留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杜鹃花类菌根菌株对桃叶杜鹃幼苗硝酸还原酶活性和氮的影响

欧静 刘仁阳 张仁嫒 谌端玉 王丽娟 陈训

邓璇, 陈春兵, 邓静, 等. 桑葚幼果的落果与正常果的果柄转录组分析[J]. 浙江农林大学学报, 2023, 40(1): 45-54. DOI: 10.11833/j.issn.2095-0756.20220205
引用本文: 欧静, 刘仁阳, 张仁嫒, 等. 杜鹃花类菌根菌株对桃叶杜鹃幼苗硝酸还原酶活性和氮的影响[J]. 浙江农林大学学报, 2014, 31(6): 926-931. DOI: 10.11833/j.issn.2095-0756.2014.06.015
DENG Xuan, CHEN Chunbing, DENG Jing, et al. Transcriptome analysis of abscised and normal surviving young fruit of Morus alba[J]. Journal of Zhejiang A&F University, 2023, 40(1): 45-54. DOI: 10.11833/j.issn.2095-0756.20220205
Citation: OU Jing, LIU Renyang, ZHANG Ren'ai, et al. Nitrate reductase activity and N absorption of Rhododendron annae seedlings with ericoid mycorrhiza inoculation[J]. Journal of Zhejiang A&F University, 2014, 31(6): 926-931. DOI: 10.11833/j.issn.2095-0756.2014.06.015

杜鹃花类菌根菌株对桃叶杜鹃幼苗硝酸还原酶活性和氮的影响

DOI: 10.11833/j.issn.2095-0756.2014.06.015
基金项目: 

贵州省农业科技攻关项目 黔科合NY字[2011]3076号

贵州大学引进人才科研项目 贵大人基合字(2013)07号

详细信息
    作者简介: 欧静, 教授, 博士, 从事园林植物资源利用与种苗培育研究。E-mail:coloroj@126.com
    通信作者: 陈训, 研究员, 博士, 从事森林培育与种苗繁育研究。E-mail:chenxunke1956@163.com
  • 中图分类号: S718.4

Nitrate reductase activity and N absorption of Rhododendron annae seedlings with ericoid mycorrhiza inoculation

  • 摘要: 研究12株杜鹃花类菌根(ericoid mycorrhiza, ERM)菌株对2年生桃叶杜鹃Rhododendron annae幼苗生长及矿质元素氮积累的影响。结果表明:接种ERM真菌的植株根系均被有效地感染, 不同菌株促生效应显著, 接种ERM真菌显著增加幼苗地上、地下部分及总生物量。与对照相比, ERM菌株接种后, 显著提高了接种幼苗氮质量分数和硝酸还原酶(NR)活性, 且各处理差异极显著(P < 0.01)。接种苗根部氮质量分数提高了2.0%~40.3%, 叶部提高了2.8%~50.6%。接种苗根部硝酸还原酶活性除菌株TY41外, 其余处理高于对照0.9%~29.3%, 叶部除菌株TY41和菌株TY24外, 高于对照6.5%~43.9%。不同器官硝酸还原酶活性表现为根系大于叶片。
  • Morus是一种重要的木本植物,具有28条染色体[1],不仅可以作为家蚕的重要食物,还具有一定的经济、药用及生态价值。但是桑葚在成熟的过程中易脱落,使得桑葚变软变黑,影响其产业价值,因此,如何采用有效的手段对桑葚脱落进行调控十分重要。

    果实脱落是植物正常发育过程中的一种常见现象,但是,在一定程度上会限制果树的产量。果实脱落主要受环境因素、酶、生理代谢共同调控[2],其中,环境因素主要包括生物胁迫(如病虫害[3])和非生物胁迫(温度胁迫[4]、水分胁迫[5]、光胁迫[6]等);生理代谢则包括一些激素代谢(如脱落酸[7]、乙烯[8]等植物激素)和糖代谢[9];由于纤维素和果胶是植物细胞壁的主要组成成分,因此纤维素酶、果胶酶、多聚半乳糖醛酸酶[10]等与果实脱落相关[11]

