-
生态化学计量学是综合生物学、化学和物理学等基本原理,研究生态系统能量平衡和多重化学元素[主要包括碳(C)、氮(N)、磷(P)]平衡以及元素平衡对生态交互作用影响的一种理论[1],可以定量揭示生态系统能量平衡和养分循环过程。其中,土壤C、N、P化学计量比能够反映有机质分解中养分矿化和固持间的平衡关系[2],其变化可能会影响生态系统中各组成成分的化学计量,从而改变生态系统的结构和功能[3],对研究植被恢复与演替、微生物活性和群落组成等方面具有重要的理论和实践意义。
1958年,REDFIELD[4]首次将化学计量学引入到生态学,用来研究海洋浮游植物C、N、P元素循环。2000年,ELSER等[1]正式提出了生态化学计量学的概念。目前,对全球变化[(如气候变暖、氮沉降、二氧化碳(CO2)浓度升高)]和单因子(海拔、降雨、土地利用方式等)生态化学计量特征的影响研究较多,且大多集中于对植物、微生物和土壤化学计量的研究[5−6]。然而,不同驱动因素如何通过生物或环境途径影响土壤化学计量特征的机制尚不明确,多数研究缺乏多因素协同作用的系统性研究,且多为短期研究,忽视了时空尺度上的长期变化,导致在全球变化下难以准确预测土壤化学计量的长期演变。本研究以中国知网(CNKI)和Web of Science (WOS)核心合集为数据库,采用Citespace对2009—2023年土壤化学计量特征的研究进行可视化分析,并归纳生物和非生物驱动因素对土壤C、N、P及其化学计量比的影响及其内部机制,以期为研究全球变化背景下的植物-土壤生物-土壤化学计量耦合性提供新视角和新方向。
Soil carbon, nitrogen and phosphorus stoichiometric characteristics and driving factors: a review
-
摘要: 土壤碳氮磷化学计量特征是表征土壤有机质组成和养分有效性的指标,对认识土壤碳氮磷循环和生态系统平衡具有重要作用。然而,关于不同驱动因素对土壤化学计量特征具体影响的研究仍有待加强。本研究通过分析2009—2023年来国内外在土壤生态化学计量领域的年度发文量和研究热点,从生物因素(植物、土壤微生物和土壤动物),自然环境因素(地质灾害、地形和成土母质),全球气候变化因素(气候变暖、极端天气、氮沉降、酸雨)以及人类活动(土地利用方式) 4个角度,探讨了土壤碳氮磷化学计量比变化的驱动因素,以阐明土壤生态化学计量变化规律及其内部机制。植物、微生物和土壤动物的相互作用共同驱动土壤碳(C)、氮(N)、磷(P)循环。土壤动物取食影响微生物群落结构,进而影响土壤有机碳周转;微生物群落的复杂性调控土壤C、N、P耦合。地质灾害导致养分流失和微生物活性降低,从而扰动土壤化学计量平衡。地形因子、气候变暖和极端天气改变了水热条件等因素,间接影响土壤化学计量比。成土母质的矿物组成和结构可直接调控土壤C∶N∶P。氮沉降和酸雨通过土壤酸化、养分淋失等过程影响植物生长和微生物活性,从而改变土壤C∶N∶P。土地利用方式则通过农业管理和植被覆盖直接或间接影响土壤化学计量平衡。环境因素通过生物因素直接或间接地影响土壤碳氮磷化学计量,但影响方向和程度尚不确定,未来应重视多因素的协同效应和多途径调控机制,为全球变化背景下的土壤养分管理和维持生态系统稳定性提供科学参考。图3参70Abstract: Soil carbon (C), nitrogen (N) and phosphorus (P) stoichiometric characteristics are indicators to characterize the composition of soil organic matter and nutrient availability, which play a key role in understanding the carbon, nitrogen and phosphorus cycle in soil and the balance of ecosystem. However, the current research on the specific effects of each driving factor on soil stoichiometric characteristics needs to be further strengthened. By analyzing the annual publications and research hotspots in the field of soil ecological stoichiometry home and abroad in the past 15 years, we discussed the changes of soil ecological stoichiometric characteristics in 4 parts: biological factors (plant, soil microorganism and soil animal), natural environmental factors (geological hazard, topography and soil parent material), global climate change factors (climate warming, extreme weather, nitrogen deposition, acid rain) and human activity (land use pattern). The driving factors of the change of soil ecological stoichiometric ratios were discussed, and the law and internal mechanism of the change of soil carbon, nitrogen and phosphorus stoichiometric ratios were expounded. The results showed that plant, soil microorganism, soil animal and their interactions jointly drive soil carbon, nitrogen and phosphorus cycle. Soil animals affect microbial community structure through feeding and thus influence soil carbon turnover. The complexity of microbial community regulates soil C-N-P coupling. Geological disasters disturb the balance of soil stoichiometry through nutrient loss and decreased microbial activity. Topography, climate