-
随着城市人口不断增加,人民生活要求逐步提高,可持续发展理念逐步深入,改善城市环境质量和提升城市生态功能已成为城市更新的重要目标[1]。城市园林绿化作为改善城市环境质量和提升城市生态功能的重要基础设施之一,越来越受重视。但由于城市园林绿化需求快速增加与城市土地资源紧缺的矛盾日益严重,越来越多的城市搬迁地被用于园林绿化建设[2]。对于城市搬迁地用于园林绿化建设的研究主要集中在体现城市绿化景观效果的植物[3]。对于土壤,学者们更多关注的是搬迁地土壤污染现状及特征[4-5]、修复技术[6-7]研究,而对影响其景观效果表达的土壤肥力研究较少。实际上,城市中由于土壤肥力质量退化而影响植物的正常生长,从而导致其绿化景观不能充分发挥的现象较为普遍[8]。随着城市生态文明建设要求的提高,城市搬迁地用于园林绿化将是未来的主要发展趋势,而搬迁地土壤肥力质量的优劣直接决定园林绿化的成败。为此,本研究以上海市城中村搬迁地和工业企业搬迁地为研究对象,在对上海搬迁地土壤物理性质、化学性质等单项肥力指标进行研究的基础上,对搬迁地土壤肥力质量进行综合评价,探讨不同类型搬迁地土壤肥力质量特征,分析评估搬迁地用于园林绿化的潜力,以期为搬迁地用于城市园林绿化提供数据支撑。
-
上海市地处30°40′~31°53′N,120°52′~122°12′E,属亚热带季风性气候区,年均气温为17.6 ℃,年均日照为1 886 h,年均降水量为1 173 mm,全年60%以上的降水量集中在5−9月,四季分明,光照充足,气候温和湿润,春秋较短,冬夏较长。上海位于长江入海口、太湖流域东缘,成土母质多为浅海相、河湖相沉积物,地势平坦。
-
选择上海中心城区和郊区典型搬迁地,以城中村和工业企业搬迁地为研究对象,共选取了10块搬迁地36个样地,其中城中村搬迁地20个样地,工业企业搬迁地16个样地,采集0~30 cm的表层土,每个样地的土壤样品均采用蛇形法由8个取样点的样品混合组成,并采用四分法保留1 kg土壤样品带回实验室自然风干备用,土壤物理性质用环刀现场取原状土,每个样地取5组重复。
-
土壤容重采用环刀法;土壤pH采用电位法;土壤电导率(EC)采用电导法;土壤有机质采用重铬酸钾氧化-外加热法;土壤碱解氮采用碱解-扩散法;土壤有效磷采用碳酸氢钠浸提-比色法;土壤速效钾采用乙酸铵浸提-火焰光度法。以上详细测定方法均严格按照《森林土壤分析方法》[9]测定。
-
土壤肥力评价参考上海市地方标准《绿化土壤肥力质量综合评价方法》[10],并结合城市搬迁地特点,选择土壤容重、pH、电导率、有机质、碱解氮、有效磷及速效钾等7项指标,分别进行单项指标评价和综合评价。其中单指标评价由高到低依次分6个等级(表1)。
分级 pH 电导率/(mS·cm−1) 有机质/(g·kg−1) 碱解氮/(mg·kg−1) 有效磷/(mg·kg−1) 速效钾/(mg·kg−1) 容重/(Mg·m−3) 一级 6.5~7.5 0.30~0.50 ≥40 ≥200 ≥60 ≥300 1.00~1.15 二级 5.5~6.5 0.10~0.30 30~40 120~200 20~60 200~300 1.15~1.25或0.90~1.00 三级 7.5~8.0 0.50~0.70或0.07~0.10 20~30 90~120 15~20 100~200 1.25~1.35或0.80~0.90 四级 8.0~8.5或4.5~5.5 0.70~0.90 12~20 60~90 10~15 60~100 1.35~1.45或0.70~0.80 五级 8.5~9.0 0.90~1.20或0.05~0.07 6~12 40~60 5~10 30~60 1.45~1.55或0.60~0.70 六级 >9.0或≤4.5 >1.20或≤0.05 <6 <40 <5 <30 >1.55或≤0.60 采用修正的内梅罗(Nemoro)法对搬迁地土壤肥力质量进行综合评价,计算公式为
$$ F = \sqrt {\frac{{{{\overline {{F_i}} }^2} + {{{F_{i{\rm{min}} }}}^2}}}{2}} \times \frac{{n - 1}}{n}\text{。}$$ 其中:F为土壤肥力综合指数;
$\overline {{F_i}} $ 为样品中单项指标标准化的平均值;Fimin为单项指标标准化的最小值;n为指标个数。根据土壤肥力综合指数,将土壤肥力分为4个等级:F≥2.7为优;1.8≤F<2.7为良、0.9≤F<1.8 为一般;F<0.9为差。利用Excel 2007 和SPSS 17.0软件分析数据并作图。
-
搬迁地土壤pH为7.8~9.2,均值为8.8,土壤呈碱性,pH主要分布在五级和六级,占比分别为63.0%和25.9%(图1),明显高于城市绿地土壤[11]。搬迁地土壤电导率为0.06~0.63 mS·cm−1,均值为0.15 mS·cm−1,土壤电导率适宜,主要分布在二、三级,占比分别为48.1%和37.0%。搬迁地土壤有机质质量分数为5.5~40.7 g·kg−1,均值为15.5 g·kg−1,有机质质量分数低于城市公园绿地土壤[12],主要分布在四级和五级,占比分别为37.0%和33.3%。
图 1 搬迁地土壤pH、电导率及有机质质量分数等级分布
Figure 1. Distribution of soil pH, EC and organic matter mass fraction grades in the relocated site
由图2可见:搬迁地土壤速效养分中有效磷和速效钾较丰富,尤其是有效磷,质量分数为7.3~314.6 mg·kg−1,均值高达81.6 mg·kg−1,土壤有效磷主要分布在一级,占比达44.4%。搬迁地土壤速效钾为41.8~336.6 mg·kg−1,均值达151.4 mg·kg−1,土壤速效钾主要分布在三级,占比达51.9%。搬迁地土壤碱解氮为11.7~76.2 mg·kg−1,均值为33.2 mg·kg−1,土壤碱解氮质量分数低,仅为上海公园绿地土壤碱解氮质量分数的35.4%[12],土壤碱解氮主要分布在六级、五级和四级,占比分别为74.1%、14.8%和11.1%。
图 2 搬迁地土壤速效养分质量分数等级分布
Figure 2. Distribution of soil available nutrient mass fraction grades in the relocated site
由图3可见:搬迁地土壤容重为0.90~1.63 Mg·m−3,均值为1.42 Mg·m−3,土壤容重较大,压实严重。搬迁地土壤容重主要分布在四级、五级和六级,占比分别为29.6%、25.9%和22.2%,而二级和三级占比均为11.1%,没有样点分布在一级。