    目前,桑葚脱落的分子机制还未见报道。本研究以白桑Morus alba为供试材料,对其进行转录组测序分析,探究桑葚在脱落过程中的生化成分代谢的分子机制,旨在为进一步了解桑葚果实脱落的分子机制提供参考。

    2021年4月在西南大学家蚕基因组生物学国家重点实验室桑树资源种质基地,选取无病害、健康状况较好的白桑幼果果柄。以落果果柄 (YD) 为实验组,取6个果柄为1份,设3个生物学重复,标记为YD1、YD2、YD3。正常果果柄 (YN) 为对照组,同样取6个果柄为1份,设3个生物学重复,标记为YN1、YN2、YN3。取材后立即在液氮中速冻并储存于−80 ℃冰箱保存。

    将正常果和脱落果果柄组织清洗后用质量分数为4%的多聚甲醛过夜固定,用包埋剂包埋材料。待包埋剂彻底凝固后进行冷冻切片。切片厚度为5 μm,将切片后的材料吸附于阳离子载玻片上,室温干燥30 min后,用磷酸缓冲盐溶液(PBS)洗涤样品,去除包埋剂后置于显微镜下观察。

    采用TRIzol法提取落果果柄和正常果果柄的总RNA,用分光光度计检测RNA样品的浓度和纯度,以保证是否可以进行下一步测序分析。

    样品由华大基因进行测序及分析,利用华大智造测序平台BGISEQ测序,所得的原始数据为raw reads。过滤掉低质量、接头污染以及未知碱基N含量过高的reads,过滤后的数据称为clean reads。将clean reads比对到参考基因组上,再进行后续分析。

    将测序所得原始数据提交到美国国家生物技术信息中心(NCBI)的SRA数据库中,检索号为: PRJNA811258。

    使用DEseq2方法检测样品之间的差异表达基因(DEG)[12]。根据基因本体论数据库(GO)和京都基因与基金组百科全书(KEGG)注释结果以及官方分类,将差异基因进行功能分类,同时使用R软件中的phyper函数进行富集分析。详细说明见Wiki网站https://en.wikipedia.org/wiki/Hypergeometric_distribution。校正后的P≤0.05为显著富集。

    将桑葚幼果的落果果柄与正常果果柄RNA用PrimesciptTM RT reagent kit with gDNA Eraser (Takara)反转录,在primer premier 5.0软件设计定量引物(表1),内参基因为 Actin,利用NovoStart® SYBR qPCR SuperMix Plus(novoprotein) 试剂盒进行荧光定量PCR。反应程序为:95 ℃ 30 s,95 ℃ 3 s,60 ℃ 30 s,共40个循环。用2−ΔΔCt算法处理数据,利用GraphPad Prism 8.0.2软件作图。

    表 1  转录组数据RT-qPCR验证引物序列
    Table 1  Primer sequences used in RT-qPCR validation of transcriptome data
    基因ID基因名正向引物(5′→3′)反向引物(5′→3′)
    XM_010096892.1 GH3.6 ACACTAACTACACCAGCCCAAA ACTTAATAGCACGAATGAACCC
    XM_010102492.2 bHLH78 TATTACCTTCGTCGTCCCCTCCTA ACCACTCTTTTCGTTTCCTTCACC
    XM_010113436.1 SAUR15 TGAAGAAGCCGAGAAGGAGTA GGTGGTAGGAGAAGGGATAAC
    XM_024169608.1 PHO1 GCCAATAACGACAGGAAA AACAACCCGTGAACAAAC
    下载: 导出CSV 
    | 显示表格

    桑果是带果柄脱落,为了研究桑树正常果柄和脱落果柄的差异,对其进行冷冻切片并观察显微结构。从图1可知:正常幼果果柄与枝干相连的区域内细胞规则,形态一致,而脱落幼果果柄与枝干相连处细胞小且致密。

    图 1  落果与正常果果柄纵切面显微结构图
    Figure 1  Longitudinal section microscopic structures of abscised and normal surviving young fruit peduncles

