留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桂花OfNAC转录因子鉴定及在花开放阶段的表达分析

缪云锋 周丹 董彬 赵宏波

陈佳寅, 黄程鹏, 郑梦琦, 等. 有机肥和炭基肥替代化肥对甘薯坡耕地径流氮磷损失的影响[J]. 浙江农林大学学报, 2023, 40(3): 540-549. DOI: 10.11833/j.issn.2095-0756.20220360
引用本文: 缪云锋, 周丹, 董彬, 等. 桂花OfNAC转录因子鉴定及在花开放阶段的表达分析[J]. 浙江农林大学学报, 2021, 38(3): 433-444. DOI: 10.11833/j.issn.2095-0756.20200474
CHEN Jiayin, HUANG Chengpeng, ZHENG Mengqi, et al. Effects of substituting organic fertilizer and biochar-based fertilizer instead of chemical fertilizer on nitrogen and phosphorus runoff loss in sweet potato sloping farmland[J]. Journal of Zhejiang A&F University, 2023, 40(3): 540-549. DOI: 10.11833/j.issn.2095-0756.20220360
Citation: MIAO Yunfeng, ZHOU Dan, DONG Bin, et al. Identification and expression analysis of OfNAC transcription factors in Osmanthus fragrans during flower opening stage[J]. Journal of Zhejiang A&F University, 2021, 38(3): 433-444. DOI: 10.11833/j.issn.2095-0756.20200474

桂花OfNAC转录因子鉴定及在花开放阶段的表达分析

DOI: 10.11833/j.issn.2095-0756.20200474
基金项目: 国家自然科学基金面上项目(32072615)
详细信息
    作者简介: 缪云锋(ORCID: 0000-0002-4517-4640),从事观赏植物遗传育种研究。E-mail: 1150827869@qq.com
    通信作者: 赵宏波(ORCID: 0000-0003-4714-8240),教授,博士,从事观赏植物遗传育种等研究。E-mail: zhaohb@zafu.edu.cn
  • 中图分类号: S718.3

Identification and expression analysis of OfNAC transcription factors in Osmanthus fragrans during flower opening stage

  • 摘要:   目的  研究OfNAC基因对桂花Osmanthus fragrans花开放的调控作用。  方法  从桂花品种‘堰虹桂’O. fragrans ‘Yanhonggui’转录组数据中,筛选获得相关OfNAC基因序列,分析预测其理化性质和结构,运用实时荧光定量PCR技术分析花开放过程的表达特性。  结果  筛选得到22条OfNAC序列。生物信息学分析发现:22条OfNAC转录因子均含有NAM结构域,氨基酸序列含有5个保守的亚结构域(A~E),其保守性由强到弱依次为C、A、D、B、E;二级结构中不同结构的占比由大到小表现为无规则卷曲、α-螺旋、延伸链、β-折叠;亚细胞定位及跨膜结构预测表明:OfNAC17、OfNAC17-X2、OfNAC53、OfNAC91、OfNTM1-9是膜结合转录因子,且大多数OfNAC定位在细胞核。在桂花花开放进程中,OfNAC100-2、OfNAC43、OfNAC73相对表达量在铃梗期(S4)到达顶峰,在此之后相对表达降低;OfNAC43在铃梗期(S4)骤然升高,并且在此时期相对表达最大;OfNAC71、OfNAC29-1、OfNAC21/22从起始期(S1)呈缓慢上升趋势,在顶壳期 (S3) 到达最高,随后整体呈现下降趋势;OfNAC29-2在圆珠期(S2)相对表达量陡然上升,在铃梗期(S4)相对表达最低。  结论  推测OfNAC100-2、OfNAC43、OfNAC73、OfNAC71、OfNAC29-1、OfNAC21/22、OfNAC29-2等成员极有可能参与调控桂花的花开放。图6表3参33
  • 过量施用无机肥导致地表水体富营养化和土壤退化,从而使土壤生产力下降[14]。因此,优化养分管理措施,减少土壤氮磷的流失和提高肥料利用效率迫在眉睫。有机肥和炭基肥替代化肥是减少环境污染和维持作物产量的有效选择[5-7],两者均是通过调整土壤养分供应与作物养分需求,以达到增加肥料利用效率和减少氮磷流失的目的。有机肥养分供应速率取决于有机物质的矿化[8],炭基肥则取决于生物质炭和包覆材料的溶解与扩散[6]。有机肥替代化肥能减少稻田氮素淋溶和径流损失8.7%~25.6%[9-10] 并提高水稻Oryza sativa产量21%~24%[11],水稻氮素利用效率随有机肥比例的增高而增高,但有机肥比例超过 75%则氮素利用效率降低[10]。炭基肥能减少烟草Nicotiana tabacum地氮素淋溶损失的6.45%~8.36%,但减少氮素淋溶效应量随炭基肥添加量的增加而降低[12]。有机肥及炭基肥替代化肥对氮素利用效率和产量的影响效应量大小受肥料类型、施用量、替代率、栽培类型和作物种类影响。如相比尿素,炭基肥能分别提高茶Camellia sinensis 、肉桂Cinnamomum cassia和甜瓜Cucumis mel 产量43%、166%和 176%[13]。坡耕地土壤有着更高侵蚀风险,且即使同为坡耕地,种植甘薯Ipomoea batatas比荒草和谷子的侵蚀风险更高[14]。由于氮磷流失方式的间歇性、流失时间的随机性、流失机制的复杂性、流失途径和流失量的不确定性[15],坡地强化径流的条件下,甘薯坡耕地采用有机肥和炭基肥替代化肥的措施对氮磷养分径流损失的影响难以预测。本研究旨在探讨有机肥和炭基肥替代化肥对甘薯坡耕地土壤径流氮磷流失质量浓度、径流氮磷流失量及其形态的影响,同时分析了径流养分流失量和土壤化学性质之间的关系,以期为甘薯坡耕地径流流失情况和施肥管理措施提供理论依据。

    研究区位于浙江省杭州市临安区板桥镇葱坑村( 30°05′27.64″N,119°44′03.44″E)。该区属亚热带湿润季风气候,四季分明,年日照时数为1 946 h,无霜期为239 d,年平均气温为15.8 ℃,年平均降水量为1 629 mm。海拔为150 m,土壤为红壤土类黄红壤亚类。

    按照随机区组设计4个施肥处理(表1):不施肥(对照)、常规化肥、50%质量分数有机肥+50%质量分数化肥(有机肥50%替代)、炭基肥,每个处理重复3次,小区面积为30 m2。为防止发生侧渗和串灌,各小区之间均用水泥浇灌了宽20 cm,深30 cm的水泥墙。每个小区均配有1个单独的排水口和坡地径流池用于采集地表径流水。甘薯 ‘清香’I. batatas ‘Qingxiang’等高起垄栽插薯苗,行距50 cm,株距30 cm,密度为6.8 万株·hm−2。2020年6月8日施基肥,6月9日移栽插秧,7月20日施追肥,肥料均匀撒施后翻耕,肥料施于土层0~5 cm处。于2020年10月24日收获。

    表 1  施肥方案
    Table 1  Fertilizer types and rates
    处理施用量/(kg·hm−2)m(氮)︰m(五氧化二磷)︰
    m(氧化钾)
    基肥追肥
    不施肥(对照) 0 0 0︰0︰0
    常规化肥 尿素 195.66;钙镁磷肥 500.00;
     硫酸钾 577.00
    尿素 195.66;钙镁磷肥500.00;
     硫酸钾 577.00
    90︰60︰300
    50%质量分数有机肥+50%质量
     分数化肥 (有机肥50%替代)
    菜籽饼900.00;尿素 97.67;
     钙镁磷肥312.67;硫酸钾 559.67
    菜籽饼900.00;尿素 97.67;钙
     镁磷肥312.67;硫酸钾 559.67
    90︰60︰300
    炭基肥 炭基肥500.00;钙镁磷肥291.67;硫
    酸钾480.67
    炭基肥500.00;钙镁磷肥291.67;
     硫酸钾480.67
    90︰60︰300
      说明:尿素中氮质量分数为46%;钙镁磷肥中五氧化二磷质量分数为12%;硫酸钾中氧化钾质量分数为52%;菜籽饼中m(氮)∶m(五氧化二磷)∶m(氧化钾)∶m(碳)=5.0∶2.5∶1.0∶46.0,有机质质量分数为85%;炭基肥由遂昌绿金有机肥有限公司研制,m(氮)∶m(五氧化二磷)∶m(氧化钾)∶m(碳)=18∶5∶10∶25,直径为2~4 mm。其中,生物质炭质量分数为12%,由稻草通过在400~500 ℃缓慢热解,在无氧条件下热解1 h。生物炭质比表面积和孔体积分别为224.2 m2·g−1和0.11 cm3·g−1
    下载: 导出CSV 
    | 显示表格

    分别在2020年的6月22日、7月1日、7月7日、7月12日、7月17日、7月30日及9月21日收集地表径流,先测量径流池水位高度以计算径流水量,再将池内径流水充分搅匀,最后在池中不同部位、不同深度用采水器进行多点混合采集。水样置于4  ℃保存,并带回实验室即刻处理。