-
如表2所示:各指标的标准化值从大到小依次为有效磷、速效钾、有机质、容重、电导率、碱解氮、pH。其中,有效磷标准化值最高,均值高达2.38,其次是速效钾,均值为2.29,而pH标准化值最小,均值仅为0.46。
表 2 土壤肥力质量统计分析
Table 2. Statistical analysis of soil fertility quality
Fi 最小值 最大值 均值 中位数 标准差 变异系数 容重 0.00 3.00 1.20 1.04 1.05 0.88 pH 0.00 2.26 0.46 0.25 0.61 1.32 电导率 0.00 2.60 1.17 1.67 1.10 0.94 有机质 0.46 3.00 1.40 1.09 0.69 0.49 碱解氮 0.29 2.28 0.92 0.67 0.62 0.67 有效磷 0.73 3.00 2.38 3.00 0.82 0.34 速效钾 0.70 3.00 2.29 2.49 0.65 0.28 F 0.38 1.42 0.86 0.83 0.25 0.29 -
上海市搬迁地土壤肥力综合指数(F)为0.38~1.42,均值为0.86,且不同样点土壤肥力综合指数变化较大,变异系数达0.29。此外,从搬迁地土壤肥力质量等级分布图(图4)可以看出:搬迁地土壤肥力质量主要为差和一般等级,59.3%的搬迁地土壤属于差,40.7%的搬迁地土壤属于一般等级,调查的搬迁地中未发现良或优等级的土壤。由此可见,上海市搬迁地土壤肥力相对较差。
-
由图5可见:不同类型搬迁地土壤肥力存在一定差异,城中村搬迁地土壤肥力综合指数均值达0.97±0.27,属于一般等级,而工业企业搬迁地土壤肥力综合指数均值仅为0.76±0.18,属于差等级,且城中村搬迁地土壤肥力综合指数显著高于工业企业搬迁地(P<0.05);此外,城中村搬迁地土壤肥力质量属于差等级占比38.5%,而工业企业搬迁地土壤肥力质量属于差等级占比高达78.6%。可见,城中村搬迁地土壤肥力明显优于工业企业搬迁地土壤。
-
城市搬迁地土壤作为城市土壤的一部分,既保留了城市土壤的特性,也有其自身的特性。对上海典型搬迁地土壤单项肥力指标研究表明:搬迁地土壤pH较高,明显高于上海公园绿地土壤(均值为8.1)[12],这可能是由于搬迁地土壤中存在大量的建筑垃圾,加剧了对土壤pH的碱化[13-14]。土壤电导率适宜,均值符合《绿化种植土壤》标准要求。土壤有机质质量分数偏低,四级和五级占比则达70%以上,仅为上海公园绿地土壤有机质的61.6%[12],这可能是由于搬迁地土壤缺少外源有机质供给所致。搬迁地土壤速效养分中有效磷和速效钾较丰富,而碱解氮偏低;土壤有效磷较丰富可能有两方面原因:一方面可能由于城中村搬迁地土壤部分样点位于农田、菜地,与人为施用含磷肥料有关,另一方面可能是由于工业企业生产排放含磷化合物[15]或修复过程中采用了含磷材料导致搬迁地土壤磷富集[16]。而有74.1%的样点土壤速效钾质量分数达到了三级及以上,这主要与上海本底土壤有效钾含量丰富有关[17-18]。土壤碱解氮质量分数低,分布在六级的比例高达74.1%,这与方海兰等[11]对上海新建绿地土壤的研究结果一致。此外,土壤容重较大,分布在四级及以下占比高达77.8%,土壤压实较普遍,这与当前城市土壤普遍存在的压实情况一致[19-20]。由此可见,搬迁地土壤有效磷、碱解氮及土壤容重受城市人为活动及土地利用方式影响较大,而速效钾受成土母质影响较大,这与王辛芝等[21]研究南京城市土壤结果类似。
采用修正的内梅罗法对上海搬迁地土壤肥力质量进行综合评价。结果表明:上海搬迁地土壤肥力质量相对较差,其中差等级占比达59.3%,而一般等级占比为40.7%,且不同土壤样点土壤肥力质量综合指数变异系数大,空间异质性较强,原因可能与人类活动影响有关[18,22-23]。但城中村搬迁地土壤肥力质量综合指数显著高于工业企业搬迁地(P<0.05),其土壤肥力质量综合指数高出27.6%,这可能是由于城中村搬迁地含有部分菜园地、农田、果园和绿地等用地类型,受人为耕作、培肥等影响,土壤肥力质量相对较好,而工业企业搬迁地土壤受生产运营过程碾压、侵蚀等影响,其土壤化学性质和土壤物理结构同时也遭到了不同程度破坏,土壤肥力质量相对较差。
上海市一般等级搬迁地土壤在绿化质量要求不高时,可直接用于园林绿化种植,而对绿化质量要求较高时,则需要进行改良;差等级的搬迁地土壤在用于园林绿化种植前,应先有针对性的对其土壤肥力质量障碍因子进行改良,可通过降低搬迁地土壤pH和提高土壤碱解氮等技术手段来提升搬迁地土壤肥力质量,再根据不同园林绿化质量等级要求,不同程度改良土壤肥力质量,从而达到城市绿化种植所需的土壤肥力质量等级要求。总之,在城市土壤质量普遍不佳、城市绿化需求快速增加、城市土地及土壤资源紧缺等日益突出的背景下,越来越多的城市搬迁地被用作园林绿化用地,应收集和保护土壤肥力质量较好的搬迁地土壤,改良肥力质量差或一般的搬迁地土壤,以满足快速增长的城市绿化种植需求。
Comprehensive evaluation of soil fertility in relocated land for landscaping
-
摘要:
目的 以上海典型搬迁地为研究对象,对搬迁地土壤单项肥力指标和土壤综合肥力进行分析,探讨城中村和工业企业搬迁地土壤肥力质量特征,为科学指导搬迁地土壤用于园林绿化提供依据。 方法 选取上海典型的20个城中村搬迁地样点和16个工业企业搬迁地样点,筛选土壤pH、电导率、有机质、碱解氮、有效磷、速效钾和容重等7项指标作为肥力评价指标,采用修正的内梅罗法对搬迁地土壤肥力进行综合评价。 结果 搬迁地土壤呈碱性,电导率适宜,有机质和碱解氮质量分数相对适宜,有效磷和速效钾质量分数丰富,土壤容重大;上海市搬迁地土壤肥力综合指数均值仅为0.86;城中村搬迁地土壤肥力综合指数显著高于工业企业搬迁地(P<0.05)。 结论 上海搬迁地土壤肥力相对较差,其中59.3%的搬迁地土壤属于差等级,40.7%的搬迁地土壤属于一般等级;城中村搬迁地土壤肥力优于工业企业搬迁地土壤;搬迁地土壤用于城市园林绿化前,应通过技术手段提升土壤肥力以满足绿化种植要求。