    基于BGISEQ对桑葚幼果的落果与正常果果柄离区进行转录组测序,6个样品获得262.92 Mb的原始序列。原始测序数据经一系列质量控制后,每个样本获得超过6.3 Gb的高质量纯净测序数据量,每项碱基质量大于20的碱基数量占总碱基数量的比例 (Q20) 均大于96%,每项碱基质量大于30 的碱基数量占总碱基数量的比例 (Q30) 均大于91%。将每个样本的高质量纯净序列与测序并组装的桑树基因组序列进行比对,比对率均高于59%(表2),表明本研究转录组测序数据质量较高,可用于后续的分析。

    表 2  测序数据统计
    Table 2  Statistics of sequencing data
    样本
    名称
    原始序列
    数/Mb
    纯净序列
    数/Mb
    纯净碱基
    数/Gb
    Q20/%Q30/%
    YD143.8242.486.3796.5091.31
    YD243.8242.746.4196.5391.34
    YD343.8242.586.3996.5391.39
    YN143.8242.616.3996.4691.19
    YN243.8242.586.3996.5591.38
    YN343.8242.656.4096.5591.39
    下载: 导出CSV 
    | 显示表格

    用每2个样品之间的Pearson相关系数以反映样本间基因表达的相关性(图2)。结果发现:Pearson相关系数为0.69~1.00,说明各样本间重复性和相关性较好。

    图 2  落果与正常果果柄的相关性热图
    Figure 2  Correlation heatmap of abscised and normal surviving young fruit peduncles

    在桑葚幼果果柄组织中,共鉴定到25 293个基因(图3A)。其中,共表达的基因有23 203个,占91.7%。正常果果柄特有基因为1 164个,占4.6%,落果果柄组特有基因为926个,占3.7%。由此可见,落果果柄基因较正常果果柄基因少。根据差异筛选标准,在2组中共筛选到10 481个差异表达基因(图3B),其中,5 239个差异表达基因上调表达,5 242个差异表达基因下调表达。

    图 3  落果与正常果果柄的表达基因和差异表达基因
    Figure 3  Expressed genes and differentially expressed genes of abscised and normal surviving young fruit peduncles

    本研究对差异表达基因进行GO功能富集分析,共发现37个显著性GO条目。生物过程共富集到7 064个基因,显著富集到19个条目,涉及生物调节、细胞过程、代谢过程、对刺激的反应等,其中富集到生物过程中最多的差异表达基因为细胞过程和代谢过程基因;细胞组分共富集到6 857个基因,显著富集到6个条目,涉及细胞解剖实体、细胞内、其他有机部分、含蛋白质复合物、病毒粒子等,富集到细胞组分最多的差异表达基因为细胞解剖实体和细胞内基因;分子功能共富集到9 842个基因,显著富集到12个条目,涉及催化活性、转运蛋白活性、转录调节活性、分子功能调节剂等,富集到分子功能最多的差异表达基因为催化活性和结合基因(图4)。

    图 4  落果与正常果果柄的差异表达基因GO分类柱状图
    Figure 4  Histogram of GO classification of differentially expressed genes of abscised and normal surviving young fruit peduncles

    GO富集分析结果显示:大多数差异基因集中在催化活性、膜的组成成分、氧化还原酶活性、膜的内在成分,分别为4 623、2 774、777、1 781个基因(图5)。其中,具催化活性的基因最多,说明在桑葚的落果过程中可能有很多重要的酶参与,从而发生一系列的催化反应。

    图 5  落果与正常果果柄的差异表达基因GO富集气泡图
    Figure 5  GO enrichment bubble chart of differentially expressed genes of abscised and normal surviving young fruit peduncles

    在本研究中,细胞过程富集的基因为380个,富集到1个条目,为运输和分解代谢;环境信息处理共富集到653个基因,富集到2个条目,为膜运输和信号转导;遗传信息处理共富集到1 558个基因,包含4个条目,为折叠分类和降解、复制和修复、转录、翻译;代谢通路富集到5 315个基因,包含11个条目,为氨基酸代谢、其他次生代谢物的生物合成、碳水化合物代谢、能量代谢等;有机系统共富集到427个基因,含1个条目(图6)。分析发现:代谢通路富集的基因最多,说明桑葚在脱落过程中代谢反应尤为明显。