    收获甘薯后,每个小区随机选择 5 个位置采集 0~20 cm 土层土样,充分混合后组成一个土样。在土壤样品采集过程中,使用不锈钢容重环刀(直径5.05 cm,高5.00 cm)采集土壤容重样品。将样品分为2份,1份湿土除去可见的根,过 2 mm 筛,用于测定土壤铵态氮和硝态氮。另1份风干,除去可见的根和有机物,然后木盘研磨并过2 mm筛,用于测定土壤pH、速效钾、有效磷。再从过2 mm 筛土壤样品中挑选部分土样用玛瑙研钵研磨并过0.15 mm 筛,用于测定土壤有机碳、总氮、总磷和总钾。

    径流水样总氮、可溶性氮采用碱性过硫酸钾消解紫外分光光度法(GB 11894—1989)测定。径流水样总磷和可溶性磷采用过硫酸钾消解钼蓝比色法(GB 11893—1989)。径流水样铵态氮和硝态氮采用间断分析仪测定。采用 pH 计法测定径流水样 pH。

    土壤样品中的有机碳和总氮采用元素分析仪测定;土壤全磷采用高氯酸-硫酸消煮、钼锑抗比色法测定;土壤全钾采用氢氧化钠熔融、火焰光度法测定;土壤有效磷采用0.030 mol·L−1氟化铵-0.025 mol·L−1盐酸浸提、钼锑抗比色法测定;土壤速效钾采用醋酸铵浸提、火焰光度法测定;土壤硝态氮、氨态氮采用氯化钾浸提—间断分析仪测定。

    氮磷流失量(R, kg·hm−2):$ R = \displaystyle \sum\limits_{n = 1}^n {{C_i}} {V_i} $ ;氮磷流失系数(Cr):$ {C}_{\text{r}}=({R}_{\text{m}}-{R}_{0})/{R}_{\text{f}} $ ;颗粒态氮(PN)质量浓度(NP,mg·L−1): $ {N_{\rm{P}}} = {N_{\rm{T}}} - {N_{\rm{D}}} $ ;颗粒态磷(PP)质量浓度(PP,mg·L−1):$ {P_{\rm{P}}} = {P_{\rm{T}}} - {P_{\rm{D}}} $  ;可溶性有机氮(DON)质量浓度(NDO,mg·L−1):$ {N_{{\rm{DO}}}} = {N_{\rm{D}}} - {N_{\rm{N}}} - {N_{\rm{A}}} $ 。其中:Ci为第 i 次径流水中氮、磷的质量浓度(mg·L−1);Vi为第 i 次径流水的体积(m3);n为总径流次数;Rm为不同施肥类型氮磷流失量;R0为不施肥氮磷流失量;Rf 为不同施肥类型肥料施用量;NT为总氮(TN)质量浓度(mg·L−1);ND为可溶性总氮(DN)质量浓度(mg·L−1);PT为总磷(TP)质量浓度(mg·L−1);PD为可溶性总磷(DP)质量浓度(mg·L−1);NN为硝态氮(NN)质量浓度(mg·L−1);NA为铵态氮(AN)质量浓度(mg·L−1)。

    利用SPSS 26.0进行数据统计分析,采用单因素方差分析和邓肯法多重比较检验不同处理间的差异显著性(P<0.05)。利用主成分分析(PCA)确定径流氮磷及其形态之间相互依存的结构。利用冗余分析(RDA)检查土壤特性与土壤径流氮磷及其形态之间的关系。

    重复测量模型(图1)表明:不同处理、径流产流时间及其相互作用对径流总氮、颗粒氮、硝态氮和铵态氮质量浓度均存在显著影响(P<0.05),地表径流总氮、颗粒氮、硝态氮和铵态氮质量浓度存在峰值效应,并且不同径流产流过程中不同处理的影响也不同。施肥初期,与常规化肥相比,有机肥50%替代和炭基肥处理的径流总氮质量浓度分别减少了58.4%和49.0%;颗粒氮质量浓度分别减少了84.5%和78.3%;硝态氮质量浓度分别减少了32.1%和26.4%;铵态氮质量浓度分别减少了66.1%和80.0%。施肥中后期,常规化肥、有机肥50%替代和炭基肥对径流中总氮、颗粒氮、硝态氮和铵态氮质量浓度的影响较小。

    图 1  不同处理不同时间径流中不同形态氮磷质量浓度和 pH
    Figure 1  Effects of fertilizer types and runoff dates on nitrogen, phosphorus contents and pH value in the runoff

    不同处理和径流产流时间显著影响径流可溶性氮和总磷质量浓度(P<0.05),且不同肥料类型的影响趋向一致。无论径流产流时间如何变化,有机肥50%替代处理的径流中可溶性氮和总磷质量浓度分别为5.23 、1.03 mg·L−1,炭基肥处理的径流中分别为2.85、0.91 mg·L−1,均显著低于常规化肥处理(分别为8.59 和1.33 mg·L−1)。

    径流产流时间显著影响径流可溶性有机氮和可溶性磷质量浓度(P<0.05),但两者并不受不同处理的影响(P>0.05)。另外,pH并不随径流产流时间变化而变化(P>0.05),常规化肥处理中pH值(7.45)低于有机肥50%替代(7.62)和炭基肥(7.79)处理。

    图2A可见:在7次径流产流中,不同处理的径流流失量均无显著差异(P>0.05)。对于常规化肥处理,第1次降雨的径流氮素流失量占全年径流流失总量的46.2%,在这个时期,有机肥50%替代和炭基肥处理可分别减少总氮流失量1.78和1.25 kg·hm−2、硝态氮流失量0.29和0.21 kg·hm−2、铵态氮流失量0.27和0.32 kg·hm−2、可溶性有机氮0.64和0.30 kg·hm−2。由图2B可见:第1次降雨时径流中的磷素流失量占全年径流流失总量的53.9%。有机肥50%替代和炭基肥处理可分别减少总磷流失量的35.3%和32.1%、可溶性磷流失量的54.3%和13.5%、颗粒磷流失量的24.9%和42.3%。

    图 2  不同处理不同时间径流中不同形态氮磷素流失量
    Figure 2  Effects of fertilizer types on different fractions of nitrogen and phosphorus loss rate in runoff in different runoff dates

    图3A图3B可见:不施肥处理每年径流中的总氮和总磷流失量分别为2.27和0.40 kg·hm−2。常规化肥处理每年径流总氮流失量是7.75 kg·hm−2,分别是有机肥50%替代处理(4.02 kg·hm−2)和炭基肥处理(4.68 kg·hm−2)的1.93和1.66倍。有机肥50%替代和炭基肥处理每年径流总磷流失量分别为1.22、1.11 kg·hm−2,是常规化肥处理(1.65 kg·hm−2)的73.9%和67.4%。

    图 3  不同处理的径流中总氮(A)和总磷(B)的流失量及径流系数(C)
    Figure 3  Effects of fertilizer types on total nitrogen (A) and total phosphorus (B) loss rate and runoff coefficients (C) in the runoff

    图3C可见:常规化肥、有机肥50%替代和炭基肥处理总氮流失系数分别为6.09%、1.94%和2.67%, 而总磷流失系数分别为6.91%、4.53%和3.94%。相比常规化肥,有机肥50%替代和炭基肥处理的总氮流失系数分别降低了68.09%和56.11%,而总磷流失系数分别降低了34.54%和43.00%。

    表2可见:与常规化肥处理相比,有机肥50%替代和炭基肥处理的土壤有机碳、全磷、全钾、有机氮、铵态氮和有效钾质量分数都有所提高,但除了炭基肥处理显著提高了土壤有机碳质量分数(P<0.05)外,其余处理均未达显著水平。且与常规化肥处理相比,有机肥50%替代和炭基肥处理的硝态氮和有效磷质量分数分别显著降低了18.1%~26.2%和45.0%~65.0% (P<0.05)。

    表 2  不同处理土壤化学性质
    Table 2  Effects of fertilizer types on soil properties
    处理pH有机碳/
    (g·kg−1)
    全磷/
    (g·kg−1)
    全钾/
    (g·kg−1)
    有机氮/
    (g·kg−1)
    硝态氮/
    (mg·g−1)
    铵态氮/
    (mg·kg−1)
    有效磷/
    (mg·kg−1)
    有效钾/
    (mg·kg−1)
    不施肥 5.62 bc 11.39 b 0.36 a 31.15 a 1.93 a 36.30 b 5.08 a 9.30 b 179.60 b
    常规化肥 5.51 c 11.08 b 0.33 a 27.56 a 1.93 a 49.10 a 6.28 a 26.00 a 241.60 ab
    有机肥50%替代 5.66 b 13.63 ab 0.41 a 27.73 a 2.10 a 40.28 b 7.72 a 9.10 b 212.10 ab
    炭基肥 5.91 a 14.54 a 0.30 a 29.22 a 2.17 a 36.20 b 5.57 a 14.30 b 269.40 a
      说明:同列不同小写字母表示差异显著(P<0.05)。
    下载: 导出CSV 
    | 显示表格

    与常规化肥处理相比,有机肥50%替代处理使硝态氮和可溶性有机氮的占比分别提高了28%和46%,但使铵态氮和颗粒态氮的占比分别减少了9%和18%;炭基肥处理则使硝态氮和可溶性有机氮的占比分别提高了26%和46%,但使铵态氮和颗粒态氮的占比分别减少了8%和20%(图4A)。常规化肥处理的可溶性磷占比(30%)高于有机肥50%替代处理(25%),而低于炭基肥处理(40%) (图4B)。

    图 4  不同处理径流中不同形态氮磷组分
    Figure 4  Effects of fertilizer types on proportions of nitrogen and phosphorus fractions in the runoff

