留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核桃脱水素JrDHN基因对干旱胁迫的响应

张宇航 章漫漫 马宇航 王克涛 胡恒康 黄坚钦 张启香

辛鹏程, 魏天兴, 陈宇轩, 等. 山西西南部黄土丘陵区典型林分生态化学计量特征[J]. 浙江农林大学学报, 2024, 41(3): 549-556. DOI: 10.11833/j.issn.2095-0756.20230573
引用本文: 张宇航, 章漫漫, 马宇航, 等. 核桃脱水素JrDHN基因对干旱胁迫的响应[J]. 浙江农林大学学报, 2024, 41(6): 1150-1159. DOI: 10.11833/j.issn.2095-0756.20240282
XIN Pengcheng, WEI Tianxing, CHEN Yuxuan, et al. Ecological stoichiometric characteristics of typical forest stands in the Loess Hilly Region of southwest Shanxi[J]. Journal of Zhejiang A&F University, 2024, 41(3): 549-556. DOI: 10.11833/j.issn.2095-0756.20230573
Citation: ZHANG Yuhang, ZHANG Manman, MA Yuhang, et al. Response of dehydrin JrDHN gene in walnut to drought stress[J]. Journal of Zhejiang A&F University, 2024, 41(6): 1150-1159. DOI: 10.11833/j.issn.2095-0756.20240282

核桃脱水素JrDHN基因对干旱胁迫的响应

DOI: 10.11833/j.issn.2095-0756.20240282
基金项目: 国家重点研发计划项目(2023YFD2200305);国家自然科学基金重点项目(32330069);国家级高等学校大学生创新创业训练计划项目(202310341073)
详细信息
    作者简介: 张宇航(ORCID: 0009-0004-4943-2020),从事果树分子生物学研究。E-mail: 2013583634@qq.com
    通信作者: 张启香(ORCID: 0000-0002-6657-5101),教授,博士生导师,从事植物发育分子生物学研究。E-mail: qxzhang@zafu.edu.cn
  • 中图分类号: Q943.2

Response of dehydrin JrDHN gene in walnut to drought stress

  • 摘要:   目的  探究奇异核桃Juglans hindsii × J. regia JrDHN过表达株系在干旱过程中体内的生理与分子响应及其分子机制,为培育核桃J. regia抗旱品种提供理论依据。  方法  对生长健壮的过表达JrDHN核桃苗(JrDHN1、2、3)进行不同时间的聚乙二醇(PEG)模拟干旱胁迫处理,野生型奇异核桃苗(WT)为对照。从核桃苗的表型、抗氧化酶活性、活性氧含量等多方面观察过表达JrDHN株系对干旱胁迫的响应。通过荧光定量PCR (qPCR)对体内的抗旱相关基因MYBADHCAM做了表达量分析。  结果  阳性植株经qPCR验证,证实JrDHN基因在核桃苗中过表达,在JrDHN1、2、3中的表达量分别为WT的2.55、1.72、1.49倍;干旱处理0~28 d下过表达株系的表型均优于WT,干旱处理14 d时,JrDHN过表达株系的气孔开度比均显著低于WT;抗氧化酶(SOD、POD、CAT)活性均呈先升高后降低的趋势,且在14 d时达到最大值,其中JrDHN1的过氧化酶活性均高于WT,SOD及POD差异极显著(P<0.01),CAT活性差异显著(P<0.05);干旱处理28 d时叶绿素质量分数达到最小值,此时JrDHN过表达株系叶绿素极显著高于WT (P<0.01);丙二醛(MDA)、过氧化氢(H2O2)和超氧阴离子自由基(O2·−)含量随着干旱时间的延长呈逐渐上升趋势,在28 d时达到最大值,JrDHN1 的MDA、H2O2和O2·−含量均极显著低于WT;抗旱相关基因MYBADHCAM的表达量均呈先上升后下降的趋势,14 d时,MYBADHCA基因表达量均显著高于WT (P<0.05)。  结论  JrDHN过表达转基因核桃苗在PEG模拟干旱胁迫下的表型、光合能力和抗氧化能力均强于WT,JrDHN在模拟干旱胁迫下可以有效提升抗氧化酶系统活力,清除活性氧,减少细胞受到的损伤,从而提高植株的抗旱性。图8表1参34
  • 生态化学计量学主要关注生物地球化学循环过程中营养元素间的相互作用与平衡[1],从植物生态学、土壤学等多学科角度探究植物器官、物种、群落和生态系统的元素计量关系和规律,广泛用于判断植物体和群落的养分限制状况[2]、指导生态系统养分管理[3]、预测全球养分变化背景下的植被动态研究[4]。植物-凋落物-土壤是陆地生态系统重要的养分储存库,三者之间彼此影响和制约。植物养分输移活动通过叶片从大气中固定碳(C),依靠枝在植物各器官间进行养分运转,借助根系吸收和存储土壤中的养分,最后以凋落物淋溶、光降解、微生物分解和根系分泌等方式将C、氮(N)、磷(P)等元素归还土壤[5],因此,以上循环形成了植物-凋落物-土壤的C、N、P生态系统组分连续体,其关联性有助于深入认识植被各组分对营养元素的利用与分配规律。目前,研究多集中在区域土壤与植物单一器官(叶片)的生态化学计量比研究,如梁楚欣等[6]探究了滇东石漠化区不同植被恢复模式下土壤C、N、P质量分数及化学计量比的差异,王浩伊等[7]研究了大兴安岭不同生活型针叶林生态化学计量与生长阶段的关系,而对于植物多器官(叶、枝、根)-凋落物-土壤为整体的相关研究较少。因此,阐明植物-凋落物-土壤生态系统养分循环及调控机制,可揭示生态系统植物-凋落物-土壤之间的物质循环特征。黄土高原生态环境敏感,独特的地貌导致水土流失严重[8]。植被恢复能有效防治水土流失,随着人工恢复为主的“退耕还林还草”工程的实施[9],黄土高原植被覆盖率、土壤质量明显提升,形成了自然恢复和人工恢复为主的植被类型[10]。以往对黄土高原植被恢复的生态化学计量研究,集中在单一树种不同器官[11]、不同密度人工林土壤[12]等方面,关于不同植被恢复类型下植物各器官生态化学计量特征、凋落物与土壤生态化学计量特征关系的研究仍较少。鉴于此,为系统了解植被恢复过程中植物与土壤的生态过程,本研究以黄土丘陵区人工恢复植被油松Pinus tabuliformis林、刺槐Robinia pseudoacacia林、侧柏Platycladus orientalis林为研究对象,以自然恢复植被辽东栎Quercus liaotungensis天然次生林为对照,系统研究乔木叶、枝、根,凋落物和土壤生态化学计量特征,揭示黄土高原生态系统的生态过程、养分循环和限制因素,为黄土高原人工林植被恢复工作和森林经营改造提供科技支撑。

    研究区位于山西省临汾市吉县森林生态系统国家野外科学观测研究站所在地的蔡家川流域(35°53′~36°21′N,110°27′~110°07′E),该区地处黄土高原东南部半湿润地区,属于典型的黄土残塬沟壑区,季风气候显著,年平均气温为10 ℃,年平均降水量为579 mm,年平均蒸发量达1 729 mm,降水集中在6—9月,海拔为400~1 820 m。本研究选取蔡家川流域具有典型代表性的人工油松林、刺槐林、侧柏林、辽东栎天然次生林,林下植物主要为丁香Syringa oblata、黄刺玫Rosa xanthina、绣线菊Spiraea salicifolia、青蒿Artemisia caruifolia、连翘Forsythia suspensa、梾木Cornus macrophylla、糙苏Phlomoides umbrosa、紫菀Aster tataricus等。自1991年起,在蔡家川流域内进行退耕还林的全面植被恢复工作,流域内梁峁坡沟综合规划设计,营造人工林,保护天然林,栽植了油松、刺槐及侧柏等适应性强、耐干旱瘠薄的树种,该人工林为生态公益林,没有进行间伐、施肥等人工经营措施,天然林采取自然恢复的方式。研究区样地基本特征见表1