图5表2参23 Abstract:Objective The objective is to analyze soil fertility index and soil fertility quality in typical relocation sites in Shanghai, and to explore the soil fertility quality characteristics of the relocated land in villages and industrial enterprises in the city, so as to provide basis for the use of the relocated soil in landscaping. Method The 20 typical relocation sites of urban villages and 16 relocation sites of industrial enterprises in Shanghai were selected, and 7 soil fertility indexes including pH, electrical conductivity(EC), organic matter, hydrolytic nitrogen, available phosphorus, available potassium and bulk density were selected as fertility evaluation indexes. The modified Nemoro method was used to comprehensively evaluate the quality of soil fertility in the relocation sites. Result The soil in the relocation site was alkaline, with suitable EC, relatively low contents of organic matter and hydrolytic nitrogen, rich contents of available phosphorus and available potassium, and high soil bulk density. The average comprehensive index of soil fertility in Shanghai was only 0.86. The comprehensive index of soil fertility in the relocation sites of urban villages was significantly higher than that in the relocation sites of industrial enterprises (P<0.05). Conclusion The soil fertility in the relocation sites of Shanghai is relatively poor, 59.3% of which belong to “poor” grade and 40.7% belong to “general” grade. The soil fertility of urban villages is better than that of industrial enterprises. Before the relocated land is used for urban landscaping, soil fertility quality should be improved by technical means to meet the requirements of planting. [Ch, 5 fig. 2 tab. 23 ref.] -
Key words:
- landscaping /
- relocation site /
- soil fertility /
- comprehensive evaluation /
- Shanghai
-
紫甘蓝Brassica oleracea var. capitata f. rubra是十字花科Brassicaceae芸苔属Brassica结球甘蓝B. oleracea var. capitat的一个变型,是云南干热河谷农业区冬季特色优势农产品之一,具有适应性广、速生、早结丰产、保质期长、不易腐败和经济价值高等特点。紫甘蓝在元谋坝区种植面积较广。然而,随着当地化肥农药的大量施用,加之燥红壤黏粒较多,遇降雨土壤易板结,养分易流失,导致土壤肥力下降,影响作物的产量和品质。生物质炭是良好的土壤改良剂[1],施入土壤后会改变土壤性状,同时可作为缓释肥料载体,提高作物产量[2],近年来被广泛应用于农业生产领域。有机肥能为作物生长持续供应养分,同时能够改善土壤结构,保障蔬菜优质高产,是生产有机蔬菜不可替代的肥料[3]。有研究[4]表明:生物质炭与有机肥配施比单施更益于平邑甜茶Malus hupehensis幼苗的生长发育,更好地防控苹果Malus pumila连作障碍。李喜凤等[5]研究证明:生物质炭与有机肥配施可显著增强0~40 cm土壤总有机碳、颗粒有机碳、轻质有机碳、微生物量碳、易氧化有机碳和可溶性有机碳质量分数,有助于苹果成花,促进植株生长,提高产量。张毅博等[6]研究表明:生物质炭与有机肥的配施提高了土壤有机碳和全氮含量,从而改善土壤质地,提高土壤肥效。ARIF等[7]也研究发现:在低肥力碱性土壤中,生物质炭与有机肥的配施能显著提高磷素利用率,同时提高了玉米Zea mays-小麦Triticum aestivum的生产力和农田土壤质量。SÁNCHEZ-MONEDERO等[8]的研究结果显示:与单施生物质炭相比,生物质炭与有机肥(羊粪堆肥)混施使番茄Solanum lycopersicum果实质量增加16%,直径增加9%,硬度提高8%。目前,生物质炭与有机肥配施在经济果木和作物方面均有研究,但针对云南干热河谷坝区燥红壤改良和紫甘蓝生长的研究尚未见报道。鉴于此,本研究以元谋燥红壤为研究对象,紫甘蓝为供试材料,研究竹炭与有机肥配施对燥红壤土壤肥力及紫甘蓝光合特性、产量和品质的影响,以期获得元谋坝区紫甘蓝优质高产的配施策略,为生物炭在蔬菜生产应用中提供科学依据。
1. 材料与方法
1.1 试验地概况
田间试验于2019年7−12月在云南省楚雄彝族自治州元谋县南城街150号热区生态研究所大田试验基地(25°41.5′N,101°52.6′E)进行。元谋属南亚热带干热季风气候,热量充足,年平均气温为21.9 ℃,年平均降水量613.8 mm,年日照时数2 670.4 h,无霜期302~331 d。
1.2 试验材料
供试土壤燥红壤(0~20 cm)基本理化性质为pH 6.60,有机质6.30 g·kg−1,全氮0.65 g·kg−1,全磷2.20 g·kg−1,全钾17.22 g·kg−1,速效磷10.67 mg·kg−1,速效钾108.41 mg·kg−1。