warming and extreme climate indirectly affect soil stoichiometry by changing water and heat conditions, whereas the mineral composition and structure of parent material directly regulate soil C∶N∶P. Nitrogen deposition and acid rain affect plant growth and soil microbial activity through soil acidification and nutrient loss and thus change soil C-N-P stoichiometry. Land use patterns directly or indirectly affect soil stoichiometry through agricultural management and vegetation cover. Environmental factors affect soil C-N-P stoichiometry through biotic factors, directly or indirectly, but with uncertain direction and degree. Further study should pay attention to the synergistic effect of multiple factors and multi-path regulation mechanism so as to provide a reference for soil nutrient management and ecosystem stability in the context of global change. [Ch, 3 fig. 70 ref.]
-
Key words:
- ecological stoichiometry /
- soil C∶N∶P /
- soil nutrient /
- environmental response /
- driving factor /
- Citespace /
- review
-
-
[1] ELSER J J, STERNER R W, GOROKHOVA E, et al. Biological stoichiometry from genes to ecosystems [J]. Ecology Letters, 2000, 3(6): 540−550. [2] 冯德枫, 包维楷. 土壤碳氮磷化学计量比时空格局及影响因素研究进展[J]. 应用与环境生物学报, 2017, 23(2): 400−408. FENG Defeng, BAO Weikai. Review of the temporal and spatial patterns of soil C∶N∶P stoichiometry and its driving factors [J]. Chinese Journal of Applied and Environmental Biology, 2017, 23(2): 400−408. [3] SUN Yuan, WANG Cuiting, CHEN Xinli, et al. Phosphorus additions imbalance terrestrial ecosystem C∶N∶P stoichiometry [J]. Global Change Biology, 2012, 14(1): 7353−7365. [4] REDFIELD A C. The biological control of chemical factors in the environment [J]. Science Progress, 1960, 11: 150−170. [5] MAAROUFI N I, de LONG J R. Global change impacts on forest soils: linkage between soil biota and carbon-nitrogen-phosphorus stoichiometry[J/OL]. Frontiers in Forests and Global Change, 2020, 3 : 16[2024-10-01]. DOI: 10.3389/ffgc.2020.00016. [6] YU Zongkai, ZHANG Chao, LIU Xiaowei, et al. Responses of C∶N∶P stoichiometric correlations among plants, soils and microorganisms to warming: a meta-analysis[J/OL]. Science of the Total Environment, 2024, 912 : 168827[2024-12-17] DOI: 10.1016/j.scitotenv.2023.168827. [7] XIAO Lie, LIU Guobin, LI Peng, et al. Ecological stoichiometry of plant-soil-enzyme interactions drives secondary plant succession in the abandoned grasslands of Loess Plateau, China[J/OL]. CATENA, 2021, 202 : 105302[2024-10-01]. DOI: 10.1016/J.CATENA.2021.105302 . [8] SHI Shengwei, PENG Changhui, WANG Meng, et al. A global meta-analysis of changes in soil carbon, nitrogen, phosphorus and sulfur, and stoichiometric shifts after forestation [J]. Plant and Soil, 2016, 407(1/2): 323−340. [9] YU Mengfei, TAO Yongxia, LIU Wenzhi, et al. C, N, and P stoichiometry and their interaction with different plant communities and soils in subtropical riparian wetlands [J]. Environmental Science and Pollution Research International, 2020, 27(1): 1024−1034. [10] WAN Xiaohua, HUANG Zhiqun, HE Zongming, et al. Soil