    表 1  研究区样地基本特征
    Table 1  Basic information about the sampling site in the study area
    林分海拔/m坡度/(°)坡向平均树高/m平均胸径/cm凋落物厚度/cm郁闭度/%林分密度/(株·hm−2)
    油松林 1 1472010.514.02.4501 680
    刺槐林 1 123710.512.92.9711 310
    侧柏林 1 18614西北7.58.41.0491 200
    辽东栎林1 14125东南9.311.23.1671 150
    下载: 导出CSV 
    | 显示表格

    于2022年7—8月进行外业调查。在每个长势良好的人工油松林、刺槐林、侧柏林和天然次生林辽东栎林等典型样地,分设3个乔木样方(20 m×20 m),在样方内进行每木检尺,调查郁闭度、树高和胸径等指标。样方内挑选3株长势均匀的标准木,在树冠处同一层东、西、南、北4个方位采集健康成熟的叶片与细枝(直径<2 cm),在标准木的冠幅范围内随机钻取3个0~60 cm的土芯,用冲洗法获取根样品(直径<2 mm),分别混匀后装入塑封袋;在样方内按对角线法选取3个1 m×1 m的具有代表性的凋落物样方,采集枯枝落叶(未分解、半分解和已分解),混匀后装入塑封袋;五点取样法采集0~20 cm土层土壤样品,混匀后装入塑封袋。以上采集的样品带回实验室后,叶、枝、根在100 ℃杀青15 min,随后降温至65 ℃恒温,将叶、枝、根与凋落物烘干至恒量,粉碎,过0.15 mm筛。土壤样品自然风干后,研磨过0.25 mm筛。采用元素分析仪测定全碳、全氮,采用硫酸-高氯酸消煮-钼锑抗比色法测定全磷。

    采用SPSS 25.0对数据进行K-S检验,验证数据正态性;采用单因素方差分析(one-way ANOVA)比较不同林分类型及不同组分生态化学计量差异;经方差齐性检验,使用最小显著性差异法(LSD)进行显著性检验(α=0.05);采用R 4.3.1对其进行相关性分析;绘图均在Origin 2021和R 4.3.1中进行。

    图1可知:4个林分的植物叶、枝、根平均C质量分数分别为516.35、495.05、490.76 g·kg−1,平均N质量分数为19.14、6.75、10.46 g·kg−1,平均P质量分数为1.61、1.11、0.74 g·kg−1。各林分器官间叶的N、P质量分数显著高于枝和根(P<0.05)。

    图 1  不同林分植物各器官、凋落物和土壤C、N、P质量分数
    Figure 1  C, N and P contents of plant organs, litter and soil of different forest stands

    不同林分植物各器官-凋落物-土壤C、N、P质量分数存在显著差异(P<0.05)。油松叶、枝、根和凋落物C质量分数最高;辽东栎土壤C质量分数最高;刺槐叶、根和土壤N质量分数最高;辽东栎枝和凋落物N质量分数最高;侧柏各组分中的N质量分数均显著低于其他树种(P<0.05);油松叶和土壤P质量分数最高,侧柏叶、枝、根P质量分数最低。

    图2可知:4个林分的植物叶、枝、根平均C/N分别为31.44、107.79、92.40,平均C/P为360.02、547.72、751.41,平均N/P为12.25、6.11、14.58。根的C/N和C/P显著高于叶和枝(P<0.05)。

    图 2  不同林分植物各器官、凋落物和土壤C、N、P化学计量比
    Figure 2  C, N and P stoichiometric ratios of plant organs, litter and soil of different forest stands

    不同林分植物各器官-凋落物-土壤C/N、C/P、N/P存在显著差异(P<0.05)。侧柏叶、枝、根的C/N和C/P显著高于其他树种(P<0.05),枝、根、凋落物的C/P在不同林分中表现为辽东栎最低。油松凋落物的C/N、C/P、N/P显著高于其他树种(P<0.05)。辽东栎土壤的C/N、C/P、N/P显著高于其他树种(P<0.05),油松土壤的C/N、C/P、N/P显著低于其他树种(P<0.05)。

    图3所示:典型林分植物叶、枝、根的C、N呈显著正相关(P<0.05)。叶C与凋落物C、土壤P呈极显著正相关(P<0.01),与凋落物P呈极显著负相关(P<0.01);叶N与凋落物N、P、土壤N呈显著正相关(P<0.05);枝C与凋落物C呈显著正相关(P<0.05),与凋落物N、P呈显著负相关(P<0.05);枝N与凋落物N、土壤C呈显著正相关(P<0.05);枝P与凋落物N、土壤C、N呈显著正相关(P<0.05);根C与凋落物C、土壤P呈极显著正相关(P<0.01),与凋落物P呈极显著负相关(P<0.01);根N与凋落物N、土壤N呈显著正相关(P<0.05);凋落物C与凋落物P、土壤C呈显著负相关(P<0.05),与土壤P呈极显著正相关(P<0.01);土壤N与土壤P呈极显著正相关(P<0.01)。

    图 3  典型林分植物各器官-凋落物-土壤化学计量特征的相关性关系
    Figure 3  Correlations between plant organs, litter and soil stoichiometric characteristics of typical forest stands

    叶C/N与凋落物C/N呈显著正相关(P<0.05);叶N/P与凋落物C/N呈显著负相关(P<0.05);根C/P与凋落物C/N呈显著正相关(P<0.05),与土壤C/P、N/P呈显著负相关(P<0.05);凋落物C/N、C/P均与土壤C/N、C/P呈极显著负相关(P<0.01),与N/P呈极显著负相关(P<0.001);土壤C/N与土壤C/P、N/P呈极显著正相关(P<0.001);土壤C/P与土壤N/P呈极显著正相关(P<0.001)。

    植物C、N、P养分分配及环境因子共同决定了植物的生长发育和营养水平[13]。本研究中4种林分乔木叶片C、N、P平均质量分数分别为516.35、18.64、1.61 g·kg−1,叶片C质量分数较全球植物叶片平均值(461.60 g·kg−1)偏高,但是N、P质量分数低于全球平均水平(20.60、2.00 g·kg−1)[1]。说明该研究区的C储备丰富,N、P较为贫瘠。这与黄土高原土壤结构松散,水土流失严重,植物难以从土壤中吸收N、P元素有关[14],亦与中国土壤P质量分数普遍较低的规律一致[15]。本研究中,油松叶片、枝、根C质量分数高于其他植被,表明油松体内积累了更多的有机质,能更好地抵御不良环境的侵扰,这与马钦彦等[16]对针叶树种的研究结果一致。相关研究表明:植物C质量分数越高,植物对外界不利条件的抵抗能力越强[17]。油松作为常绿针叶树种,叶片角质层发达,含有大量木质素与单宁等含碳化合物,具有更强的叶片韧性,可以更好地承受外界物理损伤。刺槐各组分间N质量分数显著高于其他植被类型,刺槐作为豆科Leguminosae植物,通过根瘤固定空气中的N,具有较强的固氮能力[18],可以缓解黄土高原普遍缺N的现象。