供试紫甘蓝品种为普罗米悠‘Puluomiyou’,是元谋干热河谷地区主要种植的紫甘蓝品种,其生长期约100~120 d,为云南省农业科学院热区生态农业研究所提供。
供试生物质炭为竹炭,购于福建优选炭业有限责任公司。其以竹材经450~480 ℃温度炭化1 h而成。竹炭pH为11.31,有机碳质量分数为860.60 g·kg−1,全氮10.30 g·kg−1,平均孔径为2.654 43 nm。
供试有机肥为当地农户常用的经羊粪发酵产生的堆肥,其pH为7.63,氮、五氧化二磷、氧化钾质量分数分别为46.00、14.50、9.80 g·kg−1。
1.3 试验设计
采用3×3完全方案设计,设置竹炭用量3个水平,有机肥用量3个水平,加上空白对照(ck),共计10个处理(表1)。每个处理3次重复。
表 1 试验设计Table 1 Design of field experiment处理代号 竹炭(B)/% 有机肥(F)/(t·hm−2) 处理代号 竹炭(B)/% 有机肥(F)/(t·hm−2) 对照 0 0 B6F10 6 10 B4F5 4 5 B8F10 8 10 B6F5 6 5 B4F20 4 20 B8F5 8 5 B6F20 6 20 B4F10 4 10 B8F20 8 20 试验地总面积为600 m2,每个小区面积为20 m2(4 m×5 m),每个处理3个重复,共30个小区。于2019年7月用旋耕机将小区土壤翻匀晾晒,并用铁板将各小区隔开。7月末按照试验设计将生物质炭和有机肥一次性施入小区(随机组合),并再次将土壤翻匀(土肥厚度约30 cm)。9月5日种植长势均一株高为6.57~7.50 cm紫甘蓝幼苗,株距为30.00 cm,行距为20.00 cm,并覆膜,保持充分灌水,后期隔3 d灌水1次。在9月底和10月底进行追肥(每个小区追施尿素300 g,磷酸二氢钾140 g),促进紫甘蓝幼苗期和莲座期生长。试验灌溉方式为地表滴灌,每株幼苗1个滴头,滴头设置在同一侧,滴头与幼苗的距离约为3 cm,滴头间距与株距相同。期间管理方式按当地方式管理。
1.4 测定方法
土壤:2019年12月底紫甘蓝采收后,在每个小区采用5点取样法采集0~20 cm土层土样,并将每个处理混匀带回实验室风干。一部分过1.00 mm筛,装自封袋用于土壤pH和速效成分的测定;另一部分过0.25 mm筛,装自封袋用于土壤有机质、全磷和全钾质量分数的测定。土壤理化性质参照文献[9]测定。其中,土壤pH采用pH酸度计(PHS-3C,PHS-4C 型)测定;土壤有机质质量分数采用油浴加热-重铬酸钾氧化容量法测定;全磷采用高氯酸消解-钼锑抗比色法测定;土壤有效磷采用Brayl 法(0.025~0.030 mol·L−1,氟化铵)浸提剂测定;全钾和速效钾均使用电感耦合等离子体发射光谱仪(ICP)测定。
光合特性:定期观测紫甘蓝生长状况,于每月月底选择晴朗天气在11:00−16:00采用Li-6400Xt测定紫甘蓝不同生长时期(幼苗期、莲座期、结球期、成熟期)叶片的净光合速率、蒸腾速率、气孔导度和胞间二氧化碳摩尔分数。
产量和品质:12月底紫甘蓝收获后称量,记录每个小区紫甘蓝产量,并在每个小区选取长势基本一致的10株,去掉外叶,进行维生素C、还原糖、可溶性蛋白质和花青素等品质分析。其中:可溶性蛋白质采用考马斯亮蓝G-250染色法测定,维生素C采用2,6-二氯酚靛比色法,还原糖采用3,5-二硝基酚水杨酸比色法测定,花青素采用质量分数为1%盐酸浸提比色法测定[10]。
1.5 数据处理
数据采用Excel 2016进行整理,使用Origin 2017作图,采用SPSS 21.0统计分析软件进行双因素方差分析和多重比较,用Duncan法比较处理间的差异显著性(P<0.05)。
2. 结果与分析
2.1 竹炭与有机肥配施对土壤基本理化性质的影响
由图1可知:竹炭与有机肥配施对紫甘蓝地土壤pH以及有机质、全磷、有效磷、全钾和速效钾质量分数均具有不同程度的影响。与对照相比,竹炭与有机肥配施能显著提高土壤速效钾质量分数(P<0.05),同时高量有机肥与竹炭配施显著提高了土壤有效磷质量分数(P<0.05)。其中,pH以B8F10处理最高;有机质和全钾以B4F10处理最高,分别提高了107.93%和46.06%;全磷以B8F5处理最高,提高了58.67%;有效磷以B6F20处理最高,提高了157.44%;速效钾以B8F20最高,提高了226.60%。
在5 t·hm−2有机肥用量条件下,土壤有机质和全磷质量分数随竹炭比例的增加而增加,全钾和有效磷以B6F5处理较高,而对速效钾无显著影响(P>0.05)。在10 t·hm−2有机肥用量下,土壤有机质和全钾质量分数以B4F10处理较高,全磷以B6F10处理较高,高比例竹炭的施用反而降低了土壤有机质和全磷质量分数,有效磷和速效钾质量分数随竹炭量的增加而增加,但对速效钾影响不显著。在20 t·hm−2有机肥用量下,土壤速效养分(有效磷和速效钾质量分数)均较高,有机质质量分数随竹炭比例的增加而增加,全磷、全钾和有效磷以B6F20处理最高,速效钾以B8F20处理最高。而在同一有机肥用量下,各处理间土壤pH均无显著差异(P>0.05)。
2.2 竹炭与有机肥配施对紫甘蓝光合特性的影响
由图2可知:与对照相比,除紫甘蓝幼苗期外,竹炭和有机肥配施后紫甘蓝各生长时期的净光合速率、蒸腾速率、气孔导度和胞间二氧化碳摩尔分数总体上有提高趋势。紫甘蓝叶片净光合速率从幼苗期到结球期不断增大,在结球期达到顶峰,成熟期逐渐减弱;叶片蒸腾速率和气孔导度(除对照外)在莲座期最大,结球期和成熟期逐渐减弱;除对照和B4F5处理外,叶片胞间二氧化碳摩尔分数在莲座期达到最大,紫甘蓝叶片光合作用从幼苗期到结球期逐渐增强,而成熟期逐渐减弱。与对照相比,除B8F5处理外,竹炭与有机肥配施对紫甘蓝叶片4个时期净光合速率均值提高了1.14%~23.54%;竹炭与有机肥配施对紫甘蓝叶片4个时期蒸腾速率和胞间二氧化碳摩尔分数均值较对照分别提高了3.01%~43.52%和2.33%~9.11%;除B4F5处理外,竹炭与有机肥配施对紫甘蓝叶片4个时期气孔导度均值较对照处理提高了2.33%~39.54%。
在5 t·hm−2有机肥用量下,B6F5处理各时期叶片净光合速率、蒸腾速率和气孔导度均能维持较高水平,与另外2个处理相比,叶片净光合速率、蒸腾速率和气孔导度分别增加了9.08%~24.55%、1.56%~11.28%和18.18%~23.81%,而对叶片胞间二氧化碳摩尔分数无显著差异。在10 t·hm−2有机肥用量下,各时期叶片净光合速率随竹炭比例的增加而增加,与B4F10相比,B6F10和B8F10处理的净光合速率均值分别提高了6.30%和13.84%;叶片蒸腾速率以B6F10处理较高,较B4F10和B8F10处理分别提高了16.44%和12.70%,而对叶片气孔导度和胞间二氧化碳摩尔分数无显著性差异。在20 t·hm−2有机肥用量下,叶片净光合速率、蒸腾速率和胞间二氧化碳摩尔分数随竹炭量的增加而呈减弱趋势,B6F20和B8F20较B4F20处理对叶片净光合速率、蒸腾速率和胞间二氧化碳摩尔分数分别降低了8.93%~19.48%、2.41%~10.68%和4.48%~5.16%,而叶片气孔导度则以B6F20处理较高,较B4F20和B8F20处理分别提高了11.11%和5.26%。