    图 6  落果与正常果果柄的差异表达基因KEGG分类柱状图
    Figure 6  Histogram of KEGG classification of differentially expressed genes of abscised and normal surviving young fruit peduncles

    KEGG通路富集分析结果显示:大多数差异表达基因集中在MAPK信号通路、黄酮类生物合成、柠檬酸循环、植物激素信号转导、氨基酸的生物合成通路,分别含293、102、55、318、251个基因(图7)。其中,植物激素信号转导途径的差异表达基因数量最多,说明在桑葚果实脱落过程中植物激素起到了十分重要的作用。

    图 7  落果与正常果果柄的差异表达基因的KEGG富集气泡图
    Figure 7  KEGG enrichment bubble diagram of differentially expressed genes of abscised and normal surviving young fruit peduncles

    在桑树的代谢通路中,植物激素信号转导途径的差异表达基因数量最多,为318个基因,其中,落果果柄中有51.9% (156个)的差异表达基因的表达量高于正常果果柄(图8A);在黄酮类生物合成途径中,有102个差异基因富集,其中有73.5% (75个)的差异基因在落果果柄中表达量高(图8B);在氨基酸生物合成通路中,共有251个差异表达基因富集,其中有59.8% (150个)的差异表达基因在落果果柄中表达量更高(图8C);在柠檬酸循环中,有55个差异表达基因富集,其中有74.5% (41个)的差异表达基因在落果果柄中表达量更高(图8D)。不难发现,落果果柄有超过一半的差异表达基因表达量高于正常果果柄。说明植物激素、黄酮类等次生代谢物以及柠檬酸等物质在桑葚脱落过程中发挥了重要的作用。

    图 8  落果与正常果果柄的代谢途径的差异表达基因热图
    Figure 8  Heat map of differentially expressed genes in metabolic pathways of abscised and normal surviving carpopodium

    由于植物激素对于落花落果以及保花保果都具有十分重要的作用,于是在植物激素信号转导途径中筛选4个差异十分显著的基因,分别为GH3.6 (XM_010096892.1)、bHLH78 (XM_010102492.2)、SAUR15 (XM_010113436.1)、PHO1 (XM_024169608.1)。将这4个基因的每千个碱基转录每百万映射读取的碎片值(FPKM)绘制直方图,GH3.6在落果组中的表达水平是正常果组的20多倍,bHLH78在落果组中的表达水平约为正常果组20倍,PHO1(磷转运蛋白)在落果组中的表达水平是正常果组的30多倍,SAUR15在落果组中的表达水平是正常果组的100多倍(图9A)。由此推测,这4个基因均参与了桑葚的果实脱落。为了验证转录组数据的准确性,对这4个基因进行RT-qPCR验证,结果发现:4个差异表达基因的荧光定量相对表达量的变化趋势与转录组表达趋势一致,说明该转录组数据可靠(图9B)。

    图 9  4个差异表达基因的RT-qPCR验证
    Figure 9  RT-qPCR validation of four differentially expressed genes

    近年来,为了提高果树产量,越来越多果实脱落的相关研究被报道,如番茄Lycopersicon esculentum[13]、荔枝Litchi chinensis[14]、扁桃Amygdalus communis[15]等。桑树作为一种具有重要经济价值的植物,其生理落果引起学者们的关注。2021年,有研究者对不同种类的长果桑Morus macroura的生理落果进行研究,发现高浓度的脱落酸(ABA)和乙烯(ETH)能够促进落果,而高浓度的赤霉素(GA3)和生长素(IAA)抑制落果[16]。但是,关于桑树果实脱落的分子机制还尚不清楚。

    植物激素是植物生长发育过程中十分重要的物质,参与植物的落花落果,与落花落果常见的相关植物激素有IAA、GA3、细胞分裂素、ETH、ABA[17]