    植物叶C/N、C/P与植物的固氮能力、养分吸收和利用效率存在正反馈机制,与植物生长速率存在负反馈机制[19]。本研究中,刺槐叶C/N、C/P最低,表明刺槐在生长过程中生长速率较快。相关研究表明:植物叶N/P能够解释植物养分的受限制情况[20]。本研究中,油松、侧柏和辽东栎叶的平均N/P为8.34~13.71。胡耀升等[21]研究表明:当N/P<14时,植物的生长受N的限制;当14<N/P<16时,植物的生长受N、P共同限制。而本研究结果表明:黄土丘陵区油松、侧柏、辽东栎的生长主要受N限制,刺槐N/P为15.24,说明刺槐的生长同时受N和P的限制。凋落物是植物与土壤养分循环之间的纽带[22],其分解速率的快慢和养分释放的多少决定了植物的养分利用效率和土壤养分的供应状况[23]。其中,凋落物的C/N、C/P能反映其分解速率,C/N、C/P较低时凋落物更易分解。本研究中,油松凋落物C/N、C/P高于其他树种,不易分解,这是因为油松凋落物中较高的C和较低的C/N抑制了微生物的分解作用[24]。有研究发现:凋落物N/P也可以表征其分解速率的受限制情况[25]。本研究中,黄土丘陵区4种林分凋落物N/P均低于25,表明研究区凋落物分解主要受N限制。研究区土壤C/N、C/P平均值远小于全国平均值[26],这与郭鑫等[27]的研究结果一致,表明研究区土壤有机质分解矿化作用较快,不利于土壤有机质积累,且土壤P的有效性较高,土壤微生物受P的限制作用较小。作为衡量土壤质量的重要参数,土壤N/P可以表征土壤养分限制情况,本研究中黄土丘陵区土壤N/P远低于中国陆地平均水平[26],表明研究区内植物生长主要受限于土壤N。

    在长期的进化过程中,植物通过调节养分配置,形成相应的元素分配规律,从而产生对应的生长特性,以适应外界环境的变化。本研究中不同器官C、N、P质量分数及其计量比存在密切联系,叶与根的C、N质量呈显著正相关,说明叶与根养分分配具有协同性,这与王淳等[28]的研究结果一致。不同器官间的C/N、C/P、N/P均呈显著正相关,说明不同器官之间相互促进,协同增长;植物资源利用在不同植物器官间是一致的,同时也受相同元素限制。因此,分析植物、凋落物和土壤间C、N、P及化学计量特征的相关关系,有助于解释生态系统养分循环的内部调控规律[29]

    本研究中典型林分植物各器官C、N与凋落物C、N呈显著正相关,叶C/N与凋落物C/N呈显著正相关,可见,植物与凋落物在各元素间存在较强的相关性,这是因为叶片是凋落物的直接来源,两者之间存在养分转移。叶和根的N与土壤N呈显著正相关关系,表明叶和根与土壤供给的氮之间相互促进。凋落物C与土壤C呈显著负相关,凋落物C/N、C/P与土壤C/N、C/P、N/P间呈显著负相关,说明凋落物是植物地上部分与土壤之间的介质,凋落物分解速率的快慢,影响着凋落物与土壤之间的养分循环关系[30]。凋落物分解速率慢,其自身养分含量高,返还到土壤中的养分将减少,因此,凋落物与土壤元素之间存在负相关关系。

    山西西南部黄土丘陵区典型林分乔木叶、枝、根、凋落物和土壤的生态化学计量特征具有显著差异,油松林具有较好的固碳能力,刺槐林具有较好的固氮效果。刺槐生长受N、P限制;油松、侧柏、辽东栎生长受N限制;研究区土壤氮缺乏且凋落物分解受N限制。典型林分植物叶、枝、根之间化学计量特征显著正相关,说明植物各器官养分分配具有协同性,凋落物与土壤之间化学计量特征显著负相关,表明凋落物和土壤之间的养分动态变化具有协变性。因此,从养分限制角度考虑,建议在晋西北黄土丘陵区人工林管护过程中合理营造刺槐混交林,增强固氮能力,并缓解N元素的养分限制性。

  • 图  1  核桃JrDHN过表达株系培养图

    Figure  1  Culture diagram of JrDHN overexpressed in walnut

    图  2  核桃JrDHN基因过表达株系阳性鉴定

    Figure  2  Positive identification of walnut JrDHN gene overexpression strain

    图  3  植株试管幼苗表型分析

    Figure  3  Phenotype of test-tube plant let under drought stress

    图  4  干旱胁迫下气孔表型及开度分析

    Figure  4  Analysis of stomatal phenotype and stomatal opening under drought stress

    图  5  干旱处理后核桃苗叶绿体叶及绿素质量分数的变化

    Figure  5  Changes of chlorophyll shape and content of walnut after drought treatment

    图  6  干旱处理后核桃JrDHN1抗氧化酶活性及丙二醛质量摩尔浓度变化

    Figure  6  Changes of antioxidant enzyme activity and malondialdehyde content in walnut JrDHN1 after drought treatment

    图  7  干旱处理后核桃JrDHN1 ROS变化

    Figure  7  ROS content changes of walnut JrDHN1 after drought treatment

    图  8  干旱处理后JrDHN1相关抗逆基因表达量分析

    Figure  8  Analysis of JrDHN1-related stress resistance gene expression after drought treatment

    表  1  qPCR引物

    Table  1.   qPCR primers

    引物 序列(5′→3′)
    Actin-F ATGATGTCAAGGTTAAGGACTC
    Actin-R CACAATGATCTCAGCTCCG
    QJrDHN-F ATTCAGCTCACCGACGAACA
    QJrDHN-R CTCCTCATGCTGCTGCTTCT
    下载: 导出CSV
  • [1] 孟佳, 方晓璞, 史宣明, 等. 我国核桃产业发展现状、问题与建议[J]. 中国油脂, 2023, 48(1): 84 − 86, 103.

    MENG Jia, FANG Xiaopu, SHI Xuanming, et al. Situation, problems and suggestions on the development of walnut industry in China[J]. China Oils and Fats, 2023, 48(1): 84 − 86, 103.
    [2] 马庆国, 乐佳兴, 宋晓波, 等. 新中国果树科学研究70年:核桃[J]. 果树学报, 2019, 36(10): 1360 − 1368.

    MA Qingguo, LE Jiaxing, SONG Xiaobo, et al. Fruit scientific research in New China in the past 70 years: walnut[J]. Journal of Fruit Science, 2019, 36(10): 1360 − 1368.
    [3] 王磊, 曹亚龙, 孟海军, 等. 国内外核桃品种选育研究进展[J]. 果树学报, 2022, 39(12): 2406 − 2417.

    WANG Lei, CAO Yalong, MENG Haijun, et al. Research progress in walnut variety breeding at home and abroad[J]. Journal of Fruit Science, 2022, 39(12): 2406 − 2417.
    [4] 胡梦玲, 彭小东, 阿丽亚·拜都热拉, 等. 城乡特色核桃防护林树种配置结构对空气颗粒物及温湿度的影响[J]. 南方农业学报, 2021, 52(5): 1310 − 1318.

    HU Mengling, PENG Xiaodong, Aliya Baidourela, et al. Influence of special Juglans regia shelterbelts species configuration structure on air particulate, matter, temperature and humidity in urban and rural areas[J]. Journal of Southern Agriculture, 2021, 52(5): 1310 − 1318.
    [5] 张翰生, 昌秦湘, 康建忠, 等. 核桃的营养价值及其开发利用研究进展[J]. 浙江农业学报, 2024, 36(4): 905 − 919.

    ZHANG Hansheng, CHANG Qinxiang, KANG Jianzhong. Research progress on nutritional value and utilization of walnut [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 905 − 919.
    [6] 何国庆, 俞春, 饶盈, 等. 山核桃果实成熟过程中矿质元素及脂肪酸组分变化[J]. 浙江农林大学学报, 2019, 36(6): 1208 − 1216.

    HE Guoqing, YU Chunlian, RAO Ying, et al. Dynamic changes in composition of mineral elements and fatty acids for hickory nuts (Carya cathayensis) during maturity[J]. Journal of Zhejiang A&F University, 2019, 36(6): 1208 − 1216.
    [7] 怀婷婷, 卫伟, 刘春晓, 等. 核桃产业和贸易现状及发展建议[J]. 安徽农业科学, 2023, 51(18): 203 − 208.