    主成分分析(图5A)发现:2 个轴解释了径流氮磷形态组成中总变异的 90.1%,其中主成分1 对氮磷径流流失形态的贡献率为78.97%,这意味着横坐标是主要的变异因素。本研究中,径流氮磷组分分为 3 个主要组分,并且在主成分1的因素上,有机肥50%替代和炭基肥处理与不施肥、常规化肥处理均显著分开,这表明甘薯坡耕地土壤在经过不同施肥处理后,其径流中氮磷的组分与对照、常规处理相比发生了显著的变化,而有机肥50%替代和炭基肥处理之间的径流氮磷组分趋于一致。冗余分析中两坐标轴能够解释75.86%的关系信息, 说明该结果可较好地反映土壤的化学性质和径流氮磷及其形态之间的关系。冗余分析(图5B)显示:土壤有效磷质量分数与径流氮磷形态组成呈正相关(F=7.0,P=0.007),尤其是常规化肥处理土壤中硝态氮、铵态氮、可溶性有机氮、可溶性总氮、总氮、颗粒态磷、可溶性总磷和总磷径流流失量。

    图 5  不同处理径流中氮磷组分的主成分分析(A)和冗余分析(B)
    Figure 5  Principal component analysis (A) and redundancy analysis (B) of nitrogen and phosphorus fractions in different fertilizer types

    总氮与硝态氮、铵态氮、可溶性有机氮、颗粒态氮和可溶性氮的相关系数分别为0.88、0.71、0.94、0.90和0.98。意味着氮素之间转化是相互依赖和相互转化的。总磷与可溶性磷和颗粒态磷之间的相关系数分别为0.87和0.98,表明各个形态的磷组分间存在显著正相关(P<0.05)。甚至总氮与总磷的相关系数为0.82,即两者之间也呈显著正相关(图6),意味着氮和磷流失量之间为协变关系。径流氮磷流失与土壤化学性质息息相关,如土壤硝态氮能解释径流总氮和总磷的 49%和48%的变化。径流总氮(R2=0.60)和总磷(R2=0.41)流失量随土壤有效磷质量分数增大而增大(图7)。

    图 6  径流中氮磷形态之间的相关关系
    Figure 6  Correlations between runoff nitrogen and phosphorus
    图 7  径流养分流失量和土壤氮磷钾不同形态质量分数及pH之间的相关关系
    Figure 7  Relationships between runoff nutrient loss and soil nitrogen,phosphorus, potassium contents and pH

    本研究表明:有机肥50%替代和炭基肥处理可减少甘薯坡耕地径流总氮质量浓度。在施肥初期,随着施肥时间延长,它们的效应大小甚至方向趋向一致,这可能与作物生长和施肥有关,在施肥初期植株的保水保肥能力较弱,刚施入的肥料未完全与土壤相结合,易于流失。而氮作为植株生长过程中需求量较大的元素,被植株吸收较多,因此土壤径流中各处理氮的质量浓度大幅降低。而孔文杰 [16]研究发现:有机肥和炭基肥对甘薯坡耕地径流总磷质量浓度的影响不随施肥时间推移而变化。然而,有机肥和炭基肥对稻田和蔬菜径流总磷和总氮的质量浓度影响则相反[17],表明在不同种植模式下有机肥和炭基肥影响径流养分质量浓度的效应是不同的。

    不同肥料会影响径流中不同形态氮磷组成,如有机肥50%替代和炭基肥处理均较常规化肥处理可分别提升硝态氮、可溶性有机氮的占比,同时降低铵态氮、颗粒态氮的占比。这是由于有机肥的氮素矿化释放速率慢,以硝态氮和铵态氮形态存在于土壤和径流中相对少,不易发生损失[18]。王静等[19]研究发现:炭基肥对径流中氮磷产生影响的原因可能是增强了土壤持水能力,进而提高可溶性磷和硝态氮含量。肥料类型是影响甘薯氮磷径流流失量的一个重要因素。本研究有机肥50%替代处理较常规化肥处理减少了径流总氮和总磷的流失量,降低了总氮和总磷流失系数,与已有研究结果相同[20-22]。这表明有机肥无论是对菜田、稻田还是坡耕地都能起到减少径流总氮流失量,并能减少坡耕地和菜田径流总磷流失量。然而,有机肥对减少菜地、稻田和坡耕地径流氮磷流失量存在差异[23]。炭基肥处理较常规化肥处理可减少径流氮、磷总量,降低总氮和总磷流失系数,与已有研究结果[24-25]相同。

    脱云飞等[26]、陈晓鹏等[27]研究证明:土壤有效磷、硝态氮的质量分数是影响径流氮磷流失量主要因素。本研究表明:径流总磷的流失量与土壤有效磷质量分数呈正相关,磷的移动性很小,径流中有效磷的累积流失量主要取决于径流对地表的冲刷和浸提,有效磷质量分数高的土壤能够有效指示径流携带的含磷量[28],同时王莺等[29]、刘晓玲等[30]在山核桃Carya cathayensis林和稻田上研究发现:土壤有效磷的质量分数与径流总磷流失量的关系与甘薯田基本一致。而地表径流氮素主要来源于土壤表层氮素的冲刷、溶出和淋溶,土壤硝态氮质量分数与径流总氮的流失量呈正比,王琼等[31]对土壤中硝态氮会直接影响径流中氮的流失进行过研究,而徐爱国等[32]在稻田和菜田中证明土壤硝态氮质量分数与径流液总氮流失量并没有显著相关性,表明土壤硝态氮质量分数预测总氮径流流失量因土地利用方式而异[33]

    本研究结果表明:①有机肥50%替代和炭基肥处理显著影响径流氮磷流失;相比较常规化肥处理,分别降低径流总氮质量浓度的58.4%和49.0%,降低径流总磷质量浓度的22.6%和31.6%;降低总氮流失量的48.1%和39.6%,降低总磷流失量的26.1%和32.7%。②有机肥50%替代和炭基肥处理改变了径流氮磷形态的组成,相比常规化肥处理显著降低了径流氮磷养分流失系数;有机肥50%替代和炭基肥处理的总氮流失系数分别降低了68.09%和56.11%,总磷流失系数分别降低了34.54%和43.00%。③有机肥和炭基肥施用主要是减少施肥前期氮磷养分的流失。随着施肥时间的延长,有机肥和炭基肥在减少氮磷径流流失与常规化肥施肥并无区别,意味着肥效逐渐递减效应和作物吸收的平衡。④土壤化学性质是影响径流氮磷流失量的主要因素。其中土壤硝态氮的质量分数仅可预测甘薯坡耕地土壤养分的流失,土壤有效磷的质量分数可以指示土壤的养分流失。因此,施用有机肥和炭基肥显著影响了径流氮磷流失,但不同肥料之间影响效果存在差别,比较而言,有机肥50%替代化肥处理更适合用于减少甘薯坡耕地径流氮流失,而炭基肥更适用于减少径流磷流失。合理的施肥措施可以有效减少土壤径流氮磷的流失。

  • 图  1  桂花NAC的NAM保守功能域分析

    绿色部分表示NAM保守功能域

    Figure  1  NAM conserved functional domain about NAC

    图  2  OfNAC转录因子氨基酸序列比对

    黑色区域表示序列一致,红色区域保守性稍弱,蓝色区域保守性较差。字母A、B、C、D、E下面的方框部分为OfNAC转录因子N端保守区5个保守亚结构域

    Figure  2  Sequence alignment of OfNAC transcription factor

    图  3  桂花OfNAC转录因子进化分析及保守基序分析

    Figure  3  Evolution analysis of 22 OfNAC transcription factors and analysis of conserved motif

    图  4  桂花OfNAC蛋白质跨膜结构预测

    Figure  4  Transmembrane structure prediction related to OfNAC protein

    图  5  桂花OfNAC与拟南芥、水稻的系统进化树

    标黄色阴影的是桂花OfNAC

    Figure  5  Phylogenetic tree of OfNAC, A. thaliana and O. sativa

    图  6  22个OfNAC基因在不同花开放时期的表达结果

    Figure  6  Expression results of 22 OfNAC genes in different flower opening periods