    IAA主要是促进植物的生长发育,抑制果实的脱落,如果生长素在运输途径中受到阻碍则会导致植物果实的脱落[1819]GH3.6是吲哚乙酸酰胺合成酶的基因,能够催化IAA氨基化,使生长素失活[20],这与本研究的结论一致。Small auxin-up RNA (SAUR) 基因是一类生长素早期响应基因,SAUR15能够调控植物的生长发育并参与环境胁迫响应[21]。在本研究中,SAUR15的表达水平在落果组高于正常果组100多倍,说明SAUR15基因可能参与桑葚果实脱落;ABA主要是促进果实脱落[7],这是由于ABA能够增加纤维素酶的活性进而促进果实脱落[22]。有学者通过研究无核荔枝ABA合成关键酶LcNCED与生理落果的关系,验证了ABA对于落果的作用[14];GA主要是通过作用于IAA影响果实脱落[23];ETH主要促进果实的成熟、衰老、脱落,这在多种植物中被报道,如番茄[13]等;细胞分裂素能够促进坐果,延迟果实的脱落[24]

    此外,在对落果的研究中还发现了大量的基因和转录因子的调控,如JOINTLESS[25]、LATERAL SUPPRESSOR(LS)[26]、MACROCALYX[27]主要调控离区的形成,MYB[28]、WRKY[29]、bHLH[30]、bZIP[31]等转录因子能参与植物的器官脱落。bHLH78属于bHLH转录因子,参与植物生长和代谢[32],调节花青素的生物合成[33]。本研究中,bHLH78的表达水平在落果组较高,说明其可能参与桑葚的脱落。此外,还有一些重要的酶及蛋白调控植物的器官脱落,如纤维素酶、果胶酶、多聚半乳糖醛酸酶、扩展蛋白等[34]。在本研究中,磷转运蛋白(PHO1)在落果果柄组的表达水平是正常果柄组的30多倍。此前研究表明:ABA调控依赖于PHO1的表达[35],说明PHO1基因可能参与桑葚的脱落。

    本研究GO富集分析结果显示:有4 623个基因具有催化活性,说明在果实脱落过程中,有多种重要的酶发挥催化效应;KEGG通路富集分析结果显示:大多数差异表达基因集中在黄酮类生物合成、柠檬酸循环、植物激素信号转导、氨基酸的生物合成等通路中,说明在果实脱落过程中,植物激素、糖类、次生代谢物质等发挥了重要的作用,从而调控果实的脱落。本研究筛选了4个显著的差异表达基因,均在桑葚脱落过程中参与反应,可为今后进一步研究桑树的果实脱落提供参考。

  • 图  1  接种不同ERM菌株桃叶杜鹃菌根侵染率

    Figure  1  Mycorrhizal colonsation of different strains inoculation of Rhododendron annae seedlings

    图  2  不同ERM菌株接种处理桃叶杜鹃幼苗外形比较

    Figure  2  Appearance of Rhododendron annae seedling inoculationed with different strains of ericoid mycorrhizae

    图  3  不同ERM菌株接种对桃叶杜鹃幼苗氮的影响

    Figure  3  Effect on nitrogen content in Rhododendron annae seedling inoculationed with different strains of ericoid mycorrhizae

    图  4  不同ERM菌株接种对桃叶杜鹃幼苗硝酸还原酶活性的影响

    Figure  4  Effect on nitrate reductase active in Rhododendron annae seedling inoculationed with different strains of ericoid mycorrhizae

    表  1  不同ERM菌株接种对桃叶杜鹃幼苗干质量的影响(平均值±标准差)

    Table  1.   Effects of inoculation with different ericoid mycorrhizal strains on growth of Rhododendron annae seedling (mean±SD)

