10月两者的土壤体积含水量差值依次为3.92%、21.06%、23.31%)对林下日蒸散量的影响也在逐渐增加。
图 4 2种水分条件的林下日蒸散量差值和比值的季节变化
Figure 4. Seasonal variation of understory evapotranspiration difference and ratio under two water conditions
自然降水、防水条件2种条件的林下日蒸散量比值的日变化存在很大波动(图4B),变异系数为38.49%,但总体呈逐渐增大趋势,在8、9、10月依次为:1.29、1.91、2.74,主要因为2种条件的蒸渗仪内土壤湿度差异(8、9、10月两者的土壤体积含水量比值依次为1.13、1.87、2.36)逐渐增大导致的。
在晴天、多云、阴雨天气下,2种土壤水分条件的林下日蒸散量差值依次为0.74、0.46、0.26 mm·d−1,主要是因不同天气条件的蒸散潜力存在差异,晴天较大、阴雨天较小;两者的林下日蒸散量比值依次为2.12、1.79、2.11,这与多云天多集中在8月,土壤湿度差异相对较小(两者的土壤体积含水量比值依次为1.88、1.69、1.82)有关。
-
相关分析(图3)表明:2种水分条件的林下日蒸散量与潜在蒸散均呈显著正相关(P<0.05)。为在排除潜在蒸散影响后评价土壤水分条件对林下日蒸散量的影响,将潜在蒸散分为6组(0~1、1~2、2~3、3~4、4~5、5~6 mm·d−1)作图分析(图5),可知在各级潜在蒸散时2种水分条件的林下日蒸散量均随土壤体积含水量增加而增加。总体来看,自然降水的林下日蒸散量均高于防水条件的林下日蒸散量。这主要是因为前者土壤湿度一般都高于后者,但在两者土壤湿度相近时(图5中潜在蒸散大于3 mm·d−1的个别数据),其林下日蒸散量数值也相近,说明两者遵循相同的林下蒸散变化规律。
图 5 不同潜在蒸散时林下日蒸散量随土壤体积含水量的变化
Figure 5. Variation of daily understory evapotranspiration with volumetric soil moisture under different potential evapotranspiration
由图6可知:随着2种水分条件的土壤体积含水量差值增加,两者林下日蒸散量的差值在潜在蒸散为3~6 mm·d−1时呈明显的逐渐增大趋势,但在其他潜在蒸散范围(0~3 mm·d−1)内增加的较为平缓。当潜在蒸散为3~6 mm·d−1时,土壤体积含水量的差异极大地影响林下日蒸散量。由表1可知:随着潜在蒸散量逐渐增加,自然降水和防水条件日蒸散量、防水条件土壤体积含水量均呈明显逐渐增大趋势,两者间均呈线性关系(图7),而自然降水土壤体积含水量呈微弱逐渐下降趋势。
图 6 不同潜在蒸散时2种条件的林下日蒸散量差值随土壤体积含水量差值的变化
Figure 6. Daily variation of understory evapotranspiration difference between two water conditions with the volumetric soil moisture under different potential evapotranspiration
表 1 不同潜在蒸散时2种水分条件的林下日蒸散量与土壤体积含水量的均值、差值
Table 1. Mean and difference of daily understory evapotranspiration and volumetric soil moisture under two water conditions and different potential evapotranspiration
潜在蒸散量
分组/(mm·d−1)潜在蒸散量
均值/(mm·d−1)日蒸散量均值/(mm·d−1) 土壤体积含水量均值/% 日蒸散量
差值/(mm·d−1)土壤体积含水量
差值/%日蒸散量差值/
土壤体积含水量差值自然降水 防水条件 自然降水 防水条件 0~1 0.64 0.49 0.19 43.59 21.00 0.30 22.58 1.33 1~2 1.46 0.82 0.43 43.88 23.92 0.39 19.96 1.95 2~3 2.39 1.20 0.64 42.82 22.42 0.56 20.40 2.75 3~4 3.46 2.04 1.30 42.25 28.27 0.74 13.98 5.29 4~5 4.46 2.36 1.87 42.47 36.96 0.49 5.51 8.89 5~6 5.38 2.85 2.31 41.07 40.41 0.53 0.66 80.30 图 7 2种水分条件的林下日蒸散量及差值、蒸散量差值与含水量差值的比值随分组潜在蒸散均值的变化
Figure 7. Variation of daily understory evapotranspiration and its difference, the ratio of understory evapotranspiration difference to volumetric soil moisture difference under two water conditions with the mean value of potential evapotranspiration
随着潜在蒸散量逐渐增加,2种水分条件的林下日蒸散量差值呈现先增大后减小的单峰变化,两者呈二项式关系(图7),土壤体积含水量差值呈逐渐减小的趋势(表1),林下日蒸散量差值与土壤体积含水量差值的比值呈指数函数变化(图7)。当平均潜在蒸散分别为0.64、5.38 mm·d−1时,土壤体积含水量的差值分别为22.58%、0.66%,林下日蒸散量的差值分别为0.30、0.53 mm。在潜在蒸散量较大时,水分条件变化对林下日蒸散量的影响更大。这可用2种水分条件的林下日蒸散量差值与土壤体积含水量差值的比值来表示,当潜在蒸散大于3 mm·d−1时,两者的比值成倍增加;当潜在蒸散大于5 mm·d−1时,两者的比值成指数增加。由此可知:当潜在蒸散大于3 mm·d−1时,土壤湿度对林下蒸散影响增大;当潜在蒸散大于5 mm·d−1时,土壤湿度对林下日蒸散量影响极为明显。
Difference of daily understory evapotranspiration under two water conditions in Larix principis-rupprechtii plantation
-
摘要:
目的 探讨土壤湿度对华北落叶松Larix principis-rupprechtii林下日蒸散变化的影响,为理解林地蒸散适应气候变化的机制及制定林水协调管理方案提供理论基础。 方法 以宁夏六盘山半干旱区叠叠沟小流域华北落叶松人工林为对象,设置了遮断降水输入(防水处理)和自然降水输入2种处理,人为加大土壤湿度梯度,分析2种土壤湿度条件下气温、太阳辐射、降水量等因子对林下日蒸散量的影响。 结果 在8、9、10月,自然降水的林下日蒸散量分别为67.06、36.32、29.49 mm·d−1,防水处理分别为54.22、20.07、11.35 mm·d−1,各月自然降水下的日蒸散量均大于防水处理。2种水分条件的林下日蒸散量随时间进程总体呈逐渐减小趋势,且自然降水下波动大于防水处理。8—10月,2种水分条件的林下日蒸散量差值总体呈先升后降的波浪状变化,比值总体呈逐渐升高的波浪状变化;在8、9、10月,各日自然降水日蒸散量与防水处理日蒸散量之差的均值依次为0.41、0.54、0.59 mm·d−1,比值依次为1.29、1.91、2.74。随潜在蒸散增大,2种水分条件的林下日蒸散量差与土壤体积含水量差的比值逐渐增加。土壤湿度对林下蒸散的影响在日潜在蒸散量小于3 mm·d−1时较小,在大于3 mm·d−1时增大,在大于5 mm·d−1时增大极为明显。 结论 2种水分条件的林下蒸散影响因子大致相同,区别为自然降水的林下日蒸散量更多受降水影响,而防水处理则更多受土壤湿度影响。未来应增加多个土壤湿度梯度对林下蒸散差异的影响研究。图7表1参28 Abstract:Objective The purpose of this study is to explore the impact of soil moisture on the daily understory evapotranspiration in Larix principis-rupprechtii plantation, so as to provide a theoretical basis for understanding the mechanism of forest evapotranspiration adapting to climate change and developing plans for coordinated forest water management. Method Taking L. principis-rupprechtii plantation in Diediegou small watershed in semi-arid area of Liupan Mountain in Ningxia as the research object, two experiments (blocking precipitation or water-proof input, and natural precipitation input) were conducted. Soil moisture gradient was artificially increased, and the effects of environmental factors (air temperature, solar radiation intensity, precipitation, and so on) on the daily understory evapotranspiration under the two soil moisture conditions were analyzed. Result The daily understory evapotranspiration in August, September and October under natural precipitation condition was 67.06, 36.32 and 29.49 mm·d−1, respectively, which was greater than that under water-proof treatment (54.22, 20.07, and 11.35 mm·d−1). The daily understory evapotranspiration under the two water conditions was characterized by a gradual decrease, and the fluctuations under natural condition was greater than those under water-proof treatment. From August to October, the difference in daily understory evapotranspiration under both water conditions generally showed a wavy pattern of first increasing and then decreasing, while the ratio showed a gradually increasing wavy pattern. In August, September and October, the mean difference between natural evapotranspiration and water-proof evapotranspiration was 0.41, 0.54 and 0.59 mm·d−1, respectively, with ratios of 1.29, 1.91 and 2.74, respectively. As the potential evapotranspiration increased, the ratio of daily evapotranspiration difference to soil volumetric water difference under both water conditions gradually increased. The effect of soil moisture on understory evapotranspiration was small when the daily potential evapotranspiration was less than 3 mm·d−1, but increased when the daily potential evapotranspiration was more than 3 