    表  1  桂花OfNAC转录因子RT-PCR特异性引物

    Table  1.   Specific primers for RT-PCR of OfNAC in O. fragrans

    基因名称用于荧光定量的引物序列(5′→3′)基因名称用于荧光定量的引物序列(5′→3′)
    OfNAC100-1F: TGAACAAGATTGAGCCTTGGGOfNAC104F: TGCATTTTACATTGGTGAAGATGTC
    R: CCTTTCCTGTGGCTTTCCAGR: GCTCGTACACTTGACACACCA
    OfNAC53F: AGATTGTGGGGATGAAGAAAAOfNAC92F: TCCTAGTCGGAATGAAGAAAACTC
    R: CAACTCCATATCAGTAAGCCGR: ATGGCTTTCTAATCTGTATTCGTGC
    OfNTM1-9F: GGTTGCTCTAATGCCCACTTCOfNAC72-1F: GGAAAAGCCCCCAAAGGAAC
    R: CTGGTTCCGTAGCACGATACTR: CCCAATCATCCAACCTTGAGC
    OfNAC73F: AGGCAAGGATGGCCAAATTCOfNAC72-2F: ACGTAGGAAAAGCACCAAAAGG
    R: TTGTGCCATCTTGTTTCTCCR: AGCATCCAACCTTGCGCTTC
    OfNAC43F: AGGCTACTGGTCGTGATAAAGOfNAC29-1F: TTACAAGGGAAGGCCTCCAAAG
    R: GGGGTCATGAGTGTCGTCCR: TTGAGCCATTTTGCGTGTTAGG
    OfNAC91F: TCTACAAAGGTCGTGCTCCGOfNAC29-2F: CCCAAAGGGCGTCAAAACTG
    R: CCCTGACCAGGATAAGTGCCR: GCACACAATCATCCAACCTCA
    OfNAC50-X2F: TGGCAAAGGGTATTGGAAAGCOfNAC71F: CTATCGTGGAAGAGCACCACT
    R: TCGCCCACTATGGAAAACAAGR: TCCCTGAAATCTTGGGGTGTC
    OfNAC50F: AAGCAACTGGAAAGGATCGCOfNAC2F: TTGGGAATAAAGAAGGCTCTGGTG
    R: AATTCTGCATCGCAAAGCCTGR: ACACAACACCCAATCATCAAGCCTC
    OfNAC21/22F: GAAGGGAAGCCTGGTTGGAATOfNAC100-2F: TCAGAGGAAAAATCCTCGTCGG
    R: CCCAATCCTCCTTGACAGATGR: TTTGGGAGGTTGTGGATCGAG
    OfNAC56F: TCTATGGTGGAAAGCCTCCTOfNAC32F: AAGCCTTGGTTTTCTATGCCG
    R: CATCAAGCCTTAAAGAGCCCR: AAGCTGTTGTTCTTGTTTCGA
    OfNAC17-X2F: TCCTGTTGGGGTGAAGAAGAOfACTF: CCCAAGGCAAACAGAGAAAAAAT
    R: ATAGTCATCCTGTGCATCCTGCR: ACCCCATCACCAGAATCAAGAA
    OfNAC17F: TGGTCTTCCATAAAGGTCGTGC
    R: TTGTACAGAGCATAGCAATCCCGTG
    下载: 导出CSV

    表  2  桂花OfNAC蛋白质理化性质及二级结构分析

    Table  2.   Physicochemical properties and secondary structure analysis of OfNAC of O. fragrans

    序列名称氨基酸长度/个相对分子量等电点碱性氨基酸酸性氨基酸不稳定系数脂溶性指数总平均疏水值亚细胞定位
    位置预测值/%
    OfNAC100-134538 986.118.69403640.0661.01−0.574细胞核61.54
    OfNAC5355862 807.474.60518838.8769.37−0.564内质网42.42
    OfNTM1-960668 053.705.63718651.4962.43−0.725细胞核76.92
    OfNAC7330033 768.958.79393438.2169.47−0.754细胞核76.92
    OfNAC4339945 513.665.77435546.3163.26−0.752细胞核69.23
    OfNAC9160967 741.524.98638652.8371.07−0.593细胞核76.92
    OfNAC50-X238943 765.295.29465847.8369.43−0.629叶绿体58.33
    OfNAC5039944 952.525.35466150.4567.69−0.652叶绿体46.15
    OfNAC21/2229633 613.156.54333451.2666.52−0.570细胞核71.43
    OfNAC5632235 946.518.62373439.4864.81−0.725细胞核92.30
    OfNAC17-X257364 828.714.87639140.6077.70−0.530细胞核53.85
    OfNAC1760668 408.124.85609746.7974.62−0.571细胞核30.77
    OfNAC10418621 498.774.59193146.9668.60−0.695细胞核84.61
    OfNAC9232536 813.716.47404229.2771.35−0.579细胞核38.46
    OfNAC72-133938 289.938.64403740.1464.96−0.671细胞核84.61
    OfNAC72-234238 848.468.64423940.0461.64−0.762细胞核100
    OfNAC29-128032 538.567.71363542.9661.96−0.816细胞核52.50
    OfNAC29-227531 330.369.33352633.8161.35−0.741细胞核100
    OfNAC7130334 864.615.42334351.8953.37−0.795细胞核85.71
    OfNAC229634 249.556.09353850.0166.22−0.735细胞核69.23
    OfNAC100-233437 778.806.51384043.1067.96−0.540细胞核85.71
    OfNAC3226330 253.458.45383543.9169.32−0.635细胞核61.54
      说明:不稳定系数大于40为不稳定序列,小于40为稳定序列
    下载: 导出CSV

    表  3  桂花OfNAC蛋白质理化性质及二级结构分析

    Table  3.   Secondary structure analysis of OfNAC of O. fragrans

    序列名称二级结构占比序列名称二级结构占比
    α-螺旋/%β-螺旋/%延伸/%无规则卷曲/%α-螺旋/%β-螺旋/%延伸/%无规则卷曲/%
    OfNAC100-115.073.1914.7866.96 OfNAC1724.592.8112.7159.90
    OfNAC5321.333.7614.5260.39OfNAC10418.823.7615.5961.83
    OfNTM1-923.273.149.7463.86OfNAC9214.153.6915.6966.46
    OfNAC7313.003.6720.0063.33OfNAC72-117.993.5416.2262.24
    OfNAC4321.554.2614.2959.90OfNAC72-216.963.5116.0863.45
    OfNAC9120.362.6310.5166.50OfNAC29-13.213.5717.8655.36
    OfNAC50-X231.115.9112.3450.64OfNAC29-215.644.3616.7363.27
    OfNAC5027.825.0110.5356.64OfNAC7116.174.9514.5264.36
    OfNAC21/2217.233.0415.2064.53OfNAC221.624.0511.8262.50
    OfNAC5616.153.1115.8464.91OfNAC100-216.473.5914.0765.87
    OfNAC17-X225.832.9712.9158.29OfNAC3217.112.6612.9367.30
    下载: 导出CSV
  • [1] OLSEN A N, ERNST H A, LEGGIO L L, et al. NAC transcription factors: structurally distinct, functionally diverse [J]. Trends Plant Sci, 2005, 10(2): 79 − 87.
    [2] HIBARA K, TAKADA S, TASAKA M. CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation [J]. Plant J, 2004, 36(5): 687 − 696.
    [3] ZHANG Qian, LUO Fang, ZHONG Yu, et al. Modulation of NAC transcription factor NST1 activity by XYLEM NAC DOMAIN1 regulates secondary cell wall formation in Arabidopsis [J]. J Exp Bot, 2019, 71(4): 1449 − 1458.
    [4] PITAKSARINGKARN W, MATSUOKA K, ASAHINA M, et al. XTH20 and XTH19 regulated by ANAC071 under auxin flow are involved in cell proliferation in incised Arabidopsis inflorescence stems [J]. Plant J, 2014, 80(4): 604 − 614.
    [5] KANEDA T, TAGA Y, TAKAI R, et al. The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death [J]. EMBO J, 2009, 28(7): 926 − 936.
    [6] JEONG J S, KIM Y S, BAEK K H, et al. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions [J]. Plant Physiol, 2010, 153(1): 185 − 197.
    [7] CHEN Xu, LU Songchong, WANG Yaofeng, et al. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice [J]. Plant J, 2015, 82(2): 302 − 314.
    [8] LIU Yuanlong, KE Lili, WU Guizhi, et al. miR3954 is a trigger of phasiRNAs that affects flowering time in citrus [J]. Plant J, 2017, 92(2): 263 − 275.
    [9] TRUPKINSA, ASTIGUETA F, BAIGORRIA A H, et al. Identification and expression analysis of NAC transcription factors potentially involved in leaf and petal senescence in Petunia hybrid[J]. Plant Science, 2019, 287: 110195. doi: 10.1016/j.plantsci.2019.110195.
    [10] JIANG Guoxiang, LI Zhiwei, SONG Yunbo, et al. LcNAC13 physically interacts with LcR1MYB1 to coregulate anthocyanin biosynthesis-related genes during litchi fruit ripening[J]. Biomolecules, 2019, 9(4): 135. doi: 10.3390/biom9040135.
    [11] van DOORN W G, van MEETEREN U. Flower opening and closure: a review [J]. J Exp Bot, 2003, 54(389): 1801 − 1812.
    [12] van DOORN W G, KAMDEE C. Flower opening and closure: an update [J]. J Exp Bot, 2014, 65(20): 5749 − 5757.
    [13] IRISH V F. The Arabidopsis petal: a model for plant organogenesis [J]. Trends Plant Sci, 2008, 13(8): 430 − 436.
    [14] ZONIA L, MUNNIK T. Life under pressure: hydrostatic pressure in cell growth and function [J]. Trends Plant Sci, 2007, 12(3): 90 − 97.
    [15] SABLOWSKI R, MEYEROWITZ E M. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA [J]. Cell, 1998, 92(1): 93 − 103.
    [16] JIANG Xinqiang, ZHANG Changqing, LÜ Peitao, et al. RhNAC3, a stress-associated NAC transcription factor, has a role in dehydration tolerance through regulating osmotic stress-related genes in rose petals [J]. Plant Biotechnol J, 2014, 12(1): 38 − 48.
    [17] 王英, 张超, 付建新, 等. 桂花花芽分化和花开放研究进展[J]. 浙江农林大学学报, 2016, 33(2): 340 − 347.