    处理 地上部分生物量 地下部分生物量 总生物量
    干质量/g 增幅/% 干质量/g 增幅/% 干质量/g 增幅/%
    ck 0.213±0.003 A 0.0 0.183±0.027 A 0.0 0.396±0.030 A 0.0
    TY02 0.335±0.001 D 57.3 0.210±0.011 ABCDE 14.4 0.544±0.010 E 37.4
    TY07 0.267±0.004 C 25.3 0.212±0.008 DCDE 15.8 0.479±0.004 D 21.0
    TY12 0.365±0.001 E 71.4 0.223±0.004 CDE 21.6 0.588±0.004 E 48.5
    TY14 0.219±0.007 AB 2.7 0.203±0.006 ABCD 10.7 0.411±0.010 AB 3.8
    TY18 0.425±0.009 G 99.7 0.214±0.012 BCDE 16.5 0.639±0.021 F 61.4
    TY19 0.275±0.006 C 29.3 0.197±0.002 ABC 7.6 0.473±0.005CD 19.4
    TY21 0.260±0.002C 21.9 0.206±0.006 ABCDE 12.5 0.466±0.004 CD 17.7
    TY24 0.235±0.005 B 10.3 0.201±0.010 ABCD 9.8 0.436±0.008 BC 10.1
    TY29 0.397±0.001 F 86.4 0.233±0.015 CD 27.3 0.630±0.014 F 59.1
    TY34 0.259±0.030 C 21.6 0.204±0.006 ABCD 11.3 0.463±0.033 CD 16.9
    TY35 0.377±0.002 EF 76.8 0.227±0.006 DE 23.8 0.604±0.008 EF 52.5
    TY41 0.218±0.002 AB 2.5 0.194±0.002 AB 6.0 0.413±0.004 AB 4.3
    说明:同列不同大写字母表示差异达到极显著水平(P < 0.01)。
    下载: 导出CSV

    表  2  菌根侵染率、生物量、氮吸收量及硝酸还原酶活性Pearson相关系数

    Table  2.   Pearson correlation coefficient of mycorrhizal colonize, biomass, nitrogen content and nitrate reductase activity

    项目 侵染率 地下部分干质量 地下部分干质量 总生物量 根部氮量分数 叶部氮质量分数 根部硝酸还原酶活性 叶部硝酸还原酶活性
    侵染率 1
    地下部分干质量 0.706** 1
    地上部分干质量 0.584 0.831** 1
    总生物量 0.613* 0.872** 0.996** 1
    根部氮质量分数 0.595 0.308 0.119 0.144 1
    叶部氮质量分数 0.565 0.451 0.490 0.496 0.360 1
    根部硝酸还原酶活性 0.515 0.505 0.647* 0.642* 0.207 0.423 1
    叶部硝酸还原酶活性 0.579* 0.653 0.815** 0.806** 0.194 0.272** 0.763** 1
    说明:*差异达到显著水平(P < 0.05);**差异达到极显著水平(P < 0.01)。
    下载: 导出CSV
  • [1] FENG Gu, ZHANG Fusun, LI Xiaolin, et al. Uptake of nitrogen from indigenous soil pool by cotton plant inoculated with arbuscular mycorrhizal fungi[J]. Commun Soil Sci Plant Anal, 2002, 33(19/20):3825-3836.
    [2] HODGE A. Plant nitrogen capture from organic matter as affected by spatial dispersion, interspecific competition and mycorrhizal colonization[J]. New Phytol, 2003, 157(2):303-314.
    [3] 高悦, 吴小芹. 6种外生菌根菌对3种松苗叶绿素含量及叶绿素荧光参数的影响[J].南京林业大学学报:自然科学版, 2010, 34(6):9-12.

    GAO Yue, WU Xiaoqin. Efects of several ectomycorrhizal fungi on the chlorophyll content and chlorophyll fluorescence parameters in different pine seedlings[J]. J Nanjing For Univ Nat Sci Ed, 2010, 34(6):9-12.
    [4] 闫明, 钟章成.铝胁迫对感染丛枝菌根真菌的樟树幼苗生长的影响[J].林业科学, 2007, 43(4):59-65.

    YAN Ming, ZHONG Zhangcheng. Effects of aluminum stress on growth of Cinnamomum camphora seedlings inoculatde with AMF[J]. Sci SilvSin, 2007, 43(4):59-65.
    [5] 王如岩.菌根真菌对喀斯特地区幼苗生长状况的影响[D].南京:南京林业大学, 2011.