    HUAI Tingting, WEI Wei, LIU Chunxiao, et al. Walnut industry and trade status and development suggestions[J]. Journal of Anhui Agricultural Sciences, 2023, 51(18): 203 − 208.
    [8] 李剑威, 晏舒蕾, 黄元城, 等. 薄壳山核桃幼苗对干旱胁迫的生理生化响应[J]. 核农学报, 2020, 34(10): 2326 − 2334.

    LI Jianwei, YAN Shulei, HUANG Yuancheng, et al. Physiological and biochemical responses of pecan seedlings to drought stress[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(10): 2326 − 2334.
    [9] 陈硕, 赵文武, 韩逸. 中国干旱半干旱区植被降水利用效率时空变化特征及影响因素分析[J]. 生态学报, 2023, 43(24): 10295 − 10307.

    CHEN Shuo, ZHAO Wenwu, HAN Yi. Spatio-temporal variation of vegetation precipitation use efficiency and influencing factors in arid and semi-arid areas of China[J]. Acta Ecologica Sinica, 2023, 43(24): 10295 − 10307.
    [10] 陈兰兰, 王丽, 吴亚娟, 等. 植物响应干旱胁迫的分子和微生态机制 [J/OL]. 分子植物育种, 2023-04-07 [2024-05-07]. doi: 46.1068.S.20230406.1634.006.

    CHEN Lanlan, WANG Li, WU Yajuan, et al. Molecular and microecological mechanisms of plant responses to drought stress [J/OL]. Molecular Plant Breeding, 2023-04-07 [2024-05-07]. doi: 46.1068.S.20230406.1634.006.
    [11] 张林生, 赵文明. LEA蛋白与植物的抗旱性[J]. 植物生理学通讯, 2003(1): 61 − 66.

    ZHANG Linsheng, ZHAO Wenming. LEA protein functions to tolerance drought of the plant[J]. Plant Physiology Journal, 2003(1): 61 − 66.
    [12] 刘慧春, 张加强, 马广莹, 等. 牡丹PsDHN1基因克隆及转基因拟南芥的耐涝性分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 335 − 346.

    LIU Huichun, ZHANG Jiaqiang, MA Guangying, et al. Cloning of PsDHN1 gene of Paeonia suffruticosa and waterlogging tolerance analysis of transgenic Arabidopsis with PsDHN1 gene[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 335 − 346.
    [13] 史学英, 田野, 李核, 等. 小麦K_2型脱水蛋白DHN14响应非生物胁迫的功能分析 [J]. 西北农林科技大学学报(自然科学版), 2019, 47(5): 23 − 31, 41.

    SHI Xueying, TIAN Ye, LI He, et al. Functional analysis of K2-type wheat dehydrin DHN14 under abiotic stresses [J]. Journal of Northwest A&F University (Natural Science Edition),2019, 47(5): 23 − 31, 41.
    [14] LIU Yang, LI Daxing, SONG Qiping, et al. The maize late embryogenesis abundant protein ZmDHN13 positively regulates copper tolerance in transgenic yeast and tobacco[J]. Crop Journal, 2019, 7(3): 403 − 410.
    [15] 张萌, 姜文婷, 王雪纯, 等. 日本落叶松谷胱甘肽过氧化物酶(GPX)酶学特性与抗逆性研究[J]. 北京林业大学学报, 2019, 7(3): 403 − 410.

    ZHANG Meng, JIANG Wenting, WANG Xuechun, et al. Studies on enzymatic properties and stress resistance of glutathione peroxidase (GPX) from Larix kaempferi[J]. Journal of Beijing Forestry University, 2019, 7(3): 403 − 410.
    [16] 卓露, 林晓华, 薛山, 等. 植物耐干机制研究进展[J]. 华中农业大学学报, 2023, 42(5): 28 − 34.

    ZHUO Lu, LIN Xiaohua, XUE Shan, et al. Progress on studying mechanism of plant drought tolerance[J]. Journal of Huazhong Agricultural University, 2023, 42(5): 28 − 34.
    [17] MAUREL C, TOURNAIRE-ROUX C, VERDOUCQ L, et al. Hormonal and environmental signaling pathways target membrane water transport[J]. Plant Physiology, 2021, 187(4): 2056 − 2070.
    [18] FICHMAN Y, MITTLER R. Integration of electric, calcium, reactive oxygen species and hydraulic signals during rapid systemic signaling in plants[J]. The Plant Journal, 2021, 107(1): 7 − 20.
    [19] RAZA A, SALEHI H, RAHMAN M A, et al. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants [J/OL]. Frontiers in Plant Science, 2022 , 9 (13): 872[2024-04-05]. doi: 10.3389/fpls.2022.961872.
    [20] ZHAO Xiaoping, LIU Hanyu, YONG Hui, et al. Effects of exogenous sucrose on root physiology and transcriptome of Malus baccata Borkh. under sub-low root-zone temperature [J/OL]. Scientia Horticulturae, 2024, 337 : 113474[2024-04-05]. doi: 10.1016/j.scienta.2024.113474.
    [21] RIYAZUDDIN R, NISHA N, SINGH K, et al. Involvement of dehydrin proteins in mitigating the negative effects of drought stress in plants [J]. Plant Cell Reports, 2022, 41 (3): 519 − 533.
    [22] YANG Zhou, SHENG Jiangyuan, LÜ Ke, et al. Y2SK2 and SK3 type dehydrins from Agapanthus praecox can improve plant stress tolerance and act as multifunctional protectants[J]. Plant Science, 2019, 284: 143 − 160.
    [23] GUPTA K, JHA B, AGARWAL P K. A dehydration-responsive element binding (DREB) transcription factor from the succulent halophyte Salicornia brachiata enhances abiotic stress tolerance in transgenic tobacco[J]. Marine Biotechnology, 2014, 16(6): 657 − 673.
    [24] HUANG Hui, JIAO Yixue, TONG Yang, et al.Comparative analysis of drought-responsive biochemical and transcriptomic mechanisms in two Dendrobium officinale genotypes [J/OL]. Industrial Crops and Products, 2023, 199 : 116766 [2024-04-05]. doi: 10.1016/j.indcrop.2023.116766.
    [25] 杨舒贻, 陈晓阳, 惠文凯, 等. 逆境胁迫下植物抗氧化酶系统响应研究进展[J]. 福建农林大学学报(自然科学版), 2016, 45(5): 481 − 489.

    YANG Shuyi, CHEN Xiaoyang, HUI Wenkai, et al. Progress in responses of antioxidant enzyme systems in plant to environmental stresses[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2016, 45(5): 481 − 489.
    [26] 邬燕, 刘志华, 刘钊. PEG模拟干旱胁迫下4种葡萄生理指标的变化及其抗旱性评价[J]. 分子植物育种, 2020, 18(4): 1319 − 1325.

    WU Yan, LIU Zhihua, LIU Zhao. Changes of physiological indexes and drought resistance evaluation of 4 grapes variety under PEG simulated drought stress[J]. Molecular Plant Breeding, 2020, 18(4): 1319 − 1325.
    [27] 魏广利. 核桃赤霉素2-ODDs家族氧化酶基因的克隆与功能分析[D]. 杭州: 浙江农林大学, 2021.