    WANG Ying, ZHANG Chao, FU Jianxin, et al. Progress on flower bud differentiation and flower opening in Osmanthus fragrans [J]. J Zhejiang A&F Univ, 2016, 33(2): 340 − 347.
    [18] ZHANG Chao, WANG Yiguang, FU Jianxin, et al. Transcriptomic analysis and carotenogenic gene expression related to petal coloration in Osmanthus fragrans‘Yanhong Gui’ [J]. Trees-Struct Funct, 2016, 30(4): 1207 − 1223.
    [19] CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Mol Plant, 2020, 13(8): 1194 − 1202.
    [20] 付建新, 张超, 王艺光, 等. 桂花组织基因表达中荧光定量PCR内参基因的筛选[J]. 浙江农林大学学报, 2016, 33(5): 727 − 733.

    FU Jianxin, ZHANG Chao, WANG Yiguang, et al. Reference gene selection for quantitativereal-time polymerase chain reaction(qRT-PCR) normalization in the gene expression of sweet osmanthus tissues [J]. J Zhejiang A&F Univ, 2016, 33(5): 727 − 733.
    [21] SOUER E, van HOUWELINGEN A, KLOOS D, et al. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries [J]. Cell, 1997, 85(2): 159 − 170.
    [22] NURUZZAMAN M, MANIMEKALAI R, AKHTER S, et al. Genome-wide analysis of NAC transcription factor family in rice [J]. Gene, 2010, 465(1/2): 30 − 44.
    [23] LIU Xingwang, WANG Ting, BARTHOLOMEW E, et al. Comprehensive analysis of NAC transcription factors and their expression during fruit spine development in cucumber (Cucumis sativus L.)[J]. Hortic Res, 2018, 5(1): 31. doi: 10.1038/s41438-018-0036-z.
    [24] MIN Xueyang, JIN Xiaoyu, ZHANG Zhengshe, et al. Genome-wide identification of NAC transcription factor family and functional analysis of the abiotic stress-responsive genes in Medicago sativa L. [J]. J Plant Growth Regul, 2020, 39(1): 324 − 337.
    [25] KIM S M, KIM S G, KIM Y S, et al. Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation [J]. Nucl Acids Res, 2007, 35(1): 203 − 213.
    [26] FANG Yujie, YOU Jun, XIE Kabin, et al. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice [J]. Mol Genet Genomics, 2008, 280(6): 547 − 563.
    [27] KIM S G, LEE A K, YOON H K, et al. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination [J]. Plant J, 2008, 55(1): 77 − 88.
    [28] 李建琴, 张娟, 王学臣, 等. 膜系留转录因子ANAC089在拟南芥开花诱导过程中起负调控作用[J]. 中国科学: 生命科学, 2010, 40(5): 408 − 417.

    LI Jianqin, ZHANG Juan, WANG Xuechen, et al. A membrane-tethered transcription factor ANAC089 negatively regulates floral initiation in Arabidopsis thaliana [J]. Sci Sin Vitae, 2010, 40(5): 408 − 417.
    [29] BALAZADEH S, SIDDIQUI H, ALLU A D, et al. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence [J]. Plant J, 2010, 62(2): 250 − 264.
    [30] PEI Haixia, MA Nan, TIAN Ji, et al. An NAC transcription factor controls ethylene-regulated cell expansion in flower petals [J]. Plant Physiol, 2013, 163(2): 775 − 791.
    [31] 罗云, 张超, 付建新, 等. 桂花扩展蛋白基因家族的鉴定和表达分析[J]. 农业生物技术学报, 2017, 25(8): 1289 − 1299.

    LUO Yun, ZHANG Chao, FU Jianxin, et al. Identification and expression analysis of expansin gene family in Osmanthus fragrans [J]. J Agric Biotechnol, 2017, 25(8): 1289 − 1299.
    [32] DAI Fanwei, ZHANG Changqing, JIANG Xinqiang, et al. RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals [J]. Plant Physiol, 2012, 160(4): 2064 − 2082.
    [33] SÁNCHEZ-MONTESINO R, BOUZA-MORCILLO L, MARQUEZ J, et al. A regulatory module controlling GA-mediated endosperm cell expansion is critical for seed germination in Arabidopsis [J]. Mol Plant, 2019, 12(1): 71 − 85.
  • [1] 陈萌萌, 赵雨, 白明珠, 俞梦鑫, 顾翠花.  紫薇花开放过程的生理特征研究 . 浙江农林大学学报, 2025, 42(2): 339-347. doi: 10.11833/j.issn.2095-0756.20240347
    [2] 周俊杰, 王艺光, 董彬, 赵宏波.  桂花OfPSYOfPDSOfHYB基因启动子克隆及表达特性分析 . 浙江农林大学学报, 2023, 40(1): 64-71. doi: 10.11833/j.issn.2095-0756.20220110
    [3] 张耀, 王家璇, 蔡璇, 曾祥玲, 杨洁, 陈洪国, 邹晶晶.  桂花OfACOs基因家族鉴定及表达分析 . 浙江农林大学学报, 2023, 40(3): 492-501. doi: 10.11833/j.issn.2095-0756.20220783
    [4] 岳远征, 胡宏敏, 刘家伟, 申慧敏, 施婷婷, 杨秀莲, 王良桂.  桂花OfMYB1R47转录因子在芳香挥发物形成过程中的功能分析 . 浙江农林大学学报, 2023, 40(3): 465-474. doi: 10.11833/j.issn.2095-0756.20220456
    [5] 洪方蕾, 陆瑶, 俞世姣, 胡芷诺, 缪云锋, 钟诗蔚, 赵宏波.  桂花OfABFs基因克隆和表达分析 . 浙江农林大学学报, 2023, 40(3): 481-491. doi: 10.11833/j.issn.2095-0756.20220264
    [6] 庞天虹, 钱婕妤, 付建新, 顾翠花, 张超.  桂花己糖激酶基因家族成员的序列及表达分析 . 浙江农林大学学报, 2021, 38(2): 225-234. doi: 10.11833/j.issn.2095-0756.20200370
    [7] 吴琪, 吴鸿飞, 周敏舒, 徐倩霞, 杨丽媛, 赵宏波, 董彬.  桂花OfFCA基因的克隆及在花芽分化时期的表达分析 . 浙江农林大学学报, 2020, 37(2): 195-200. doi: 10.11833/j.issn.2095-0756.2020.02.001
    [8] 王千千, 蒋琦妮, 付建新, 董彬, 赵宏波.  不同光周期和温度处理下桂花内参基因的筛选 . 浙江农林大学学报, 2019, 36(5): 928-934. doi: 10.11833/j.issn.2095-0756.2019.05.011
    [9] 蒋琦妮, 付建新, 张超, 董彬, 赵宏波.  桂花OfAP1基因的克隆及表达分析 . 浙江农林大学学报, 2019, 36(4): 664-669. doi: 10.11833/j.issn.2095-0756.2019.04.005
    [10] 李军, 董彬, 张超, 付建新, 胡绍庆, 赵宏波.  桂花EST-SSR引物开发及在品种鉴定中的应用 . 浙江农林大学学报, 2018, 35(2): 306-313. doi: 10.11833/j.issn.2095-0756.2018.02.015
    [11] 李冰冰, 刘国峰, 魏书, 黄龙全, 张剑韵.  烟草NtPLR1基因克隆与表达分析 . 浙江农林大学学报, 2017, 34(4): 581-588. doi: 10.11833/j.issn.2095-0756.2017.04.003
    [12] 蔡宙霏, 陈雅奇, 许馨露, 王小东, 汪俊宇, 张汝民, 高岩.  4个桂花品种开花进程释放VOCs动态变化分析 . 浙江农林大学学报, 2017, 34(4): 608-619. doi: 10.11833/j.issn.2095-0756.2017.04.006
    [13] 付建新, 张超, 王艺光, 赵宏波.  桂花组织基因表达中荧光定量PCR内参基因的筛选 . 浙江农林大学学报, 2016, 33(5): 727-733. doi: 10.11833/j.issn.2095-0756.2016.05.001
    [14] 王英, 张超, 付建新, 赵宏波.  桂花花芽分化和花开放研究进展 . 浙江农林大学学报, 2016, 33(2): 340-347. doi: 10.11833/j.issn.2095-0756.2016.02.021
    [15] 徐沂春, 胡绍庆, 赵宏波.  基于AFLP分子标记的不同类型野生桂花种群遗传结构分析 . 浙江农林大学学报, 2014, 31(2): 217-223. doi: 10.11833/j.issn.2095-0756.2014.02.009
    [16] 林富平, 周帅, 马楠, 张汝民, 高岩.  4个桂花品种叶片挥发物成分及其对空气微生物的影响 . 浙江农林大学学报, 2013, 30(1): 15-21. doi: 10.11833/j.issn.2095-0756.2013.01.003
    [17] 杨希宏, 黄有军, 陈芳芳, 黄坚钦.  山核桃FLOWERING LOCUS C同源基因鉴定与表达分析 . 浙江农林大学学报, 2013, 30(1): 1-8. doi: 10.11833/j.issn.2095-0756.2013.01.001
    [18] 杨秀莲, 郝其梅.  桂花种子休眠和萌发的初步研究 . 浙江农林大学学报, 2010, 27(2): 272-276. doi: 10.11833/j.issn.2095-0756.2010.02.018
    [19] 常炳华, 胡永红, 徐业根, 张秋兴, 张万里.  桂花花冠裂片表面的超微结构观察 . 浙江农林大学学报, 2007, 24(5): 533-537.
    [20] 胡绍庆, 宣子灿, 周煦浪, 吴光洪.  杭州市桂花品种的分类整理 . 浙江农林大学学报, 2006, 23(2): 179-187.
  • 期刊类型引用(0)