mm·d−1, and increased significantly when the daily potential evapotranspiration was more than 5 mm·d−1. Conclusion The factors affecting daily understory evapotranspiration are roughly the same under both water conditions. The difference lies in that the daily understory evapotranspiration under natural condition is more affected by precipitation, while that under waterproof treatment is more affected by soil moisture. Future study should focus on the influence of multiple soil moisture gradients on understory evapotranspiration difference. [Ch, 7 fig. 1 tab. 28 ref.] -
表 1 不同潜在蒸散时2种水分条件的林下日蒸散量与土壤体积含水量的均值、差值
Table 1. Mean and difference of daily understory evapotranspiration and volumetric soil moisture under two water conditions and different potential evapotranspiration
潜在蒸散量
分组/(mm·d−1)潜在蒸散量
均值/(mm·d−1)日蒸散量均值/(mm·d−1) 土壤体积含水量均值/% 日蒸散量
差值/(mm·d−1)土壤体积含水量
差值/%日蒸散量差值/
土壤体积含水量差值自然降水 防水条件 自然降水 防水条件 0~1 0.64 0.49 0.19 43.59 21.00 0.30 22.58 1.33 1~2 1.46 0.82 0.43 43.88 23.92 0.39 19.96 1.95 2~3 2.39 1.20 0.64 42.82 22.42 0.56 20.40 2.75 3~4 3.46 2.04 1.30 42.25 28.27 0.74 13.98 5.29 4~5 4.46 2.36 1.87 42.47 36.96 0.49 5.51 8.89 5~6 5.38 2.85 2.31 41.07 40.41 0.53 0.66 80.30 -
[1] WANG Yanbing, WANG Yanhui, LI Zhenhua, et al. Interannual variation of transpiration and its modeling of a larch plantation in semiarid Northwest China[J]. Forests, 2020, 11(12): 1303 − 1327. [2] 曹恭祥, 王云霓, 王彦辉, 等. 宁夏六盘山3种针叶林蒸散及其组分特征[J]. 科学技术与工程, 2018, 18(25): 16 − 22. CAO Gongxiang, WANG Yunning, WANG Yanhui, et al. The characteristics of evapotranspiration and its components of three coniferous forests in Liupan Mountains of Ningxia[J]. Science Technology and Engineering, 2018, 18(25): 16 − 22. [3] WANG Lei, LIU Zebin, GUO Jianbin, et al. Estimate canopy transpiration in larch plantations via the interactions among reference evapotranspiration, leaf area index, and soil moisture[J]. Forest Ecology and Management, 2020, 481: 118749 − 118762. [4] 韩新生, 王彦辉, 李振华, 等. 六盘山半干旱区华北落叶松人工林林下日蒸散特征及其影响因子[J]. 林业科学, 2019, 55(9): 11 − 21. HAN Xinsheng, WANG Yanhui, LI Zhenhua, et al. Daily forest floor evapotranspiration of Larixprincipis-rupprechtii plantation and its influencing factors in the semi-arid area of Liupan Mountains[J]. Scientia Silvae Sinicae, 2019, 55(9): 11 − 21. [5] 张荣, 毕华兴, 焦振寰, 等. 生长季刺槐树干液流昼夜变化特征及其对气象因子的响应[J]. 浙江农林大学学报, 2022, 39(6): 1238 − 1246. ZHANG Rong, BI Huaxing, JIAO Zhenhuan, et al. Diurnal and nocturnal changes in stem sap flow of Robinia pseudoacacia during growing season and its response to meteorological factors[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1238 − 1246. [6] 陈孟涤, 覃鑫浩, 毛炎新, 等. 半干旱区华北落叶松林冠层蒸腾特征及其影响因子[J]. 