C∶N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations [J]. Plant and Soil, 2015, 387(1/2): 103−116. [11] LIU Jianguo, GOU Xiaohua, ZHANG Fen, et al. Spatial patterns in the C∶N∶P stoichiometry in Qinghai spruce and the soil across the Qilian Mountains, China[J/OL]. CATENA, 2021, 196 : 104814[2024-10-01]. DOI: 10.1016/j.catena.2020.104814. [12] LIU Xujun, TAN Nadan, ZHOU Guoyi, et al. Plant diversity and species turnover co-regulate soil nitrogen and phosphorus availability in Dinghushan forests, Southern China [J]. Plant and Soil, 2021, 464(1): 257−272. [13] CHEN Xinli, CHEN H Y H. Plant mixture balances terrestrial ecosystem C∶N∶P stoichiometry[J/OL]. Nature Communications, 2021, 12 (1): 4562[2024-10-01]. DOI: 10.1038/s41467-021-24889-w. [14] 陈小雪, 李红丽, 董智, 等. 滨海盐碱地土壤化学计量特征与群落物种多样性及其相关关系[J]. 水土保持研究, 2020, 27(6): 37−45, 59. CHEN Xiaoxue, LI Hongli, DONG Zhi, et al. Characteristics of soil stoichiometry and species diversity of community and their coupling relationship in coastal saline-alkali land [J]. Research of Soil and Water Conservation, 2020, 27(6): 37−45, 59. [15] DING Dongdong, ARIF M, LIU Minghui, et al. Plant-soil interactions and C: N: P stoichiometric homeostasis of plant organs in riparian plantation[J/OL]. Frontiers in Plant Science, 2022, 13 : 979023[2024-10-01]. DOI: 10.3389/fpls.2022.979023. [16] WU Haowei, CUI Huiling, FU Chenxi, et al. Unveiling the crucial role of soil microorganisms in carbon cycling: a review[J/OL]. Science of the Total Environment, 2024, 909 : 168627[2024-10-01]. DOI: 10.1016/j.scitotenv.2023.168627. [17] LI Zhaolei, ZENG Zhaoqi, TIAN Dashuan, et al. The stoichiometry of soil microbial biomass determines metabolic quotient of nitrogen mineralization[J/OL]. Environmental Research Letters, 2020, 15 (3): 034005[2024-10-01]. DOI: 10.1088/1748-9326/ab6a26. [18] CHEN Guanglei, YUAN Jiahui, WANG Shenqiang, et al. Soil and microbial C∶N∶P stoichiometries play vital roles in regulating P transformation in agricultural ecosystems: a review [J]. Pedosphere, 2024, 34(1): 44−51. [19] 周正虎, 王传宽. 微生物对分解底物碳氮磷化学计量的响应和调节机制[J]. 植物生态学报, 2016, 40(6): 620−630. ZHOU Zhenghu, WANG Chuankuan. Responses and regulation mechanisms of microbial decomposers to substrate carbon, nitrogen, and phosphorus stoichiometry [J]. Chinese Journal of Plant Ecology, 2016, 40(6): 620−630. [20] PHILIPPOT L, CHENU C, KAPPLER A, et al. The interplay between microbial communities and soil properties [J]. Nature Reviews Microbiology, 2024, 22(4): 226−239. [21] DECAËNS T, JIMÉNEZ J J, GIOIA C, et al. The values of soil animals for conservation biology [J]. European Journal of Soil Biology, 2006, 42: S23−S38. [22] ŽIFČÁKOVÁ L, VĚTROVSKÝ T, HOWE A, et al. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter [J]. Environmental Microbiology, 2016, 18(1): 288−301. [23] 吉雪茹, 刘任涛, 赵文智, 等. 荒漠草原区土壤动物分解作用对土壤C、N、P、K含量分布的影响[J]. 水土保持学报, 2023, 37(2): 351−360. JI Xueru, LIU Rentao, ZHAO Wenzhi, et al. Effects of soil arthropods decomposition on soil C, N, P, K content in desert steppe [J]. Journal of Soil and Water Conservation, 2023, 37(2): 351−360. [24] 陈晓旋, 陈淑云, 曾从盛, 等. 