    其他类型引用(4)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200474

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/3/433

图(6) / 表(3)
计量
  • 文章访问数:  1751
  • HTML全文浏览量:  669
  • PDF下载量:  223
  • 被引次数: 4
出版历程
  • 收稿日期:  2020-07-21
  • 修回日期:  2020-12-30
  • 网络出版日期:  2021-06-09
  • 刊出日期:  2021-06-09

桂花OfNAC转录因子鉴定及在花开放阶段的表达分析

doi: 10.11833/j.issn.2095-0756.20200474
    基金项目:  国家自然科学基金面上项目(32072615)
    作者简介:

    缪云锋(ORCID: 0000-0002-4517-4640),从事观赏植物遗传育种研究。E-mail: 1150827869@qq.com

    通信作者: 赵宏波(ORCID: 0000-0003-4714-8240),教授,博士,从事观赏植物遗传育种等研究。E-mail: zhaohb@zafu.edu.cn
  • 中图分类号: S718.3

摘要:   目的  研究OfNAC基因对桂花Osmanthus fragrans花开放的调控作用。  方法  从桂花品种‘堰虹桂’O. fragrans ‘Yanhonggui’转录组数据中,筛选获得相关OfNAC基因序列,分析预测其理化性质和结构,运用实时荧光定量PCR技术分析花开放过程的表达特性。  结果  筛选得到22条OfNAC序列。生物信息学分析发现:22条OfNAC转录因子均含有NAM结构域,氨基酸序列含有5个保守的亚结构域(A~E),其保守性由强到弱依次为C、A、D、B、E;二级结构中不同结构的占比由大到小表现为无规则卷曲、α-螺旋、延伸链、β-折叠;亚细胞定位及跨膜结构预测表明:OfNAC17、OfNAC17-X2、OfNAC53、OfNAC91、OfNTM1-9是膜结合转录因子,且大多数OfNAC定位在细胞核。在桂花花开放进程中,OfNAC100-2、OfNAC43、OfNAC73相对表达量在铃梗期(S4)到达顶峰,在此之后相对表达降低;OfNAC43在铃梗期(S4)骤然升高,并且在此时期相对表达最大;OfNAC71、OfNAC29-1、OfNAC21/22从起始期(S1)呈缓慢上升趋势,在顶壳期 (S3) 到达最高,随后整体呈现下降趋势;OfNAC29-2在圆珠期(S2)相对表达量陡然上升,在铃梗期(S4)相对表达最低。  结论  推测OfNAC100-2、OfNAC43、OfNAC73、OfNAC71、OfNAC29-1、OfNAC21/22、OfNAC29-2等成员极有可能参与调控桂花的花开放。图6表3参33

English Abstract

陈佳寅, 黄程鹏, 郑梦琦, 等. 有机肥和炭基肥替代化肥对甘薯坡耕地径流氮磷损失的影响[J]. 浙江农林大学学报, 2023, 40(3): 540-549. DOI: 10.11833/j.issn.2095-0756.20220360
引用本文: 缪云锋, 周丹, 董彬, 等. 桂花OfNAC转录因子鉴定及在花开放阶段的表达分析[J]. 浙江农林大学学报, 2021, 38(3): 433-444. DOI: 10.11833/j.issn.2095-0756.20200474
CHEN Jiayin, HUANG Chengpeng, ZHENG Mengqi, et al. Effects of substituting organic fertilizer and biochar-based fertilizer instead of chemical fertilizer on nitrogen and phosphorus runoff loss in sweet potato sloping farmland[J]. Journal of Zhejiang A&F University, 2023, 40(3): 540-549. DOI: 10.11833/j.issn.2095-0756.20220360
Citation: MIAO Yunfeng, ZHOU Dan, DONG Bin, et al. Identification and expression analysis of OfNAC transcription factors in Osmanthus fragrans during flower opening stage[J]. Journal of Zhejiang A&F University, 2021, 38(3): 433-444. DOI: 10.11833/j.issn.2095-0756.20200474
  • NAC(NAM-ATAF1/2-CUC2)是植物中最大的转录因子家族之一,成员众多,功能多样[1]。NAC转录因子参与植物多个生物学过程,如植物茎尖分生组织的形成[2]、植物次生生长[3]、组织愈合过程中的细胞增殖[4]、生物和非生物胁迫响应[5-6]、植物开花时间调节[7-8]、叶片和花瓣衰老[9]和果实成熟时颜色变化等[10]。花瓣细胞的伸长和扩展也受到NAC转录因子的调控。花瓣的扩展是引起植物花开放的重要原因[11-13],主要受花瓣细胞的膨压变化、细胞壁代谢变化等影响[14]。研究发现:NAC转录因子NAP可能通过抑制拟南芥Arabidopsis thaliana花瓣细胞扩张而影响花器官生长,且在花发育细胞分裂向细胞扩展过渡阶段发挥重要作用[15]RhNAC3可以作为上游调控因子结合具有调节渗透压功能的基因从而影响月季Rosa hybrida花瓣细胞扩张[16]。桂花Osmanthus fragrans是中国传统的十大名花之一,花是其最重要的观赏器官。桂花花的开放受到温度、湿度等环境因子的影响,其具体的分子机制至今尚未阐明。本研究通过桂花NAC家族基因鉴定和筛选,预测它们的理化性质,运用荧光定量PCR分析花开放进程中的表达模式,筛选出参与桂花花开放调控的关键NAC转录因子成员,为明确其在花开放中的功能作用奠定基础。

    • 以桂花品种‘堰虹桂’O. fragrans‘Yanhonggui’盆栽植株为材料,种植于浙江农林大学桂花资源圃。选取株龄相同、生长一致的健康植株,分别于起始期(S1)以及花开放不同阶段:圆珠期(S2)、顶壳期(S3)、铃梗期(S4)、初开期(S5)、盛花期(S6)进行取样[17]。每个时期样品采集3份,取样时间均为10:00,液氮速冻后储藏于−80 ℃冰箱备用。

    • 本研究从已构建的桂花‘堰虹桂’转录组数据库[18]中对NAC转录因子进一步进行NCBI-Blast(http://www.ncbi.nLm.nih.gov/BLAST/)比对分析。通过PlantTFDB(http://planttfdb.cbi.pku.edu.cn/blast.php)以及Pfam(https://pfam.xfam.org/)查询候选基因中的NAC的结构域,并通过NCBI(https://www.ncbi.nlm.nih.gov/cdd)进行保守功能域预测,利用TBtools工具进行桂花NAC保守结构域可视化分析,TBtools-ORF finder分析开放阅读框[19],并通过NCBI-Blast获得开放阅读框完整的桂花OfNAC序列。运用ExPASy在线软件(http://web.expasy.org/protparam/)预测编码蛋白质分子量、理论电点、酸碱性等。

    • 用DNAMAN对已筛选的桂花OfNAC转录因子氨基酸序列进行比对,分析其保守亚结构域;在线分析软件MEME 5.1.0分析NAC的保守基序(http://meme-suite.org/tools/meme),对桂花OfNAC蛋白质二级结构以及跨膜结构分别采用在线软件SOPMA(https://npsaprabi.ibcp.fr/cgi-bin/npsa-sopma.html)和TMHMM Server V.2.0(http://www.cbs.dtu.dk/services/TMHMM/)进行分析。用在线分析软件Wolfp sort Genscript(https://www.genscript.com/wolf-psort.html?src=leftbar)进行亚细胞定位预测。

    • 从PlantTFDB(http://planttfdb.cbi.pku.edu.cn/blast.php)中获取拟南芥、水稻Oryza sativa的NAC序列,使用MEGA 6.0软件构建系统发育树,采用邻近法(neighbor-joining),1 000 次Bootstrap抽样。

    • RNA提取采用UltraClean Polysaccharide and Phenol Plant RNA Purification Kit试剂盒(诺禾致源公司,中国天津),方法参照说明书。使用核酸分析仪(IMPLEN公司,德国)对RNA的纯度与浓度进行检测,并用质量分数1%的琼脂糖凝胶电泳检测RNA的完整性。依据说明书使用PrimeScript™RT Master Mix Perfect Real Time(TaKaRa,中国大连)试剂盒对桂花不同花开放时期的cDNA进行合成。利用Primer Premier 5.0对22个OfNAC基因进行定量特异性引物设计,桂花OfACT作为内参基因[20],引物序列如表1所示。荧光定量反应体系如下:SYBR Premix Ex Taq 10 μL,cDNA 2 μL,上游引物和下游引物(10 μmol·L−1)各8 μL,双蒸水(ddH2O)补足至20 μL,每个样品设置3次生物学重复。反应程序为:95 ℃预变性30 s,95 ℃变性5 s,60 ℃复性30 s,共40个循环;然后以95 ℃持续5 s,60 ℃持续1 min,95 ℃持续15 s作为溶解曲线分析程序。循环阈值由Light Cycler 480软件自动计算。最后根据${2^{{\rm{ - }}\Delta \Delta {C_{\rm{t}}}}} $法计算目的基因的相对表达量。