西北林学院学报, 2022, 37(4): 10 − 17. CHEN Mengdi, QIN Xinhao, MAO Yanxin, et al. Transpiration characteristics of Larix principis-rupprechtii plantation and its impact factors in the semi-arid area[J]. Journal of Northwest Forestry University, 2022, 37(4): 10 − 17. [7] RAN-YASEEF N, YAKIR D, SCHILLER G, et al. Dynamics of evapotranspiration partitioning in a semi-arid forest as affected by temporal rainfall patterns[J]. Agricultural and Forest Meteorology, 2012, 157(2): 77 − 85. [8] 王彦辉, 熊伟, 于澎涛, 等. 干旱缺水地区森林植被蒸散耗水研究[J]. 中国水土保持科学, 2006, 4(4): 19 − 25, 32. WANG Yanhui, XIONG Wei, YU Pengtao, et al. Study on the evapotranspiration of forest and vegetation in dryland[J]. Science of Soil and Water Conservation, 2006, 4(4): 19 − 25, 32. [9] KELLIHER F M, HOLLINGER D Y, SCHULZE E D, et al. Evaporation from an eastern Siberian larch forest[J]. Agricultural and Forest Meteorology, 1997, 85(3/4): 135 − 147. [10] SCHAAP M G, BOUTEN W. Forest floor evaporation in a dense Douglas fir stand[J]. Journal of Hydrology, 1997, 193(1/4): 97 − 113. [11] GRELLE A, LUNDBERG A, LINDROTH A, et al. Evaporation components of a boreal forest: variations during the growing season[J]. Journal of Hydrology, 1997, 197(1/4): 70 − 87. [12] DAIKOKU K, HATTORI S, DEGUCHI A, et al. Influence of evaporation from the forest floor on evapotranspiration from the dry canopy[J]. Hydrological Processes, 2008, 22(20): 4083 − 4096. [13] 李青华, 穆艳, 王延平. 黄土丘陵沟壑区山地苹果林蒸散特征[J]. 地球科学, 2019, 44(8): 2818 − 2828. LI Qinghua, MU Yan, WANG Yanping. Evapotranspiration characteristics of apple forest in hilly-gully region of the Loess Plateau[J]. Earth Science, 2019, 44(8): 2818 − 2828. [14] 王轶浩, 符裕红, 王彦辉. 重庆铁山坪马尾松林蒸散及其组分特征[J]. 东北林业大学学报, 2022, 50(7): 33 − 39. WANG Yihao, FU Yuhong, WANG Yanhui. Characteristics of masson pine forests evapotranspiration and its components at Tieshanping of Chongqing[J]. Journal of Northeast Forestry University, 2022, 50(7): 33 − 39. [15] 穆艳, 王延平. 黄土长武塬区苹果林地水量平衡研究[J]. 农业现代化研究, 2017, 38(1): 161 − 167. MU Yan, WANG Yanping. Study on soil water balance of apple orchards in the loess tableland of China[J]. Research of Agricultural Modernization, 2017, 38(1): 161 − 167. [16] 王云霓, 曹恭祥, 徐丽宏, 等. 内蒙古大青山华北落叶松人工林蒸散特征及其影响因子[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 148 − 156. WANG Yunni, CAO Gongxiang, XU Lihong, et al. Evapotranspiration characteristics of Larix principis-rupprechtii plantation and its impact factors in the Daqing Mountains of Inner Mongolia[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(4): 148 − 156. [17] 刘文浩, 王晓, 段文标, 等. 西宁市油松人工林生长季水量平衡特征[J]. 林业科学, 2023, 59(4): 46 − 56. LIU Wenhao, WANG Xiao, DUAN Wenbiao, et al. Water balance characters of Pinus tabuliformis plantation in Xining City of China[J]. Scientia Silvae Sinicae, 2023, 59(4): 46 − 56. [18] 李振华, 王彦辉, 于澎涛, 等. 六盘山半干旱区华北落叶松林的生长季蒸散量和组分特征[J]. 生态环境学报, 2013, 22(2): 222 − 228. LI Zhenhua, WANG Yanhui, YU Pengtao, et al. The evapotranspiration and its partition in growing season for a stand of Larix principis-rupprechtii plantation in the semi-arid region of Liupan Mountains, NW China[J]. Ecology and Environmental Sciences, 2013, 22(2): 222 − 228. [19] 韩新生, 许浩, 安钰, 等. 