螃蟹对闽江河口湿地土壤碳氮磷含量及其生态化学计量学特征影响[J]. 环境科学学报, 2018, 38(3): 1179−1188. CHEN Xiaoxuan, CHEN Shuyun, ZENG Congsheng, et al. Effects of crabs on soil carbon, nitrogen, phosphorus concentration and ecological stoichiometry in Minjiang River estuarine wetlands [J]. Acta Scientiae Circumstantiae, 2018, 38(3): 1179−1188. [25] 青烨, 孙飞达, 李勇, 等. 若尔盖高寒退化湿地土壤碳氮磷比及相关性分析[J]. 草业学报, 2015, 24(3): 38−47. QING Ye, SUN Feida, LI Yong, et al. Analysis of soil carbon, nitrogen and phosphorus in degraded alpine wetland, Zoige, Southwest China [J]. Acta Prataculturae Sinica, 2015, 24(3): 38−47. [26] CAMENZIND T, HÄTTENSCHWILER S, TRESEDER K K, et al. Nutrient limitation of soil microbial processes in tropical forests [J]. Ecological Monographs, 2018, 88(1): 4−21. [27] 韦莉莉, 卢昌熠, 丁晶, 等. 丛枝菌根真菌参与下植物-土壤系统的养分交流及调控[J]. 生态学报, 2016, 36(14): 4233−4243. WEI Lili, LU Changyi, DING Jing, et al. Functional relationships between arbuscular mycorrhizal symbionts and nutrient dynamics in plant-soil-microbe system [J]. Acta Ecologica Sinica, 2016, 36(14): 4233−4243. [28] LIU Zhuxiu, GU Haidong, YAO Qin, et al. Soil pH and carbon quality index regulate the biogeochemical cycle couplings of carbon, nitrogen and phosphorus in the profiles of Isohumosols[J/OL]. Science of the Total Environment, 2024, 922 : 171269[2024-10-01]. DOI: 10.1016/j.scitotenv.2024.171269. [29] SAUVADET M, CHAUVAT M, FANIN N, et al. Comparing the effects of litter quantity and quality on soil biota structure and functioning: application to a cultivated soil in Northern France [J]. Applied Soil Ecology, 2016, 107: 261−271. [30] CAO Yini, TONG Ran, TAN Qian, et al. Flooding influences on the C, N and P stoichiometry in terrestrial ecosystems: a meta-analysis[J/OL]. CATENA, 2022, 215 : 106287[2024-10-01]. DOI: 10.1016/j.catena.2022.106287. [31] XIAO Ye, HUANG Zhigang, LU Xianguo. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, Northeast China [J]. Ecological Engineering, 2015, 82: 381−389. [32] ZHANG Ruihuan, RONG Li, ZHANG Lanlan. Soil nutrient variability mediates the effects of erosion on soil microbial communities: results from a modified topsoil removal method in an agricultural field in Yunnan plateau, China [J]. Environmental Science and Pollution Research International, 2022, 29(3): 3659−3671. [33] 余杭, 罗清虎, 李松阳, 等. 灾害干扰受损森林土壤的碳、氮、磷初期恢复特征与变异性[J]. 山地学报, 2020, 38(4): 532−541. YU Hang, LUO Qinghu, LI Songyang, et al. Initial recovery characteristics and variability of soil carbon, nitrogen, and phosphorus in the damaged forests under disaster disturbance [J]. Mountain Research, 2020, 38(4): 532−541. [34] ZHOU Wenxin, LI Changjia, ZHAO Wenwu, et al. Spatial distributions of soil nutrients affected by land use, topography and their interactions, in the Loess Plateau of China [J]. International Soil and Water Conservation Research, 2024, 12(1): 227−239. [35] HU Cong, LI Feng, XIE Yonghong, et al. Spatial distribution and stoichiometry of soil carbon, nitrogen and phosphorus along an elevation gradient in a wetland in China [J]. European Journal of Soil Science, 2019, 70(6): 1128−1140. [36] 李相楹, 张维勇, 刘峰, 等. 