      表 1  桂花OfNAC转录因子RT-PCR特异性引物

      Table 1.  Specific primers for RT-PCR of OfNAC in O. fragrans

      基因名称用于荧光定量的引物序列(5′→3′)基因名称用于荧光定量的引物序列(5′→3′)
      OfNAC100-1F: TGAACAAGATTGAGCCTTGGGOfNAC104F: TGCATTTTACATTGGTGAAGATGTC
      R: CCTTTCCTGTGGCTTTCCAGR: GCTCGTACACTTGACACACCA
      OfNAC53F: AGATTGTGGGGATGAAGAAAAOfNAC92F: TCCTAGTCGGAATGAAGAAAACTC
      R: CAACTCCATATCAGTAAGCCGR: ATGGCTTTCTAATCTGTATTCGTGC
      OfNTM1-9F: GGTTGCTCTAATGCCCACTTCOfNAC72-1F: GGAAAAGCCCCCAAAGGAAC
      R: CTGGTTCCGTAGCACGATACTR: CCCAATCATCCAACCTTGAGC
      OfNAC73F: AGGCAAGGATGGCCAAATTCOfNAC72-2F: ACGTAGGAAAAGCACCAAAAGG
      R: TTGTGCCATCTTGTTTCTCCR: AGCATCCAACCTTGCGCTTC
      OfNAC43F: AGGCTACTGGTCGTGATAAAGOfNAC29-1F: TTACAAGGGAAGGCCTCCAAAG
      R: GGGGTCATGAGTGTCGTCCR: TTGAGCCATTTTGCGTGTTAGG
      OfNAC91F: TCTACAAAGGTCGTGCTCCGOfNAC29-2F: CCCAAAGGGCGTCAAAACTG
      R: CCCTGACCAGGATAAGTGCCR: GCACACAATCATCCAACCTCA
      OfNAC50-X2F: TGGCAAAGGGTATTGGAAAGCOfNAC71F: CTATCGTGGAAGAGCACCACT
      R: TCGCCCACTATGGAAAACAAGR: TCCCTGAAATCTTGGGGTGTC
      OfNAC50F: AAGCAACTGGAAAGGATCGCOfNAC2F: TTGGGAATAAAGAAGGCTCTGGTG
      R: AATTCTGCATCGCAAAGCCTGR: ACACAACACCCAATCATCAAGCCTC
      OfNAC21/22F: GAAGGGAAGCCTGGTTGGAATOfNAC100-2F: TCAGAGGAAAAATCCTCGTCGG
      R: CCCAATCCTCCTTGACAGATGR: TTTGGGAGGTTGTGGATCGAG
      OfNAC56F: TCTATGGTGGAAAGCCTCCTOfNAC32F: AAGCCTTGGTTTTCTATGCCG
      R: CATCAAGCCTTAAAGAGCCCR: AAGCTGTTGTTCTTGTTTCGA
      OfNAC17-X2F: TCCTGTTGGGGTGAAGAAGAOfACTF: CCCAAGGCAAACAGAGAAAAAAT
      R: ATAGTCATCCTGTGCATCCTGCR: ACCCCATCACCAGAATCAAGAA
      OfNAC17F: TGGTCTTCCATAAAGGTCGTGC
      R: TTGTACAGAGCATAGCAATCCCGTG
    • 通过对桂花‘堰虹桂’转录组数据分析,并结合NCBI-Blast筛选,对其中22个桂花OfNAC基因进行分析。结果显示:它们均含有NAC家族蛋白特有的NAM保守功能域(图1)。通过ExPASy对22条桂花OfNAC转录因子进行理化性质分析(表2),结果表明:22条桂花OfNAC基因的氨基酸(OfNAC104~OfNAC91)长度为186~609个;蛋白质(OfNAC104~OfNAC17)相对分子量为21 498.77~68 408.12;等电点为4.59~9.33,其中OfNAC100-1、OfNAC73、OfNAC56、OfNAC72-1、OfNAC72-2、OfNAC29-1、OfNAC29-2、OfNAC32等8个蛋白质等电点大于7,偏碱性,其余14个OfNAC等电点小于7,偏酸性。OfNAC的不稳定系数为29.27~52.83,OfNAC53、OfNAC73、OfNAC56、OfNAC92、OfNAC29-2等5个蛋白质不稳定系数低于40,为稳定蛋白质,其余17个不稳定系数均高于40,为不稳定蛋白质。脂溶性指数为53.37(OfNAC71)~77.70(OfNAC17-X2),总平均疏水值为−0.816~−0.530,蛋白质的平均疏水指数均小于0,表明OfNAC均为亲水性蛋白质(表2)。

      图  1  桂花NAC的NAM保守功能域分析

      Figure 1.  NAM conserved functional domain about NAC

      表 2  桂花OfNAC蛋白质理化性质及二级结构分析

      Table 2.  Physicochemical properties and secondary structure analysis of OfNAC of O. fragrans

      序列名称氨基酸长度/个相对分子量等电点碱性氨基酸酸性氨基酸不稳定系数脂溶性指数总平均疏水值亚细胞定位
      位置预测值/%
      OfNAC100-134538 986.118.69403640.0661.01−0.574细胞核61.54
      OfNAC5355862 807.474.60518838.8769.37−0.564内质网42.42
      OfNTM1-960668 053.705.63718651.4962.43−0.725细胞核76.92
      OfNAC7330033 768.958.79393438.2169.47−0.754细胞核76.92
      OfNAC4339945 513.665.77435546.3163.26−0.752细胞核69.23
      OfNAC9160967 741.524.98638652.8371.07−0.593细胞核76.92
      OfNAC50-X238943 765.295.29465847.8369.43−0.629叶绿体58.33
      OfNAC5039944 952.525.35466150.4567.69−0.652叶绿体46.15
      OfNAC21/2229633 613.156.54333451.2666.52−0.570细胞核71.43
      OfNAC5632235 946.518.62373439.4864.81−0.725细胞核92.30
      OfNAC17-X257364 828.714.87639140.6077.70−0.530细胞核53.85
      OfNAC1760668 408.124.85609746.7974.62−0.571细胞核30.77
      OfNAC10418621 498.774.59193146.9668.60−0.695细胞核84.61
      OfNAC9232536 813.716.47404229.2771.35−0.579细胞核38.46
      OfNAC72-133938 289.938.64403740.1464.96−0.671细胞核84.61
      OfNAC72-234238 848.468.64423940.0461.64−0.762细胞核100
      OfNAC29-128032 538.567.71363542.9661.96−0.816细胞核52.50
      OfNAC29-227531 330.369.33352633.8161.35−0.741细胞核100
      OfNAC7130334 864.615.42334351.8953.37−0.795细胞核85.71
      OfNAC229634 249.556.09353850.0166.22−0.735细胞核69.23
      OfNAC100-233437 778.806.51384043.1067.96−0.540细胞核85.71
      OfNAC3226330 253.458.45383543.9169.32−0.635细胞核61.54
        说明:不稳定系数大于40为不稳定序列,小于40为稳定序列
    • 使用DNAMAN软件对桂花OfNAC转录因子的氨基酸序列进行比对,结果显示(图2):22个OfNAC的氨基酸序列均具有保守的亚结构域(A~E)。对这5个亚结构域进行分析发现:A区较为保守的氨基酸是甘氨酸(G)、苯丙氨酸(F)、脯氨酸(P)、谷氨酸(E);B区较为保守的氨基酸是脯氨酸(P);C区较为保守的氨基酸是苯丙氨酸(F)、精氨酸(R)、色氨酸(W)、甘氨酸(G);D区较为保守的氨基酸是甘氨酸(G)、赖氨酸(K)、色氨酸(W);E区没有完全稳定的氨基酸。各保守亚域的保守性由强到弱依次为C、A、D、B、E。对所有OfNAC的氨基酸序列进行保守基序分析发现(图3):大多数OfNAC均含有较保守的元件,除OfNAC73只有2个保守元件(元件1、元件2)外,其余OfNAC均含有4个保守元件(元件1、元件3、元件4、元件5)。另外,22条OfNAC转录因子中元件7、元件9和元件10出现在一些OfNAC蛋白质的C端,且对应的序列亲缘关系较近。桂花OfNAC蛋白质二级结构分析表明:OfNAC蛋白质的二级结构包括α-螺旋、β-折叠、延伸链和无规则卷曲4种结构,且不同结构占比从大到小依次表现为无规则卷曲、α-螺旋、延伸链、β-折叠(表3)。OfNAC32的无规则卷曲占比最高,为67.30%。此外,OfNAC73、OfNAC92、OfNAC29-2结构中α-螺旋占比均小于延伸链。跨膜结构预测分析表明(图4):OfNAC17、OfNAC17-X2、OfNAC53、OfNAC91、OfNTM1-9均在C端有1个跨膜结构。亚细胞定位预测分析表明:OfNAC53定位于内质网,OfNAC50-X2和OfNAC50定位于叶绿体,其余OfNAC蛋白质均定位在细胞核中。

      图  2  OfNAC转录因子氨基酸序列比对

      Figure 2.  Sequence alignment of OfNAC transcription factor

      图  3  桂花OfNAC转录因子进化分析及保守基序分析

      Figure 3.  Evolution analysis of 22 OfNAC transcription factors and analysis of conserved motif