2.3 竹炭与有机肥配施对紫甘蓝产量的影响
与对照相比,竹炭与有机肥配施均不同程度提高了紫甘蓝产量且各处理间表现不同,增产幅度为9.28%~58.11%,其中以B6F10处理下紫甘蓝产量最高,其次为B8F10处理,紫甘蓝产量分别较对照提高了58.11%和44.16%(图3)。当有机肥用量为5和20 t·hm−2时,紫甘蓝产量随竹炭用量的增加呈现下降的趋势;当有机肥用量为10 t·hm−2时,紫甘蓝产量以B5F10处理较高,但处理间差异不显著(P>0.05)。综合来看,10 t·hm−2有机肥用量下添加6%竹炭处理对紫甘蓝增产效果最佳。
2.4 竹炭与有机肥配施对紫甘蓝品质的影响
图4显示:与对照相比,竹炭与有机肥配施均提高了紫甘蓝维生素C、还原糖、可溶性蛋白质和花青素质量分数。紫甘蓝中维生素C、还原糖、可溶性蛋白质和花青素质量分数分别提高了13.79%~33.29%、0.06%~11.17%、5.44%~27.97%和8.00%~33.88%,其中维生素C、还原糖、可溶性蛋白质和花青素质量分数分别以B4F10、B8F5、B6F10、B6F10处理下最高。在同一有机肥用量条件下,各处理间紫甘蓝中维生素C、还原糖、可溶性蛋白质和花青素质量分数无显著差异(P>0.05),其中,在5 t·hm−2有机肥用量下,维生素C和花青素质量分数以B6F5处理较高,还原糖随竹炭量的增加略有增加,可溶性蛋白质以B4F5处理较高;在10 t·hm−2有机肥用量下,维生素C质量分数随竹炭比例的增加而略微有下降的趋势,可溶性蛋白质和花青素质量分数以B6F10处理较高,还原糖无显著差异;在20 t·hm−2有机肥用量下,维生素C、可溶性蛋白质和花青素质量分数以B6F20处理较高,而还原糖随竹炭比例的增加而降低。
2.5 方差分析
本研究土壤样品采集于紫甘蓝成熟期,因此,采用土壤基本理化性质、成熟期的紫甘蓝光合特性指标和产量及品质进行双因素和单因素方差分析。表2显示:竹炭添加比例对土壤速效钾、土壤全磷、有效磷质量分数和紫甘蓝光合特性有极显著影响(P<0.01),对紫甘蓝还原糖和花青素质量分数有显著影响(P<0.05);有机肥用量对土壤pH、全磷、有效磷、全钾、速效钾质量分数及紫甘蓝净光合速率、蒸腾速率、胞间二氧化碳摩尔分数、产量和紫甘蓝还原糖、可溶性蛋白质质量分数有极显著影响(P<0.01),对土壤有机质、紫甘蓝维生素C和花青素质量分数具有显著影响(P<0.05);除土壤pH外,竹炭与有机肥的交互效应对土壤pH具有显著影响(P<0.05);对土壤其他理化性质、紫甘蓝光合特性和还原糖质量分数均具有极显著影响(P<0.01),而各处理对紫甘蓝可溶性蛋白质有显著影响(P<0.05),对土壤理化性质和紫甘蓝光合特性、产量及其维生素C、还原糖、花青素均具有极显著的影响(P<0.01)。
表 2 方差分析Table 2 Analysis of variance (P-values)参数 双因素 单因素处理 竹炭 有机肥 竹炭×有机肥 pH 0.869 <0.001*** 0.017* <0.001*** 有机质 0.419 0.011* <0.001*** <0.001*** 全磷 0.001** <0.001*** <0.001*** <0.001*** 有效磷 0.001** <0.001*** <0.001*** <0.001*** 全钾 0.522 <0.001*** <0.001*** <0.001*** 速效钾 <0.001*** <0.001*** <0.001*** <0.001*** 净光合速率 <0.001*** <0.001*** <0.001*** <0.001*** 蒸腾速率 <0.001*** <0.001*** <0.001*** <0.001*** 气孔导度 <0.001*** 0.902 <0.001*** <0.001*** 胞间二氧化碳摩尔分数 <0.001*** <0.001*** <0.001*** <0.001*** 产量 0.081 <0.001*** 0.199 <0.001*** 维生素C 0.335 0.029* 0.334 0.005** 还原糖 0.041* 0.001** <0.001*** <0.001*** 可溶性蛋白质 0.807 0.003** 0.853 0.035* 花青素 0.027* 0.045* 0.203 0.006** 说明:*、**和***分别表示在0.05、0.01和0.001水平上差异显著 3. 讨论
3.1 竹炭与有机肥配施对土壤基本理化性质的影响
紫甘蓝适宜生长环境趋向于中性[11]。本研究中竹炭(pH 11.31)和有机肥(pH 7.63)呈碱性,与对照 (pH 6.63)相比,各竹炭与有机肥配施处理均不同程度地提高了土壤pH,使土壤趋于中性。本研究发现:竹炭与有机肥配施能显著提高土壤有机质、有效磷和速效钾质量分数,同时提高土壤全磷和全钾质量分数。其原因可能是生物质炭和有机肥之间存在互作效应[12],生物质炭通过与有机矿物的相互作用,形成有机-矿物复合物,促进有机肥中碳的稳定,增加土壤有机质质量分数;生物质炭的施用能抑制土壤中氮磷的淋失[13],有机肥也能够对氮磷进行补偿[14],从而提高了土壤氮磷养分含量,弥补生物质炭本身的养分亏缺,两者具有一定的协同作用[15]。竹炭与有机肥配施还提高了土壤中全钾和速效钾质量分数,这与贺丽群等[16]的研究结果相似。总之,从对土壤肥力性状的作用方式来看,生物质炭与有机肥配施对土壤具有一定的互补性,两者通过同化作用[17-19],改善了作物对于养分的吸收及转运,促进作物对土壤营养元素的吸收。
3.2 竹炭与有机肥配施对紫甘蓝光合特性的影响
本研究表明:竹炭与有机肥配施提高了紫甘蓝各时期净光合速率、蒸腾速率和气孔导度,这说明竹炭与有机肥配施有利于改善紫甘蓝生长的生理活性强度[20],增强对外界二氧化碳的捕获,导致光合作用强度增大。这可能是因为有机肥的施用可增强植物的光合性能[21],竹炭添加提高了有机肥的利用效率,且高量(20 t·hm−2)或中量(10 t·hm−2)有机肥中添加4%或6%竹炭更利于提高紫甘蓝光合特性,提高有机物质的积累,增大光合作用强度。有机肥的施用可延缓叶片的衰老,增强叶片的光合作用和抗逆性[22],同时,有机肥的施用可提高叶绿素含量,使得叶片叶肉细胞光合作用活性增加[23],进而导致紫甘蓝光合作用强度增加。此外,竹炭与有机肥的配施为紫甘蓝生长提供了更多的养分。