不同海拔高度下梵净山土壤碳、氮、磷分布特征[J]. 水土保持研究, 2016, 23(3): 19−24. LI Xiangying, ZHANG Weiyong, LIU Feng, et al. The distribution characteristics of soil carbon, nitrogen and phosphorus at different altitudes in Fanjingshan Mountain [J]. Research of Soil and Water Conservation, 2016, 23(3): 19−24. [37] ZHU Hanhua, WU Jinshui, GUO Shengli, et al. Land use and topographic position control soil organic C and N accumulation in eroded hilly watershed of the Loess Plateau [J]. CATENA, 2014, 120: 64−72. [38] 孙骞, 王兵, 周怀平, 等. 黄土丘陵区小流域土壤碳氮磷生态化学计量特征的空间变异性[J]. 生态学杂志, 2020, 39(3): 766−774. SUN Qian, WANG Bing, ZHOU Huaiping, et al. Spatial variation of ecological stoichiometry of soil C, N and P in a small catchment of loess hilly area [J]. Chinese Journal of Ecology, 2020, 39(3): 766−774. [39] LI Tianyang, ZENG Jiangmin, HE Binghui, et al. Changes in soil C, N, and P concentrations and stoichiometry in Karst trough valley area under ecological restoration: the role of slope aspect, land use, and soil depth[J/OL]. Forests, 2021, 12 (2): 144[2024-10-01]. DOI: 10.3390/f12020144 . [40] DELGADO-BAQUERIZO M, MAESTRE F T, GALLARDO A, et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands [J]. Nature, 2013, 502(7473): 672−676. [41] 张晗, 欧阳真程, 赵小敏. 不同利用方式对江西省农田土壤碳氮磷生态化学计量特征的影响[J]. 环境科学学报, 2019, 39(3): 939−951. ZHANG Han, OUYANG Zhencheng, ZHAO Xiaomin. Effects of different land use types on ecological stoichiometry characteristics of carbon, nitrogen and phosphorus in farmland soils in Jiangxi Province, China [J]. Acta Scientiae Circumstantiae, 2019, 39(3): 939−951. [42] LI Yuzhu, ZHAO Yue, BAO Xuelian, et al. Soil total and available C: N: P stoichiometry among different parent material soil profiles in rubber plantations of Hainan Island, China [J]. [J/OL]. Geoderma Regional, 2024, 36: e00765[2024-10-01]. DOI: 10.1016/j.geodrs.2024.e00765 [43] LIU Futian, WANG Xueqiu, CHI Qinghua, et al. Spatial variations in soil organic carbon, nitrogen, phosphorus contents and controlling factors across the “Three Rivers” regions of Southwest China[J/OL]. Science of the Total Environment, 2021, 794 : 148795[2024-10-01]. DOI: 10.1016/j.scitotenv.2021.148795. [44] DAVIES J A C, TIPPING E, ROWE E C, et al. Long-term P weathering and recent N deposition control contemporary plant-soil C, N, and P [J]. Global Biogeochemical Cycles, 2016, 30(2): 231−249. [45] AUGUSTO L, ACHAT D L, JONARD M, et al. Soil parent material-a major driver of plant nutrient limitations in terrestrial ecosystems [J]. Global Change Biology, 2017, 23(9): 3808−3824. [46] 姜冰, 王松涛, 孙增兵, 等. 山东省青州市土壤养分元素有效量及其影响因素[J]. 