    WEI Guangli. Family Oxidase Gene in Walnut Gene Cloning and Functional Analysis of Gibberellin 2-ODDs [D]. Hangzhou: Zhejiang A&F University, 2021.
    [28] ADUSE S, NKACHUKWU P, AUNG H, et al. Over-expression of a melon Y3SK2-Type LEA gene confers drought and salt tolerance in transgenic tobacco plants [J/OL]. Plants, 2020, 9 (12): 1749[2024-04-05]. doi: 10.3390/plants9121749.
    [29] CHIAPPETTA A, MUTO A, BRUNO L, et al. A dehydrin gene isolated from feral olive enhances drought tolerance in Arabidopsis transgenic plants [J/OL]. Frontiers in Plant Science, 2015, 6 : 392[2024-04-05]. doi: 10.3389/fpls.2015.00392.
    [30] LIU Hao, YANG Ying, LIU Danan, et al. Transcription factor TabHLH49 positively regulates dehydrin WZY2 gene expression and enhances drought stress tolerance in wheat [J/OL]. BMC Plant Biology, 2020, 20 (1): 259[2024-04-05]. doi: 10.1186/s12870-020-02474-5.
    [31] ZHANG Di, LV Aimin, YANG Tianchen, et al. Protective functions of alternative splicing transcripts (CdDHN4-L and CdDHN4-S) of CdDHN4 from bermudagrass under multiple abiotic stresses [J/OL]. Gene, 2020, 763 (suppl): 100033[2024-04-05]. doi: 10.1016/j.gene.2020.100033.
    [32] LUO Dingfan, MEI Desheng, WEI Wenliang, et al. Identification and phylogenetic analysis of the R2R3-MYB subfamily in Brassica napus [J/OL]. Plants, 12 (4): 886 [2024-04-05]. doi: 10.3390/plants12040886.
    [33] RIYAZUDDIN R, NISHA N, SINGH K, et al. Involvement of dehydrin proteins in mitigating the negative effects of drought stress in plants[J]. Plant Cell Reports, 2022, 41(3): 519 − 533.
    [34] JAMRA G, AGARWAL A, SINGH N, et al. Ectopic expression of finger millet calmodulin confers drought and salinity tolerance in Arabidopsis thaliana[J]. Plant Cell Reports, 2021, 40(11): 2205 − 2223.
  • [1] 郑琳, 王凤敏, 凡婷婷, 王克涛, 胡恒康, 黄坚钦, 张启香.  核桃JrGA3ox基因表达对生长及干旱胁迫的响应 . 浙江农林大学学报, 2025, 42(2): 261-272. doi: 10.11833/j.issn.2095-0756.20240327
    [2] 凡婷婷, 张佳琦, 刘会君, 王凤敏, 马宇航, 吴宇伟, 胡恒康, 黄有军, 李岩, 王克涛, 黄坚钦, 张启香.  核桃铵态氮转运蛋白基因JrAMT2的功能分析 . 浙江农林大学学报, 2024, 41(1): 79-91. doi: 10.11833/j.issn.2095-0756.20230296
    [3] 陈雪冰, 刘聪, 程赫, 姜廷波, 夏德安, 魏志刚.  毛果杨ZHD家族全基因组水平鉴定及在干旱胁迫下的表达分析 . 浙江农林大学学报, 2022, 39(3): 465-474. doi: 10.11833/j.issn.2095-0756.20210373
    [4] 董浩, 丁丽霞.  干旱影响下光能利用率模型模拟常绿针叶林总初级生产力的比较 . 浙江农林大学学报, 2021, 38(6): 1109-1116. doi: 10.11833/j.issn.2095-0756.20200751
    [5] 周欢欢, 傅卢成, 马玲, 赵亚红, 张汝民, 高岩.  干旱胁迫及复水对‘波叶金桂’生理特性的影响 . 浙江农林大学学报, 2019, 36(4): 687-696. doi: 10.11833/j.issn.2095-0756.2019.04.008
    [6] 顾帆, 季梦成, 顾翠花, 郑钢, 郑绍宇.  高温干旱胁迫对黄薇抗氧化防御系统的影响 . 浙江农林大学学报, 2019, 36(5): 894-901. doi: 10.11833/j.issn.2095-0756.2019.05.007
    [7] 陈晓沛, 施泉, 郭小勤, 曹友志, 徐英武.  雷竹PvJ3基因克隆及功能分析 . 浙江农林大学学报, 2018, 35(2): 298-305. doi: 10.11833/j.issn.2095-0756.2018.02.014
    [8] 高向倩, 李忆林, 贾彩霞, 李大培, 杨玉婷, 杨桂燕.  核桃抗逆基因JrGSTU23的克隆及表达分析 . 浙江农林大学学报, 2018, 35(4): 589-595. doi: 10.11833/j.issn.2095-0756.2018.04.002
    [9] 杨标, 刘壮壮, 彭方仁, 曹凡, 陈涛, 邓秋菊, 陈文静.  干旱胁迫和复水下不同薄壳山核桃品种的生长和光合特性 . 浙江农林大学学报, 2017, 34(6): 991-998. doi: 10.11833/j.issn.2095-0756.2017.06.004
    [10] 刘昊, 宋晓波, 周乃富, 马庆国, 裴东.  吲哚丁酸对核桃嫩枝扦插生根及内源激素变化的影响 . 浙江农林大学学报, 2017, 34(6): 1038-1043. doi: 10.11833/j.issn.2095-0756.2017.06.010
    [11] 李黎, 宋帅杰, 方小梅, 杨丽芝, 邵珊璐, 应叶青.  高温干旱及复水对毛竹实生苗保护酶和脂质过氧化的影响 . 浙江农林大学学报, 2017, 34(2): 268-275. doi: 10.11833/j.issn.2095-0756.2017.02.010
    [12] 蔡琼, 丁贵杰, 文晓鹏.  马尾松水通道蛋白PmPIP1基因克隆及在干旱胁迫下的表达分析 . 浙江农林大学学报, 2016, 33(2): 191-200. doi: 10.11833/j.issn.2095-0756.2016.02.002
    [13] 李华威, 穆博, 雷雅凯, 田国行.  道路带状绿地景观评价及功能分析 . 浙江农林大学学报, 2015, 32(4): 611-618. doi: 10.11833/j.issn.2095-0756.2015.04.018
    [14] 杨静怡, 夏玉芳, 谢钊俊, 陶兴月, 丁小霞.  核桃不同单株种子化学成分傅立叶红外光谱差异性分析 . 浙江农林大学学报, 2015, 32(3): 420-425. doi: 10.11833/j.issn.2095-0756.2015.03.014
    [15] 沈辰, 裘佳妮, 黄坚钦.  山核桃COP1 E3连接酶的全长克隆及表达分析 . 浙江农林大学学报, 2014, 31(6): 831-837. doi: 10.11833/j.issn.2095-0756.2014.06.002
    [16] 杨希宏, 黄有军, 陈芳芳, 黄坚钦.  山核桃FLOWERING LOCUS C同源基因鉴定与表达分析 . 浙江农林大学学报, 2013, 30(1): 1-8. doi: 10.11833/j.issn.2095-0756.2013.01.001
    [17] 郑炳松, 陈苗, 褚怀亮, 艾雪, 黄有军, 李雪芹, 黄坚钦.  用cDNA-AFLP技术分析山核桃嫁接过程中的CcARF基因表达 . 浙江农林大学学报, 2009, 26(4): 467-472.
    [18] 黄有军, 周丽, 陈芳芳, 周秦, 黄坚钦, 黄敏仁, 王明庥.  山核桃成花过程基因表达的cDNA-AFLP分析 . 浙江农林大学学报, 2009, 26(3): 297-301.
    [19] 刘昊, 余树全, 江洪, 方江保.  模拟酸雨对山核桃叶绿素荧光参数、叶绿素和生长的影响 . 浙江农林大学学报, 2009, 26(1): 32-37.
    [20] 王义平, 于振东, 吴鸿.  林木昆虫演变为重大害虫的主要环境因子 . 浙江农林大学学报, 2007, 24(6): 752-757.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240282

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2024/6/1150

图(8) / 表(1)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  35
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-08
  • 修回日期:  2024-06-11
  • 录用日期:  2024-06-11
  • 刊出日期:  2024-11-20

核桃脱水素JrDHN基因对干旱胁迫的响应

doi: 10.11833/j.issn.2095-0756.20240282
    基金项目:  国家重点研发计划项目(2023YFD2200305);国家自然科学基金重点项目(32330069);国家级高等学校大学生创新创业训练计划项目(202310341073)
    作者简介:

    张宇航(ORCID: 0009-0004-4943-2020),从事果树分子生物学研究。E-mail: 2013583634@qq.com

    通信作者: 张启香(ORCID: 0000-0002-6657-5101),教授,博士生导师,从事植物发育分子生物学研究。E-mail: qxzhang@zafu.edu.cn
  • 中图分类号: Q943.2

摘要:   目的  探究奇异核桃Juglans hindsii × J. regia JrDHN过表达株系在干旱过程中体内的生理与分子响应及其分子机制,为培育核桃J. regia抗旱品种提供理论依据。  方法  对生长健壮的过表达JrDHN核桃苗(JrDHN1、2、3)进行不同时间的聚乙二醇(PEG)模拟干旱胁迫处理,野生型奇异核桃苗(WT)为对照。从核桃苗的表型、抗氧化酶活性、活性氧含量等多方面观察过表达JrDHN株系对干旱胁迫的响应。通过荧光定量PCR (qPCR)对体内的抗旱相关基因MYBADHCAM做了表达量分析。  结果  阳性植株经qPCR验证,证实JrDHN基因在核桃苗中过表达,在JrDHN1、2、3中的表达量分别为WT的2.55、1.72、1.49倍;干旱处理0~28 d下过表达株系的表型均优于WT,干旱处理14 d时,JrDHN过表达株系的气孔开度比均显著低于WT;抗氧化酶(SOD、POD、CAT)活性均呈先升高后降低的趋势,且在14 d时达到最大值,其中JrDHN1的过氧化酶活性均高于WT,SOD及POD差异极显著(P<0.01),CAT活性差异显著(P<0.05);干旱处理28 d时叶绿素质量分数达到最小值,此时JrDHN过表达株系叶绿素极显著高于WT (P<0.01);丙二醛(MDA)、过氧化氢(H2O2)和超氧阴离子自由基(O2·−)含量随着干旱时间的延长呈逐渐上升趋势,在28 d时达到最大值,JrDHN1 的MDA、H2O2和O2·−含量均极显著低于WT;抗旱相关基因MYBADHCAM的表达量均呈先上升后下降的趋势,14 d时,MYBADHCA基因表达量均显著高于WT (P<0.05)。  结论  JrDHN过表达转基因核桃苗在PEG模拟干旱胁迫下的表型、光合能力和抗氧化能力均强于WT,JrDHN在模拟干旱胁迫下可以有效提升抗氧化酶系统活力,清除活性氧,减少细胞受到的损伤,从而提高植株的抗旱性。图8表1参34

English Abstract

辛鹏程, 魏天兴, 陈宇轩, 等. 山西西南部黄土丘陵区典型林分生态化学计量特征[J]. 浙江农林大学学报, 2024, 41(3): 549-556. DOI: 10.11833/j.issn.2095-0756.20230573
引用本文: 张宇航, 章漫漫, 马宇航, 等. 核桃脱水素JrDHN基因对干旱胁迫的响应[J]. 浙江农林大学学报, 2024, 41(6): 1150-1159. DOI: 10.11833/j.issn.2095-0756.20240282
XIN Pengcheng, WEI Tianxing, CHEN Yuxuan, et al. Ecological stoichiometric characteristics of typical forest stands in the Loess Hilly Region of southwest Shanxi[J]. Journal of Zhejiang A&F University, 2024, 41(3): 549-556. DOI: 10.11833/j.issn.2095-0756.20230573
Citation: ZHANG Yuhang, ZHANG Manman, MA Yuhang, et al. Response of dehydrin JrDHN gene in walnut to drought stress[J]. Journal of Zhejiang A&F University, 2024, 41(6): 1150-1159. DOI: 10.11833/j.issn.2095-0756.20240282
  • 核桃Julgans regia是胡桃科Juglandaceae核桃属Juglans核桃组植物[1]。中国种植核桃的历史可追溯到3 000 a前,且核桃分布广泛[2],品种繁多,产量高。中国为核桃六大主产国之一[3]。有关研究显示,在城区内大面积种植核桃,并搭配其他园林植物,可有效减轻颗粒物污染浓度。核桃具有极高的生态价值[4]。核桃木材外观优美、质地坚硬、材性优良,可做家具、木地板等;核桃青皮中的萘醌类物质可作染料,黄酮类物质可作抗氧化药品[5]。核桃果实富含蛋白质、磷脂以及维生素B1等能增强细胞活力、提高脑神经功能的物质,具有极高的药用价值,被称为“21世纪的超级食品”[67]

    恶劣的生长环境会导致核桃停止发育甚至死亡,如重度干旱环境等[8]。中国干旱、半干旱区面积约占国土面积的1/3以上,干旱地区降水稀少,水资源匮乏,无法满足核桃生长需求[910]。目前研究发现,抗旱关键酶基因包括α糖类、脯氨酸合成酶、甜菜碱,抗旱相关联蛋白包括LEA (late embryogenesis abundant)家族蛋白、蛋白激酶SnRK2等,其中LEA 第二家族成员脱水素蛋白(dehydrin, DHN)最早于受水分胁迫的水稻Oryza sativa中被发现,后来被证实广泛存在于植物细胞中[11]。许多研究都表明:非生物逆境胁迫下,植物中DHN基因的表达和积累与植物适应逆境的能力相关。如刘慧春等[12]将牡丹Paeonia suffruticosa PsDHN1基因转入拟南芥Arabidopsis thaliana中,发现转基因拟南芥耐涝抗旱水平明显优于野生型。史学英等[13]将从小麦Triticum aestivum中获得的DHN14基因转入大肠埃希菌Escherichia coli,发现可以提高在低温、干旱、金属离子等非生物胁迫下大肠埃希菌的存活率。LIU等[14]将玉米Zea mays中提取的ZmDHN13转入烟草Nicotiana tabacum,发现可显著提升转基因烟草对氧化损伤的耐受性。DHN可以结合金属离子,从根本上减少活性氧(ROS)的产生;DHN还可以结合DNA,保护其不受外界环境压力带来的损害;DHN非特异性地与生物膜结合,从而维持生物膜结构的稳定性等[15]

    在全球干旱的大背景下,水资源短缺仍会是未来中国甚至全球面临的主要问题,因此,研究植物的抗旱机制及挖掘抗旱基因都具有重要意义[16]。本研究分析了核桃脱水素JrDHN基因对干旱逆境胁迫的响应机制,为该基因进一步应用于核桃抗旱分子标记辅助育种提供参考依据,为利用基因工程手段培育抗旱核桃新品种提供理论依据。

    • 野生型核桃(WT)来自浙江农业大学省部共建亚热带森林培育国家重点实验室的奇异核桃J. hindsii×J. regia苗。前期已获得奇异核桃JrDHN过表达体胚,并萌发获得JrDHN过表达株系幼苗,后经扩繁并分为JrDHN1、JrDHN2、JrDHN3等3个株系,获得每株系50株生长健壮,长势一致的组培苗后,进行后续阳性鉴定及干旱胁迫试验(图1)。核桃苗于培养室中培养,培养室温度为(25±2) ℃,湿度为80%~85%,光照强度为15 000~20 001 lx,光照周期黑暗8 h/光照16 h。

      图  1  核桃JrDHN过表达株系培养图

      Figure 1.  Culture diagram of JrDHN overexpressed in walnut

    • 选用北京天根生化科技有限公司的多糖多酚植物总 RNA 提取试剂盒提取核桃体胚的 RNA,基因克隆及后续的验证过程采用 TaKaRa 公司的 cDNA 反转录试剂盒。以反转录cDNA为模板进行荧光定量PCR (qPCR)表达分析,采用NCBI网站在线设计引物,引物见表1。qPCR反应体系为:TB Green 0.5 μL,F/R primer 0.2 μL,cDNA 0.4 μL,ddH2O 4.2 μL。反应程序为:95 ℃ 10 min,95 ℃ 10 s,60 ℃ 31 s,40个循环;95 ℃ 15 s,60 ℃ 1 min,95 ℃ 30 s,60 ℃ 15 s。