      表 3  桂花OfNAC蛋白质理化性质及二级结构分析

      Table 3.  Secondary structure analysis of OfNAC of O. fragrans

      序列名称二级结构占比序列名称二级结构占比
      α-螺旋/%β-螺旋/%延伸/%无规则卷曲/%α-螺旋/%β-螺旋/%延伸/%无规则卷曲/%
      OfNAC100-115.073.1914.7866.96 OfNAC1724.592.8112.7159.90
      OfNAC5321.333.7614.5260.39OfNAC10418.823.7615.5961.83
      OfNTM1-923.273.149.7463.86OfNAC9214.153.6915.6966.46
      OfNAC7313.003.6720.0063.33OfNAC72-117.993.5416.2262.24
      OfNAC4321.554.2614.2959.90OfNAC72-216.963.5116.0863.45
      OfNAC9120.362.6310.5166.50OfNAC29-13.213.5717.8655.36
      OfNAC50-X231.115.9112.3450.64OfNAC29-215.644.3616.7363.27
      OfNAC5027.825.0110.5356.64OfNAC7116.174.9514.5264.36
      OfNAC21/2217.233.0415.2064.53OfNAC221.624.0511.8262.50
      OfNAC5616.153.1115.8464.91OfNAC100-216.473.5914.0765.87
      OfNAC17-X225.832.9712.9158.29OfNAC3217.112.6612.9367.30

      图  4  桂花OfNAC蛋白质跨膜结构预测

      Figure 4.  Transmembrane structure prediction related to OfNAC protein

    • 为了进一步研究OfNAC的进化关系,对桂花、拟南芥和水稻的NAC蛋白构建系统进化树。结果表明:22个桂花OfNAC与拟南芥和水稻的NAC蛋白质共划分为11个亚族(图5),除a、b、c、e、h亚族外,其他亚族均有OfNAC分布。其中i亚族桂花NAC蛋白质较多,有8个OfNAC蛋白质。

      图  5  桂花OfNAC与拟南芥、水稻的系统进化树

      Figure 5.  Phylogenetic tree of OfNAC, A. thaliana and O. sativa

    • 为了研究OfNAC在桂花花开放进程中的表达模式,对其进行荧光定量表达分析(图6)。OfNAC100-2、OfNAC43、OfNAC73相对表达量在铃梗期(S4)出现表达高峰,在此之后相对表达量大幅度降低,其中OfNAC43只在铃梗期(S4)相对表达量最高,其余时期相对表达量很低;OfNAC56从铃梗期开始呈现上升趋势,并在盛花期(S6)到达顶峰;OfNAC71、OfNAC29-1、OfNAC21/22从起始期(S1)缓慢上升,在顶壳期 (S3)到达最高,随后急剧下降;OfNAC29-2在圆珠期(S2)相对表达量达到最大,之后在铃梗期(S4)相对表达达到最低。OfNAC在花开放不同阶段的表达情况说明:OfNAC100-2、OfNAC43、OfNAC73、OfNAC71、OfNAC29-1、OfNAC21/22、OfNAC29-2可能参与花开放的调控,其中又以OfNAC43和OfNAC29-2关联最为紧密。

      图  6  22个OfNAC基因在不同花开放时期的表达结果

      Figure 6.  Expression results of 22 OfNAC genes in different flower opening periods

      OfNAC50-X2、OfNAC50、OfNAC17-X2整体呈现上升趋势,并在初开期(S5)达到最高;OfNAC100-1、OfNAC92、OfNAC72-1、OfNAC91、OfNTM1-9、OfNAC53在起始期(S1)表达量较高,整体呈下降趋势;OfNAC104、OfNAC32、OfNAC2、OfNAC17、OfNAC72-2均呈现先下调后上升的表达趋势,到盛花期(S6)相对表达量较高。这说明,这些基因成员可能不参与桂花花开放的调控。

    • NAC转录因子最初在矮牵牛Petunia hybrida中发现[21]。在模式植物拟南芥、水稻以及园艺作物中的研究较多。在拟南芥、水稻、黄瓜Cucumis sativus、紫花苜蓿Medicago sativa中分别有151、117、91、113个NAC基因被鉴定[22-24]。目前关于桂花OfNAC转录因子的报道较少。通过桂花OfNAC转录因子的鉴定与分析,可为进一步了解桂花OfNAC的生物学功能及其在花开放过程中的作用奠定基础。

      本研究通过转录组测序鉴定出22条开放阅读框完整的OfNAC转录因子,对它们进行跨膜结构预测发现:OfNAC17、OfNAC17-X2、OfNAC53、OfNAC91、OfNTM1-9这5个转录因子均在C端有1个跨膜结构,推测它们可能是NAC膜结合转录因子。大多数OfNAC蛋白质预测定位在细胞核中的可能性较高,因此推测,OfNAC转录因子可能大多依旧在细胞核内发挥功能。目前,已经在模式植物中发现NAC膜结合转录因子,如拟南芥和水稻NAC基因组中已发现分别有18和6个膜结合NAC转录因子[25-26],其中拟南芥膜结合转录因子NTM1调节细胞分裂素信号传导而参与细胞分裂;NTL8调节拟南芥开花时间,过表达转基因植株出现晚花现象;ANAC089被确定为另一个膜结合转录因子,也有调控拟南芥开花时间的功能[27-28]。由此推测,桂花OfNAC17、OfNAC17-X2、OfNAC53、OfNAC91、OfNTM1-9可能也具有调控开花时间的功能。

      桂花22个OfNAC与拟南芥和水稻NAC蛋白质共同划分为11个亚族。根据亲缘关系推测相关OfNAC基因的功能,如OfNAC100-1、OfNAC100-2与拟南芥At5G6140.1、At5G7680.1、At5G39610.1、At3G29035.1亲缘性较高,其中At5G39610.1(ANAC92/ATNAC2)存在于部分或完全开放的花的花器官中,且参与叶和花的衰老过程[29]。在月季中,RhNAC100是At5G39610.1(ANAC92/ATNAC2)的同源基因,乙烯通过微调microRNA164-RhNAC100模块来调节细胞的扩张从而影响月季花瓣的扩展[30]OfNAC100-1和OfNAC100-2与拟南芥At5G39610.1亲缘关系较近,所以推测OfNAC100-1与OfNAC100-2可能有调节花瓣扩展的相关功能。OfNTM1-9与At1G33060.1同源性较高,且At1G33060.1是膜结合转录因子,在拟南芥各个器官均有表达,影响叶片衰老[25],推测OfNTM1-9可能作为NAC膜结合转录因子参与细胞衰老。

      花开放的主要原因是花瓣细胞的扩展[11-13],对OfNAC基因在桂花花开放时期的荧光定量表达分析表明:OfNAC在桂花花开放过程中发挥重要作用,且不同的OfNAC在此过程中表达模式有差异。OfNAC71、OfNAC29-1、OfNAC21/22在顶壳期相对表达到达最大。罗云等[31]发现:OfEXPA2和OfEXLA1在桂花花开放的顶壳期相对表达急剧增加并到达顶峰,推测此时期的高丰度表达是后续花开放的基础。OfNAC71、OfNAC29-1、OfNAC21/22与OfEXPA2和OfEXLA1表达模式相似,推测它们参与花开放进程。OfEXPA4在花芽萌发期至圆珠期表达量较低,而顶壳期开始急剧上升,铃梗期表达量达到最大。罗云等[31]推测:OfEXPA4是参与花瓣扩展的关键基因,OfNAC100-2、OfNAC43、OfNAC73相对表达量也在铃梗期出现峰值,推测它们亦作为关键基因参与桂花花瓣扩展。对月季的研究发现:RhNAC2和RhEXPA4参与月季花瓣细胞扩展,且RhEXPA4的表达可能受到RhNAC2的调控[32],拟南芥中NAC25和NAC1L被确定是EXPA2(EXPANSIN2)的上游调控因子[33]。以此推测,NAC转录因子可能与EXP的启动子结合,是EXP的上游调控因子,则OfNAC29-2在圆珠期相对表达最大,可能是作为OfEXPA2和OfEXLA1调控因子调节OfEXP影响花瓣细胞扩张从而为后续花瓣展开奠定基础,所以OfNAC100-2、OfNAC43、OfNAC73、OfNAC71、OfNAC29-1、OfNAC21/22、OfNAC29-2可能是参与桂花花开放的关键基因。由于OfNAC43、OfNAC29-2相对表达差异明显,推测它们与花开放关系更为紧密,但这些关键基因在桂花开花中的具体作用还需要进一步研究。

    • 本研究从桂花品种‘堰虹桂’转录组数据中筛选得到22条OfNAC序列,生物信息学分析结果表明:22条OfNAC转录因子氨基酸序列含有5个保守的亚结构域(A~E),其保守性由强到弱依次为C、A、D、B、E;亚细胞定位及跨膜结构预测表明:OfNAC17、OfNAC17-X2、OfNAC53、OfNAC91、OfNTM1-9是膜结合转录因子,且大多数 OfNAC 定位在细胞核。实时荧光定量PCR分析表明:在桂花花开放进程中,22个OfNAC基因表达模式不同,其中OfNAC100-2、OfNAC43、OfNAC73相对表达量在铃梗期(S4)达到顶峰,在此之后相对表达降低。OfNAC43在铃梗期骤然升高,并且在此时期相对表达最大;OfNAC71、OfNAC29-1、OfNAC21/22从起始期呈缓慢上升趋势,在顶壳期到达最高,随后整体呈现下降趋势;OfNAC29-2在圆珠期相对表达量陡然上升,在铃梗期相对表达最低,推测OfNAC100-2、OfNAC43、OfNAC73、OfNAC71、OfNAC29-1、OfNAC21/22、OfNAC29-2等成员极有可能参与调控桂花的花开放。

参考文献 (33)

目录

/

返回文章
返回