3.3 竹炭与有机肥配施对紫甘蓝产量的影响
大多研究结果显示:生物质炭与有机肥配施使作物增产效果更佳,更益于植物的生长。应金耀等[24]研究表明:生物质炭与有机肥配合施用使青菜Brassica chinensis产量高于单施生物炭处理,在促进蔬菜生长方面优于其他处理。本研究显示:竹炭与有机肥配施处理的紫甘蓝产量均高于对照,其中施用10 t·hm−2的有机肥下添加6%生物质炭增产效果更佳,较对照增产58.11%,这与LI等[25]研究结果类似。生物质炭与有机或无机肥料配合施用,作物增产效果更佳[26]。韩晓亮等[27]研究表明:适量生物质炭的施用可提高根系代谢活动,确保作物稳定增产,在一定程度上可促进作物产量的积累,进而提高作物长势。但也有不一致的研究结果,表明生物质炭与无机或有机肥料配施可能受多种因素的影响,包括土壤类型、生物质炭种类、气候条件[28]、施用量和作物种类[29]等,导致生物质炭与有机或无机肥料配合施用的增产效应不同。
3.4 竹炭与有机肥配施对紫甘蓝品质的影响
紫甘蓝含有丰富的维生素C、还原糖、可溶性蛋白质、花青素等营养物质[30],施用有机肥(粪便、秸秆等)有利于提高养分的利用效率[31],促进紫甘蓝对养分的吸收,从而改善紫甘蓝品质。生物质炭与有机肥的配施能提高农作物品质,如张宇等[32]研究发现:氮肥减量60%和有机肥增加40%基础上添加生物质炭提高了大蒜Allium sativum 鳞茎及蒜薹中的游离氨基酸含量、可溶性糖及蔗糖含量;易洪海等[33]研究表明:生物质炭与有机肥配合施用使藜蒿Artemisia selengensis中维生素C、可溶性糖、可溶性蛋白质分别增加4.80%~6.40%、1.86%~3.65%、0.74%~2.22%。本研究中,与对照相比,竹炭与有机肥配施均提高了紫甘蓝维生素C、还原糖、可溶性蛋白质和花青素质量分数,提高幅度分别为13.79%~33.29%、0.06%~11.17%、5.44%~27.97%和8.00%~33.88%,这可能是因为有机肥提高了土壤养分含量,尤其速效钾和全钾为紫甘蓝生长所必需的营养成分。双因素方差分析显示:有机肥对紫甘蓝品质具有极显著或显著影响,适量有机肥与生物质炭配施可以促进农作物生长发育,提高蔬菜品质[34]。本研究结果显示:6%竹炭与中量(10 t·hm−2)有机肥配施对紫甘蓝可溶性蛋白质和花青素质量分数提升效果更佳,且产量较高。这可能是因为生物质炭孔隙发达,有机肥肥效长,可为紫甘蓝的生长持续供应养分。
4. 结论
与对照相比,竹炭与有机肥配施提高了土壤pH,同时提高了有机质、全磷、有效磷、全钾和速效钾质量分数;提高了紫甘蓝叶片除幼苗期外其他时期净光合速率、蒸腾速率、气孔导度和胞间二氧化碳摩尔分数;总体上提高了紫甘蓝产量,同时提高了紫甘蓝维生素C、还原糖、可溶性蛋白质、花青素质量分数。从紫甘蓝增产效益来看,添加6%竹炭与10 t·hm−2的有机肥为最佳施肥配比,该处理下紫甘蓝可溶性蛋白质和花青素质量分数最高。竹炭、有机肥、竹炭与有机肥的交互效应对土壤养分质量分数与紫甘蓝叶片光合特性指标、产量、品质有极显著或显著的影响,竹炭与有机肥配施为紫甘蓝生长持续供应养分,促进紫甘蓝生长,提高紫甘蓝产量和品质。
-
分级 pH 电导率/(mS·cm−1) 有机质/(g·kg−1) 碱解氮/(mg·kg−1) 有效磷/(mg·kg−1) 速效钾/(mg·kg−1) 容重/(Mg·m−3) 一级 6.5~7.5 0.30~0.50 ≥40 ≥200 ≥60 ≥300 1.00~1.15 二级 5.5~6.5 0.10~0.30 30~40 120~200 20~60 200~300 1.15~1.25或0.90~1.00 三级 7.5~8.0 0.50~0.70或0.07~0.10 20~30 90~120 15~20 100~200 1.25~1.35或0.80~0.90 四级 8.0~8.5或4.5~5.5 0.70~0.90 12~20 60~90 10~15 60~100 1.35~1.45或0.70~0.80 五级 8.5~9.0 0.90~1.20或0.05~0.07 6~12 40~60 5~10 30~60 1.45~1.55或0.60~0.70 六级 >9.0或≤4.5 >1.20或≤0.05 <6 <40 <5 <30 >1.55或≤0.60 表 2 土壤肥力质量统计分析
Table 2. Statistical analysis of soil fertility quality
Fi 最小值 最大值 均值 中位数 标准差 变异系数 容重 0.00 3.00 1.20 1.04 1.05 0.88 pH 0.00 2.26 0.46 0.25 0.61 1.32 电导率 0.00 2.60 1.17 1.67 1.10 0.94 有机质 0.46 3.00 1.40 1.09 0.69 0.49 碱解氮 0.29 2.28 0.92 0.67 0.62 0.67 有效磷 0.73 3.00 2.38 3.00 0.82 0.34 速效钾 0.70 3.00 2.29 2.49 0.65 0.28 F 0.38 1.42 0.86 0.83 0.25 0.29 -
[1] 李锋, 王如松, 赵丹. 基于生态系统服务的城市生态基础设施: 现状、问题与展望[J]. 生态学报, 2014, 34(1): 190 − 200. LI Feng, WANG Rusong, ZHAO Dan. Urban ecological infrastructure based on ecosystem services: status, problems and perspectives [J]. Acta Ecol Sin, 2014, 34(1): 190 − 200. [2] 张浪, 曹福亮, 张冬梅. 城市棕地绿化植物物种优选方法研究: 以上海市为例[J]. 现代城市研究, 2017(9): 119 − 123. ZHANG Lang, CAO Fuliang, ZHANG Dongmei. Research on selection method of plant species in brownfield greening: a case study of Shanghai [J]. Mod Urban Res, 2017(9): 119 − 123. [3] 张冬梅, 林奕成, 张浪, 等. 城市搬迁地适生绿化树种生长模型构建: 以上海为例[J]. 