    WANG Ruyan. Effects of Mycorrhizal Fungal on Growth Status of Seedings in Karst Areas[D]. Nanjing:Nanjing Forestry University, 2011.
    [6] CAIRNEY J W G, MEHARG A A. Ericoid mycorrhiza:a partnership that exploits harsh edaphic conditions[J]. Eur J Soil Sci, 2003, 54(4):735-740.
    [7] SOKOLOVSKI S G, MEHARG Y A, MAATHUIS F J M. Calluna vulgaris root cells show increased capacity for amino acid uptake when colonized with the mycorrhizal fungus Hymenoscyphus ericae[J]. New Phytol, 2002, 155(3):525-530.
    [8] 陈真, 杨兵, 张春英, 等.锦绣杜鹃菌根真菌rDNA ITS序列分析及接种效应研究[J].菌物学报, 2011, 30(5):729-737.

    CHEN Zhen, YANG Bing, ZHANG Chunying, et al. Molecular analysis and inoculation effect of mycorrhizal fungi isolated from hair roots of Rhododendron pulchrum[J]. Mycosystema, 2011, 30(5):729-737.
    [9] BENDING G D, READ D J. Nitrogen mobilisation from protein polyphenol complex by ericoid and ectomycorrhizal fungi[J]. Soil Biol Biochem, 1996, 28(12):1603-1612.
    [10] BURKE R M, CAIRNEY J W G. Carbohydrolase production by the ericoid mycorthizal fungus Hymenoscyphus ericae under solid state fermentation conditions[J]. Mycol Res, 1997, 101(9):1135-1139.
    [11] 张春英, 戴思兰.杜鹃花类菌根研究进展[J].北京林业大学学报, 2008, 30(3):113-119.

    ZHANG Chunying, DAI Silan. Research advances on ericoid myeorrhiza[J]. J Beijing For Univ, 2008, 30(3):113-119.
    [12] 欧静, 刘仁阳, 陈训.桃叶杜鹃菌根显微结构及侵染情况[J].中南林业科技大学学报, 2012, 32(11):28-33.

    OU Jing, LIU Renyang, CHEN Xun. Study on microstructure and infections of Rhododendron annae mycorrhiza[J]. J Cent South Univ For & Technol, 2012, 32(11):28-33.
    [13] 欧静, 韦小丽, 何跃军, 等.接种ERM真菌对桃叶杜鹃幼苗的促生效应及生理生化影响[J].林业科学, 2013, 49(7):48-56.

    OU Jing, WEI Xiaoli, HE Yuejun, et al. Effects of Inoculation with ERM fungi isolates on the growth and physio-biochemical properties of Rhododendron annae seedlings[J]. Sci Silv Sin, 2013, 49(7):48-56.
    [14] 欧静, 何跃军, 刘仁阳, 等. ERM真菌对桃叶杜鹃幼苗光合性能及叶绿素荧光参数的影响[J].微生物学通报2013, 40(8):1423-1436.

    OU Jing, HE Yuejun, LIU Renyang, et al. Effects of inoculation with different ERM isolates on photosynthesis and chlorophyll fluorescence parameter of Rhododendron annae Franch. seedlings[J]. Microbiol China, 2013, 40(8):1423-1436.
    [15] PHILLIPS J M, HAYRNAN D S. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transac Br Mycol Soc, 1970, 55(1):158-161.
    [16] 刘润进, 陈应龙.菌根学[M].北京:科学出版社, 2007:161-162.
    [17] 尹丽娟, 张春英, 杨兵.云锦杜鹃菌根真菌吸收氮源特性及其接种效应[J].中国农业科学, 2010, 43(4):868-872.

    YIN Lijuan, ZHANG Chunying, YANG Bing. Characteristics of nitrogen absorbed by ericoid mycorrhizal fungi and impact on growth of Rhododendron fortunei[J]. Sci Agric Sin, 2010, 43(4):868-872.
    [18] 宋福强, 杨国亭, 孟繁荣, 等.丛枝菌根对大青杨苗木生长的影响[J].林业科学研究, 2004, 17(6):770-776.