土壤, 2021, 53(6): 1221−1227. JIANG Bing, WANG Songtao, SUN Zengbing, et al. Available contents of soil nutrient elements and their influencing factors in Qingzhou City, Shandong Province [J]. Soils, 2021, 53(6): 1221−1227. [47] WAN Lingfan, LIU Guohua, CHENG Hao, et al. Global warming changes biomass and C∶N∶P stoichiometry of different components in terrestrial ecosystems [J]. Global Change Biology, 2023, 29(24): 7102−7116. [48] SUN Yuan, WANG Cuiting, CHEN H Y H, et al. A global meta-analysis on the responses of C and N concentrations to warming in terrestrial ecosystems[J/OL]. CATENA, 2022, 208 : 105762 [2024-10-01]. DOI: 10.1016/j.catena.2021.105762. [49] JIAO Feng, SHI Xinrong, HAN Fengpeng, et al. Increasing aridity, temperature and soil pH induce soil C-N-P imbalance in grasslands[J/OL]. Scientific Reports, 2016, 6 : 19601[2024-10-01]. DOI: 10.1038/srep19601. [50] TAN Qiqi, WANG Guoan, SMITH M D, et al. Temperature patterns of soil carbon: nitrogen: phosphorus stoichiometry along the 400 mm isohyet in China[J/OL]. CATENA, 2021, 203 : 105338 [2024-10-01]. DOI: 10.1016/j.catena.2021.105338. [51] XU Manhou, ZHAO Zitong, ZHOU Huakun, et al. Plant allometric growth enhanced by the change in soil stoichiometric characteristics with depth in an alpine meadow under climate warming[J/OL]. Frontiers in Plant Science, 2022, 13 : 860980 [2024-10-01]. DOI: 10.3389/fpls.2022.860980. [52] DENG Lei, PENG Changhui, KIM D G, et al. Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems[J/OL]. Earth-Science Reviews, 2021, 214 : 103501 [2024-10-01]. DOI: 10.1016/j.earscirev.2020.103501. [53] 姚庭玉, 陈小梅, 何俊杰, 等. 模拟干旱对鼎湖山季风常绿阔叶林土壤碳氮磷化学计量特征的影响[J]. 西南林业大学学报, 2017, 37(1): 104−109. YAO Tingyu, CHEN Xiaomei, HE Junjie, et al. Effects of drought on the C/N/P stoichiometry in the soil of a subtropical monsoon evergreen broad-leaved forest [J]. Journal of Southwest Forestry University, 2017, 37(1): 104−109. [54] SARDANS J, RIVAS-UBACH A, PEÑUELAS J. The C∶N∶P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives [J]. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14(1): 33−47. [55] QU Qing, XU Hongwei, AI Zemin, et al. Impacts of extreme weather events on terrestrial carbon and nitrogen cycling: a global meta-analysis[J/OL]. Environmental Pollution, 2023, 319 : 120996[2024-10-01]. DOI: 12099610.1016/j.envpol.2022.120996. [56] LI Jiwei, DENG Lei, PEÑUELAS J, et al. C∶N∶P stoichiometry of plants, soils, and microorganisms: response to altered precipitation [J]. Global Change Biology, 2023, 29(24): 7051−7071. [57] 许艺馨, 康扬眉, 韩翠, 等. 降水量对荒漠草原凋落物-土壤碳氮磷生态化学计量学特征的影响[J]. 中国草地学报, 2022, 44(4): 21−31. XU Yixin, KANG Yangmei, HAN Cui, et al. Effects of precipitation on ecological stoichiometric characteristics of litter and soil carbon, nitrogen and phosphorus in desert steppe [J]. Chinese Journal of Grassland, 2022, 44(4): 21−31. [58] LI Yong, NIU Shuli, YU Guirui. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis [J]. Global Change Biology, 2016, 22(2): 934−943. [59] SUN Yuan, WANG Cuiting, CHEN H Y H, et al. Responses of C∶N stoichiometry in plants, soil, and microorganisms to nitrogen addition [J]. Plant and Soil, 2020, 456(1/2): 277−287. [60] 付伟, 武慧, 赵爱花, 等. 陆地生态系统氮沉降的生态效应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 475−493. FU Wei, WU Hui, ZHAO Aihua, et al. Ecological impacts of nitrogen deposition on terrestrial ecosystems: research progresses and prospects [J]. Chinese Journal of Plant Ecology, 2020, 44(5): 475−493. [61] 杨乃瑞, 胡玉福, 舒向阳, 等. 