不同天气条件下山杏树干液流速率对环境因子变化的响应[J]. 西南林业大学学报(自然科学版), 2023, 43(6): 54 − 64. HAN Xinsheng, XU Hao, AN Yu, et al. Responses of trunk sap flow of Armeniaca sibirica to varied environmental factors in different weather conditions[J]. Journal of Southwest Forestry University (Natural Sciences), 2023, 43(6): 54 − 64. [20] ALLEN R G, PEREIRA L S, RAES D, et al. Crop Evapotranspiration-guidelines for Computing Crop Water Requirements [R]. Rome: FAO Irrigation and Drainage, 1998: 1 − 15. [21] 张安宁, 刘任涛, 杜灵通. 气候梯度下潜在蒸散分布差异及影响因素[J]. 西北林学院学报, 2020, 35(5): 23 − 28, 96. ZHANG Anning, LIU Rentao, DU Lingtong. Distribution differences and influencing factors of potential evapotranspiration in climate gradients[J]. Journal of Northwest Forestry University, 2020, 35(5): 23 − 28, 96. [22] 何慧娟, 王钊, 董金芳, 等. 基于MODIS产品的秦岭地区NDVI、地表温度和蒸散变化关系分析[J]. 西北林学院学报, 2019, 34(4): 179 − 184, 191. HE Huijuan, WANG Zhao, DONG Jinfang, et al. NDVI, LST and ET variation analysis based on MODIS datasets in the Qinling Mountains[J]. Journal of Northwest Forestry University, 2019, 34(4): 179 − 184, 191. [23] 代海燕, 梁显丽, 宝秋利, 等. 近46年毛乌素沙地和科尔沁沙地潜在蒸散量的变化特征及影响因子分析[J]. 西北林学院学报, 2019, 34(2): 8 − 13, 27. DAI Haiyan, LIANG Xianli, BAO Qiuli, et al. Variation characteristics and influencing factors of potential evapotranspiration in Mu Us and Khorchin sandy land in recent 46 years[J]. Journal of Northwest Forestry University, 2019, 34(2): 8 − 13, 27. [24] MORECROFT M D, TAYLOR M E, OLIVER H R. Air and soil microclimates of deciduous woodland compared to an open site[J]. Agricultural and Forest Meteorology, 1998, 90(1/2): 141 − 156. [25] LIU Zebin, WANG Yanhui, YU Pengtao, et al. Environmental and canopy conditions regulate the forest floor evapotranspiration of larch plantations[J]. Forest Ecosystems, 2022, 9(5): 606 − 616. [26] 韩新生, 许浩, 蔡进军, 等. 宁南黄土丘陵区3种典型林分的结构与水文影响比较[J]. 水土保持学报, 2018, 32(6): 192 − 199. HAN Xinsheng, XU Hao, CAI Jinjun, et al. Comparison of structure and hydrological influence of three typical stands in loess hilly regions of sourthern Ningxia[J]. Journal of Soil and Water Conservation, 2018, 32(6): 192 − 199. [27] 刘栋, 岳伶俐, 吴友杰, 等. 长沙丘陵区油茶林地土壤蒸发的时空变化[J]. 湖南农业大学学报(自然科学版), 2021, 47(1): 63 − 70. LIU Dong, YUE Lingli, WU Youjie, et al. Spatiotemporal variation of soil evaporation in Camellia oleifera forest in hilly area of Changsha[J]. Journal of Hunan Agricultural University (Natural Sciences), 2021, 47(1): 63 − 70. [28] 吴友杰, 杜太生. 西北干旱区农田土壤蒸发量及影响因子分析[J]. 农业工程学报, 2020, 36(12): 110 − 116. WU Youjie, DU Taisheng. Evaporation and its influencing factors in farmland soil in the arid region of northwest China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 110 − 116. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240251