      表 1  qPCR引物

      Table 1.  qPCR primers

      引物 序列(5′→3′)
      Actin-F ATGATGTCAAGGTTAAGGACTC
      Actin-R CACAATGATCTCAGCTCCG
      QJrDHN-F ATTCAGCTCACCGACGAACA
      QJrDHN-R CTCCTCATGCTGCTGCTTCT
    • 在体式荧光显微镜下观察再生JrDHN过表达植株茎和茎横切中绿色荧光标记蛋白(GFP)荧光激发情况,散发绿色荧光的植株为阳性植株。

    • 配置质量分数为5%PEG 8000的DKW固体培养基,模拟干旱胁迫处理,分别设置模拟干旱胁迫时间分别为7、14、21、28 d的处理组,以培养于DKW正常培养基(001)中的核桃体苗为对照组,每组设置3个生物学重复。

    • 在模拟干旱环境中处理0和14 d后,分别剪取同一部位WT和JrDHN过表达植株的叶片,在叶片下表面涂抹1层指甲油,风干后撕下盖上盖玻片在生物显微镜下观察并拍照。取0 d叶片加石英砂研磨,在显微镜下观察并记录叶绿体形态。

    • 分别剪取干旱胁迫处理7、14、21、28 d的JrDHN过表达株系和WT叶片,于大试管中加入20 mL配置好的DAB (1.0 g·L−1)、NBT (0.5 g·L−1)染液。室温下避光染色1~3 h,加入30 mL 体积分数为95%的乙醇,将大试管置于100 ℃沸水中水浴加热15 min,将叶绿素完全洗脱干净,之后固定拍照。

    • 分别取WT及JrDHN1干旱胁迫7、14、21、28 d的叶片0.1 g,加入10 mL 体积分数为 95%的乙醇溶液。黑暗条件下浸提48 h。以体积分数为95%乙醇为空白对照,测定波长663和646 nm处的吸光度,按叶绿素总质量分数=[20.2D(645)+8.2D(663)]×[V/(1 000W)]公式计算,其中V表示叶绿素提取液总体积,W表示所用叶片鲜质量。超氧化物歧化酶(SOD)、过氧化酶(POD)、过氧化氢酶(CAT)活性及超氧阴离子自由基(O2·−)、过氧化氢(H2O2)、丙二醛(MDA)均使用苏州科铭生物技术有限公司试剂盒进行测定。具体方法见使用说明书。

    • Ca2+与 CaM形成的复合物可以与线粒体膜上的 NADKc结合,驱动RBOH蛋白产生细胞外ROS[17],从而促进胞外ROS向胞内转移[18]。通过这种方式,可以改变细胞质中信号成分的氧化还原状态,从而调节多种蛋白质和转录因子[19],后续可以调节一系列抗旱相关基因的表达,如ADHSODPOD基因等[20]。因此,对WT及JrDHN1在干旱胁迫28 d下核桃基因组中的ABA信号转导通路途径中的关键节点基因MYB、ADH、CAM表达量进行qPCR检测。测定方法同上。

    • 图2A可以看出:在白光视野下,WT和JrDHN1、2、3过表达株系的形态相似;在蓝色激发光(488 nm)下,WT的茎及横切面无荧光激发,JrDHN1、2、3过表达株系在蓝色激发光下呈现绿色荧光。以上表明JrDHN1、2、3过表达株系体内均表达了GFP荧光蛋白,为阳性植株。

      图  2  核桃JrDHN基因过表达株系阳性鉴定

      Figure 2.  Positive identification of walnut JrDHN gene overexpression strain

      实时荧光定量PCR结果(图2B)显示:核桃JrDHN过表达再生株系JrDHN基因相对表达量均显著高于野生型(P<0.05),JrDHN1株系的相对表达量为野生型的2.55倍,JrDHN2株系的相对表达量为野生型的1.72倍,JrDHN3株系的相对表达量为野生型的1.49倍,差异均显著。JrDHN1、2、3之间基因表达量差异不显著,但JrDHN1株系过表达量最高。

    • 图3可见:WT和3个JrDHN过表达株系在001培养条件下均能正常生长,28 d时其表型无明显差异。在PEG处理下,随着胁迫时间延长,WT和过表达株系叶片逐渐黄化脱落。干旱胁迫处理14 d时,WT叶片大部分已经脱落,而JrDHN过表达株系叶片脱落较少,初步说明JrDHN过表达株系的抗旱能力强于WT。

      图  3  植株试管幼苗表型分析

      Figure 3.  Phenotype of test-tube plant let under drought stress

    • 图4所示:在0 d时,WT及JrDHN1、2、3的气孔开度(宽长比)分别为0.57、0.46、0.45、0.51。3种JrDHN过表达株系的气孔开度与WT差异不显著。而在PEG胁迫14 d时,WT和JrDHN 过表达株系气孔开度均缩小,其中WT气孔开度为0.46,JrDHN1、2、3气孔开度分别为0.15、0.23、0.26,JrDHN过表达株系的气孔开度显著低于WT (P<0.05),其中,JrDHN1的气孔开度显著低于JrDHN3 (P<0.05)。说明过表达JrDHN基因可降低植株在干旱胁迫下的气孔开度,从而提高核桃对干旱的耐受能力。

      图  4  干旱胁迫下气孔表型及开度分析

      Figure 4.  Analysis of stomatal phenotype and stomatal opening under drought stress

    • 在显微镜下观察发现:3个核桃 JrDHN 过表达株系叶肉细胞中的叶绿体更致密(图5A)。JrDHN过表达株系中叶绿体表面积与单层细胞表面积的比率显著高于WT (P<0.05),WT叶绿体表面积与单层细胞表面积的平均比率为0.65,3个JrDHN过表达株系叶绿体表面积与单层细胞表面积的比率分别为0.77、0.76、0.78,与WT相比分别增加了18.5%、17%、20%(图5B)。进一步分析发现,在胁迫0 d时, WT及JrDHN过表达株系的叶绿素质量分数无显著差异(图5C)。随着干旱胁迫时间的延长,WT及JrDHN1中的叶绿素质量分数均出现下降趋势。但在处理7 d后,WT中的叶绿素质量分数迅速下降到0.39 mg·g−1,而此时JrDHN1中的叶绿素质量分数为0.61 mg·g−1,显著高于WT。在此后的14~28 d,WT叶绿素质量分数下降渐缓,分别为0.33、0.25、0.15 mg·g−1JrDHN1中的绿叶素质量分数分别为0.35、0.31、0.25 mg·g−1JrDHN1在整个干旱胁迫处理中叶绿素的质量分数均高于WT。综上所述,JrDHN 基因过表达提高了叶绿体表面积与单层细胞表面积的比率及核桃叶肉细胞内叶绿素的积累。

      图  5  干旱处理后核桃苗叶绿体叶及绿素质量分数的变化

      Figure 5.  Changes of chlorophyll shape and content of walnut after drought treatment

    • 图6A~C显示:在干旱胁迫条件下,3种抗氧化酶活性伴随着胁迫时间延长均呈现先上升后下降的趋势。0 d时,WT 和JrDHN1 的SOD、POD、CAT活性无显著性差异;在14 d时酶活性达到最大值,其中 JrDHN1与WT的SOD及POD活性差异极显著(P<0.01),CAT活性差异显著(P<0.05);JrDHN1的抗氧化酶活性在干旱胁迫7~28 d均显著高于WT (P<0.05)。由图6D显示:随着 干旱 胁迫处理时间的增加,各株系的MDA 质量摩尔浓度逐渐上升。0 d时,WT 和 JrDHN1 植株内的MDA质量摩尔浓度没有显著差异;在14和28 d时 JrDHN1的 MDA质量摩尔浓度极显著低于WT (P<0.01);7和21 d时, JrDHN1 MDA质量摩尔浓度均显著低于WT。综上表明,过表达JrDHN 基因可使植株的抗氧化酶活性显著升高,减少植物体内脯氨酸的积累,从而提高核桃的抗干旱胁迫能力。