上海农业科技, 2021(1): 84 − 87. ZHANG Dongmei, LIN Yicheng, ZHANG Lang, et al. Construction of growth model of suitable greening tree species in urban relocation: a case study of Shanghai [J]. Shanghai Agric Sci Technol, 2021(1): 84 − 87. [4] 丛鑫, 朱书全, 薛南冬, 等. 有机氯农药企业搬迁遗留场地土壤中污染物的垂向分布特征[J]. 环境科学研究, 2009, 22(3): 351 − 355. CONG Xin, ZHU Shuquan, XUE Nandong, et al. Vertical distribution of pollutants in soils of a former organochlorine pesticide manufacturing field [J]. Res Environ Sci, 2009, 22(3): 351 − 355. [5] 梁立成, 余树全, 张超, 等. 浙江省永康市城区土壤重金属空间分布及潜在生态风险评价[J]. 浙江农林大学学报, 2017, 34(6): 972 − 982. LIANG Licheng, YU Shuquan, ZHANG Chao, et al. Spatial distribution and ecological risk assessment of heavy metals in Yongkang City [J]. J Zhejiang A&F Univ, 2017, 34(6): 972 − 982. [6] 孙涛, 陆扣萍, 王海龙. 不同淋洗剂和淋洗条件下重金属污染土壤淋洗修复研究进展[J]. 浙江农林大学学报, 2015, 32(1): 140 − 149. SUN Tao, LU Kouping, WANG Hailong. Advance in washing technology for remediation of heavy metal contaminated soils: effects of eluants and washing conditions [J]. J Zhejiang A&F Univ, 2015, 32(1): 140 − 149. [7] 侯淑贞. 城市镉污染土壤生态修复及景观营建技术研究[D]. 杭州: 浙江农林大学, 2018. HOU Shuzhen. Ecological Restoration of Urban Cadmium Contaminated Soil and Plant Landscape Construction Technology[D]. Hangzhou: Zhejiang A&F University, 2018. [8] 李丽雅, 丁蕴铮, 侯晓丽, 等. 城市土壤特性与绿化树生长势衰弱关系研究[J]. 东北师大学报(自然科学版), 2006, 38(3): 124 − 127. LI Liya, DING Yunzheng, HOU Xiaoli, et al. Study on the relationship between the urban soil and the weak growing tendency of the afforestation [J]. J Northeast Norm Univ Nat Sci Ed, 2006, 38(3): 124 − 127. [9] 张万儒. 森林土壤分析方法[M]. 北京: 中国标准出版社, 1999. [10] 上海市园林绿化标准化技术委员会. 绿化土壤肥力质量综合评价方法: DB/T 1191−2019[S]. 上海市市场监督管理局, 2019. [11] 方海兰, 陈玲, 黄懿珍, 等. 上海新建绿地的土壤质量现状和对策[J]. 林业科学, 2007, 43(增刊 1): 89 − 94. FANG Hailan, CHEN Ling, HUANG Yizhen, et al. Current situation and strategy for the soil quality of newly-established green belts in Shanghai [J]. Sci Silv Sin, 2007, 43(suppl 1): 89 − 94. [12] 骆玉珍, 张维维, 李雅颖, 等. 上海市公园绿地土壤肥力特征分析与综合评价[J]. 中国土壤与肥料, 2019(6): 86 − 93. LUO Yuzhen, ZHANG Weiwei, LI Yaying, et al. Analysis and comprehensive evaluation of soil fertility characteristics for the urban park in Shanghai [J]. Soil Fert Sci China, 2019(6): 86 − 93. [13] 刘兴诏, 黄旻, 黄柳菁. 中国部分大中城市居住区园林土壤碱化现状及主要成因[J]. 西北林学院学报, 2019, 34(6): 202 − 207. LIU Xingzhao, HUANG Min, HUANG Liujing. The present situation and main causes of garden soil alkalization in residential area of large and medium-sized cities of China [J]. J Northwest For Univ, 2019, 34(6): 202 − 207. [14] 秦娟, 许克福. 我国城市绿地土壤质量研究综述与展望[J]. 生态科学, 2018, 37(1): 200 − 210. QIN Juan, XU Kefu. Research summary and prospect of urban green space soil quality in China [J]. Ecol Sci, 2018, 37(1): 200 − 210. [15] 冯慕华, 李文朝, 李海英, 等. 云南抚仙湖流域磷化工对农田土壤和农作物的影响[J]. 