草地土壤C∶N∶P化学计量及微生物呼吸对氮沉降响应的Meta分析[J]. 草业学报, 2020, 29(5): 1−12. YANG Nairui, HU Yufu, SHU Xiangyang, et al. Meta-analysis of the response to nitrogen deposition of soil nitrogen fractions, grassland soil C∶N∶P stoichiometry and microbial respiration [J]. Acta Prataculturae Sinica, 2020, 29(5): 1−12. [62] 徐华勤, 章家恩, 余家瑜, 等. 模拟酸雨对赤红壤磷素及Ca2+、Al3+、Fe2+淋失特征的影响[J]. 植物营养与肥料学报, 2011, 17(5): 1172−1178. XU Huaqin, ZHANG Jiaen, YU Jiayu, et al. Effects of simulated acid rain on leaching of phosphorus, Ca2+, Al3+ and Fe2+ from lateritic red soils [J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(5): 1172−1178. [63] 梁国华, 张德强, 卢雨宏, 等. 鼎湖山季风常绿阔叶林土壤C∶N∶P生态化学计量特征对长期模拟酸雨的响应[J]. 生态环境学报, 2018, 27(5): 844−851. LIANG Guohua, ZHANG Deqiang, LU Yuhong, et al. Responses of soil C∶N∶P stoichiometry to long-term simulated acid rain in a monsoon evergreen broad-leaved forest at Dinghushan nature reserve [J]. Ecology and Environmental Sciences, 2018, 27(5): 844−851. [64] 王燕, 张全智, 王传宽, 等. 恢复方式对东北东部森林土壤碳氮磷计量特征的影响[J]. 植物生态学报, 2024, 48(7): 943−954. WANG Yan, ZHANG Quanzhi, WANG Chuankuan, et al. Effects of restoration approaches on forest soil carbon, nitrogen and phosphorus stoichiometry in eastern Northeast China [J]. Chinese Journal of Plant Ecology, 2024, 48(7): 943−954. [65] 褚少杰, 王怡璇, 段利民, 等. 不同放牧强度对典型草原区河谷湿地土壤碳氮磷生态化学计量特征的影响[J]. 中国草地学报, 2023, 45(10): 12−21. CHU Shaojie, WANG Yixuan, DUAN Limin, et al. Effects of different grazing intensities on ecological stoichiometric characteristics of soil carbon, nitrogen and phosphorus in typical grassland valley wetlands [J]. Chinese Journal of Grassland, 2023, 45(10): 12−21. [66] DU Zhong, ZHENG Huan, PENUELAS J, et al. Shrub encroachment leads to accumulation of C, N, and P in grassland soils and alters C∶N∶P stoichiometry: a meta-analysis[J/OL]. Science of the Total Environment, 2024, 951 : 175534[2024-10-01]. DOI: 10.1016/j.scitotenv.2024.175534. [67] 朱仁欢, 李玮, 郑子成, 等. 退耕植茶地土壤碳氮磷生态化学计量学特征[J]. 浙江农林大学学报, 2016, 33(4): 612−619. ZHU Renhuan, LI Wei, ZHENG Zicheng, et al. Ecological stoichiometry of soil C, N, and P for returning farmland to tea plantations [J]. Journal of Zhejiang A&F University, 2016, 33(4): 612−619. [68] KIM D G, KIRSCHBAUM M U F, EICHLER-LÖBERMANN B, et al. The effect of land-use change on soil C, N, P, and their stoichiometries: a global synthesis[J/OL]. Agriculture, Ecosystems & Environment, 2023, 348 : 108402 [2024-10-01]. DOI: 10.1016/j.agee.2023.108402. [69] WANG Xiangxiang, ZHANG Hongrui, CAO Dan, et al. Microbial carbon and phosphorus metabolism regulated by C∶N∶P stoichiometry stimulates organic carbon accumulation in agricultural soils[J/OL]. Soil and Tillage Research, 2024, 242 : 106152 [2024-10-01]. DOI: 10.1016/j.still.2024.106152. [70] ZHENG Shengmeng, XIA Yinhang, HU Yajun, et al. Stoichiometry of carbon, nitrogen, and phosphorus in soil: effects of agricultural land use and climate at a continental scale[J]. Soil and Tillage Research, 2021, 209 : 104903[2024-10-01]. DOI: 10.1016/j.still.2020.104903. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240564