      图  6  干旱处理后核桃JrDHN1抗氧化酶活性及丙二醛质量摩尔浓度变化

      Figure 6.  Changes of antioxidant enzyme activity and malondialdehyde content in walnut JrDHN1 after drought treatment

    • 图7A和图7B可见:0 d时,核桃 WT及JrDHN1的 NBT染色后叶片颜色均为浅黄色,无差异;随着干旱胁迫时间的增加,DAB染色表型为叶片的黄色逐渐加深,在28 d时 WT 叶片完全为棕褐色,而 JrDHN1染色比 WT 浅;NBT染色表型为叶片的蓝色逐渐加深,WT 叶片的颜色加深程度比JrDHN1 突变体株系叶片的颜色深,且至28 d被完全染为深蓝色,JrDHN1仍有部分区域为浅蓝色或无色。通过量化的方式对颜色的灰度值进行测定,灰度值越大代表颜色越深,发现干旱处理7~28 d,JrDHN1灰度值均显著低于WT,与肉眼观察的结果相符(图7C和图7D)。进一步分析发现:随着干旱胁迫时间的增加,WT及JrDHN1中的H2O2 和O2·−质量摩尔浓度也逐渐增多,在第28 天达到最大值。0 d时,WT和JrDHN1中的 H2O2 和O2·−质量摩尔浓度无显著差异;28 d时,WT中的 H2O2 和O2·−质量摩尔浓度均显著低于WT (P<0.05);在7 和28 d时,JrDHN1中的H2O2质量摩尔浓度与WT差异极显著(P<0.01),在14和21 d时H2O2质量摩尔浓度则显著低于WT (P<0.05),而7 ~28 d时,JrDHN1与WT的O2·−质量摩尔浓度均差异极显著(P<0.01)(图7E和图7F)。综上所述,过表达JrDHN 基因显著降低核桃植株中的H2O2和O2·−的积累,从而提高其抗旱能力。

      图  7  干旱处理后核桃JrDHN1 ROS变化

      Figure 7.  ROS content changes of walnut JrDHN1 after drought treatment

    • 荧光定量qPCR 检测结果(图8)显示:各株系MYBADHCAM的表达量均呈先上升后下降的趋势,且各基因的表达量均在14 d时明显增高,这与抗旱表型出现的时间一致。14 d时,MYB的表达量最高,为WT的18.8倍,ADHCAM基因分别为WT的15.0和13.2倍。综合分析表明,过表达JrDHN基因可以提高MYB、ADHCAM基因的表达量,提升脱落酸(ABA)信号转导通路对干旱胁迫的响应,从而增强植株抗旱性。

      图  8  干旱处理后JrDHN1相关抗逆基因表达量分析

      Figure 8.  Analysis of JrDHN1-related stress resistance gene expression after drought treatment

    • 脱水素(dehydrins, DHNs)为晚期胚胎丰富(late embryogenesis abundant, LEA)蛋白的一个分支,广泛存在于高等植物体内,并当植物处于干旱等胁迫环境时可以在细胞中迅速积累,引起植物的一系列变化,抵御外界胁迫环境[21]。研究发现:脱水素可以通过提高叶绿素水平来提高干旱胁迫下的光合作用,从而保护植物细胞[22]。本研究结果显示:干旱胁迫0 d时,JrDHN过表达株系和WT叶绿素质量分数差异不显著;随着胁迫时间的增加,过表达株系叶绿素质量分数始终显著高于WT,说明过表达JrDHN基因可以提高干旱胁迫过程中核桃叶片中的叶绿素水平,从而提高光合作用,增强植株抗旱性。将从早花白子莲Agapanthus praecox中提取到的脱水素基因ApY2SK2 和ApSK3转入拟南芥,转基因拟南芥相比野生型在干旱胁迫下的光合能力显著提升[23],与本研究的结果相似。在铁皮石斛Dendrobium officinale中的研究也发现:高DHN表达量可以增加干旱胁迫条件下光合作用相关基因的表达量,从而提高植株光合作用水平来抵御干旱[24]

      抗氧化酶系统是植物遭受环境胁迫时重要的防御体系。当植物遭受干旱胁迫时,ROS的积累会触发该防御系统,从而保护植物减少胁迫环境带来的危害[25]。用体积分数为15%的PEG 6000溶液模拟干旱胁迫处理4个不同的葡萄Vitis vinifera品种,结果表明,随着干旱时间的增加,4个不同葡萄品种的叶绿素水平均逐渐降低,MDA含量上升,4个品种的SOD、POD、CAT以不同的变化幅度呈现先增长后降低的变化趋势[26]。用体积分数5%的PEGDKW培养基模拟干旱胁迫环境,随着干旱时间的延长,与WT相比,沉默JrGA20ox1基因表达能使核桃株系的抗氧化酶SOD、POD、CAT活性呈先升高后降低的趋势,同时减少MDA和ROS的积累,从而提高植株抗旱能力[27]。本研究通过对JrDHN过表达株系生理指标测定及化学组织染色得出:随着干旱时间的延长,WT及JrDHN过表达株系的抗氧化酶活性呈先升高后降低的趋势,这与前文的研究结果类似;JrDHN过表达植株的抗氧化酶活性始终显著高于WT,ROS及MDA水平始终显著低于WT。这表明过表达JrDHN可以提高核桃体内的抗氧化酶活性,减少ROS及MDA的积累,从而提高植株的抗旱能力。之前的研究也显示了类似的结果,以体积分数10% PEG处理烟草时,脱水素可以降低ROS在植物细胞中的积累,减少MDA的产生,同时增强抗氧化酶活性,从而提升植株对干旱胁迫的耐受性[28]。CHIAPPETTA等[29]研究发现:将野生油橄榄Olea europaea中提取到的OesDHN基因转入烟草后提高了烟草对干旱胁迫的耐受性。干旱胁迫下,小麦中TabHLH49转录因子可提高WYZ2DHN基因的表达量,从而提高小麦的耐受性[30]。在拟南芥中过表达CdDHN 4-LCdDHN4-S 均可以导致两者清除活性氧的能力升高,从而更好地抵御干旱胁迫[31]。在甘蓝型油菜Brassica napus中的研究发现BnaMYB11、BnaMYB26、BnaMYB30和BnaMYB4基因在干旱处理后显著上调,通过木质素合成,从而响应干旱胁迫[32]。褪黑素能通过调节抗氧化剂和氧化还原相关成分ADH的mRNA水平,从而调节渗透保护,增强植株耐旱性[33]EcCaM基因的过表达使拟南芥能够耐受PEG诱导的干旱和盐胁迫[34]。本研究结果也表明:过表达JrDHN基因可以提高MYB、ADH、CAM基因的表达量,从而增强植株抗旱性。

      核桃作为营养价值较高的经济作物,其种质资源的优化及品种的选育备受关注。在全球干旱的大背景下,培育抗旱耐旱的核桃品种具有重要意义,因此,通过探究JrDHN 过表达核桃植株对干旱的响应机制,可为选育抗旱核桃品种提供理论价值和实践意义。

    • 本研究发现:过表达JrDHN转基因核桃苗在PEG模拟干旱胁迫下的表型、光合能力和抗氧化能力均强于WT,过表达JrDHN基因在模拟干旱胁迫下可以有效提升抗氧化酶系统活力,清除活性氧,减少细胞受到的损伤,从而提高植株的抗旱性。综上所述,过表达JrDHN基因核桃的抗旱性要强于非转基因核桃。

参考文献 (34)

目录

/

返回文章
返回