环境科学与技术, 2009, 32(3): 83 − 86. FENG Muhua, LI Wenchao, LI Haiying, et al. Impact of phosphate industry on agricultural soil and crops in Fuxianhu watershed in Yunnan Province [J]. Environ Sci Technol, 2009, 32(3): 83 − 86. [16] 丁苏苏, 李凯华, 黄珏瑛, 等. 含磷材料修复铅、镉污染农田土壤效果及影响因素研究进展[J]. 环境污染与防治, 2020, 42(7): 929 − 936. DING Susu, LI Kaihua, HUANG Jueying, et al. Research progress on the effect and influencing factors of remediation of Pb/Cd contaminated farmland soil by phosphorus-containing materials [J]. Environ Pollut Control, 2020, 42(7): 929 − 936. [17] 郝瑞军. 上海城市绿地土壤肥力特征分析与评价[J]. 上海农业学报, 2014, 30(1): 79 − 84. HAO Ruijun. Analysis and evaluation of soil fertility characteristics of Shanghai urban green area [J]. Acta Agric Shanghai, 2014, 30(1): 79 − 84. [18] 刘婵. 上海城郊土壤肥力质量时空变化特征研究[D]. 上海: 上海师范大学, 2014. LIU Chan. Study on Variation Characteristics of Space-Time Suburban Soil Quality in Shanghai[D]. Shanghai: Shanghai Normal University, 2014. [19] 王辛芝, 张甘霖, 俞元春, 等. 南京城市土壤pH和养分的空间分布[J]. 南京林业大学学报(自然科学版), 2006, 30(4): 69 − 72. WANG Xinzhi, ZHANG Ganlin, YU Yuanchun, et al. Spatial distribution of soil ph and nutrients in urban Nanjing [J]. J Nanjing For Univ Nat Sci Ed, 2006, 30(4): 69 − 72. [20] 伍海兵. 上海中心城区典型绿地土壤物理性质特征研究[J]. 土壤, 2018, 50(1): 155 − 161. WU Haibing. Study on soil physical properties of green belts in central urban area of Shanghai [J]. Soils, 2018, 50(1): 155 − 161. [21] 杨金玲, 张甘霖. 城市功能区、植被类型和利用年限对土壤压实的影响[J]. 土壤, 2007, 39(2): 263 − 269. YANG Jinling, ZHANG Ganlin. Effects of function zone, vegetation type and land use age on soil compaction in urban Nanjing [J]. Soils, 2007, 39(2): 263 − 269. [22] 赵兴征, 朱国营, 刘晨峰, 等. 杭州城市区域土壤性状的空间变异[J]. 城市环境与城市生态, 2011, 24(3): 23 − 25, 29. ZHAO Xingzheng, ZHU Guoying, LIU Chenfeng, et al. Spatial heterogeneity and distribution pattern of urban soil characteristics in central city of Hangzhou [J]. Urban Environ Urban Ecol, 2011, 24(3): 23 − 25, 29. [23] 马想, 张浪, 黄绍敏, 等. 上海城市绿地土壤肥力变化分析[J]. 中国园林, 2020, 36(5): 104 − 109. MA Xiang, ZHANG Lang, HUANG Shaomin, et al. Analysis on the change of soil fertility in shanghai urban green space [J]. Chin Landscape Archit, 2020, 36(5): 104 − 109. 期刊类型引用(9)
1. 王意锟,邱志成,张轩睿,李想,蒋潘怡. 竹炭有机肥对茄子生长及光谱参数的影响. 安徽农学通报. 2024(06): 34-37 . 百度学术
2. 张艳,严潜,吴景,曹云,吴家梅,官迪. 竹炭有机肥对水旱作物生长发育及镉积累的影响. 湖南农业科学. 2024(03): 23-27 . 百度学术
3. 尚玮瑶,杨龙涛,万子龙,杨海兴,张国斌. 化肥减量配施生物有机肥对紫甘蓝产量、品质及干物质和养分分配的影响. 甘肃农业大学学报. 2024(02): 74-82 . 百度学术
4. 刘辰熙,王继涛,尹翠,徐广亚,朱红艳,曹云娥. 生物炭-蚯蚓原位对设施番茄根际微生物和果实代谢的影响. 干旱地区农业研究. 2024(03): 182-196 . 百度学术
5. 陈梦婕,李小英,苏小娟,王毅雯,武泽婷. 元宝枫幼苗生长对不同生物质炭基质的响应. 浙江农林大学学报. 2024(05): 1066-1074 . 本站查看
6. 李夏,汪玉瑛,吕豪豪,何莉莉,刘玉学,王圣森,杨生茂. 炭基有机肥对设施番茄生长及其土壤性质的影响. 农业环境科学学报. 2023(03): 568-577 . 百度学术
7. 周婧,姚宏,吴华芬,金关根. 竹炭对土壤养分及皇菊产量和品质的影响. 贵州农业科学. 2023(07): 87-95 . 百度学术
8. 任晓雪,曹彦辉,曹桂芳,余秀真. 施用低温生物炭对甘蓝生长、品质和土壤理化性质的影响. 江苏农业科学. 2022(15): 140-144 . 百度学术
9. 魏全全,芶久兰,张萌,顾小凤,柳玲玲. 氮磷钾配施对贵州高山甘蓝产量、养分吸收及利用的影响. 中国瓜菜. 2022(12): 40-46 . 百度学术
其他类型引用(3)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200753