    SONG Fuqiang, YANG Guoting, MENG Fanrong, et al. Effect of albuscular mycorrhizal fungi on the growth of Populus ussuriensis[J]. For Res, 2004, 17(6):770-776.
    [19] 付淑清, 屈庆秋, 唐明, 等.施氮和接种AM真菌对刺槐生长及营养代谢的影响[J].林业科学, 2011, 47(1):95-100.

    FU Shuqing, QU Qingqiu, TANG Ming, et al. Effects of nitrogen and AM fungi on the growth and nutrition metabolism of Robinia pseudoacacia[J]. Sci Silv Sin, 2011, 47(1):95-100.
    [20] FOISSNER I, WENDEHENNE D, LANGEBARTELS C, et al. In vivo imaging of an elicitor induced nitric oxide burst in tobcco[J]. Plant J, 2000, 23(6):817-824.
    [21] KAISER W M, HUBER S C. Post translational regulation of nitrate reductase mechanism, physiological relevance and environmental triggers[J]. J Experi Bot, 2001, 52(363):1981-1989.
  • [1] 杨杰.  外源氮和硅添加对毛竹植硅体碳的影响 . 浙江农林大学学报, 2024, 41(2): 369-378. doi: 10.11833/j.issn.2095-0756.20230460
    [2] 陆伟杰, 郑伟尉, 吴砚农, 臧运祥.  十字花科植物蜡质形成特性及分子机制研究进展 . 浙江农林大学学报, 2021, 38(1): 205-213. doi: 10.11833/j.issn.2095-0756.20200138
    [3] 吴砚农, 郑伟尉, 陆伟杰, 臧运祥.  十字花科植物黄化突变特性及其分子机制研究进展 . 浙江农林大学学报, 2021, 38(2): 412-419. doi: 10.11833/j.issn.2095-0756.20200132
    [4] 蔡银美, 张成富, 赵庆霞, 李昕颖, 何腾兵.  模拟根系分泌物输入对森林土壤氮转化的影响研究综述 . 浙江农林大学学报, 2021, 38(5): 916-925. doi: 10.11833/j.issn.2095-0756.20210293
    [5] 张崑, 徐坚, 鲁长根, 邵建均, 蔡广越, 张艳, 吴家森.  不同施肥对稻-菜种植模式氮磷吸收及径流流失的影响 . 浙江农林大学学报, 2021, 38(4): 784-791. doi: 10.11833/j.issn.2095-0756.20200593
    [6] 原雅楠, 李正才, 王斌, 张雨洁, 黄盛怡.  不同林龄榧树林地土壤碳氮磷化学计量特征 . 浙江农林大学学报, 2021, 38(5): 1050-1057. doi: 10.11833/j.issn.2095-0756.20200761
    [7] 褚淑祎, 赖政钢, 李锷, 邵建雷, 黄志达, 肖继波.  3种块茎类挺水植物的净水效能及资源化利用 . 浙江农林大学学报, 2020, 37(6): 1224-1229. doi: 10.11833/j.issn.2095-0756.20200124
    [8] 张震, 刘伸伸, 胡宏祥, 何金铃, 马友华, 王一帆, 代宇雨, 徐微.  3种湿地植物对农田沟渠水体氮、磷的消减作用 . 浙江农林大学学报, 2019, 36(1): 88-95. doi: 10.11833/j.issn.2095-0756.2019.01.012
    [9] 胡肖肖, 段玉侠, 金荷仙, 唐宇力, 庄晓林.  4个杜鹃花品种的耐荫性 . 浙江农林大学学报, 2018, 35(1): 88-95. doi: 10.11833/j.issn.2095-0756.2018.01.012
    [10] 裴建川, 张书廷, 杨金艳, 张进.  立体生态模块处理杭州市玉皇山南基金小镇水体氮的效果 . 浙江农林大学学报, 2018, 35(6): 987-996. doi: 10.11833/j.issn.2095-0756.2018.06.001
    [11] 郭茜, 陆扣萍, 胡国涛, 杨兴, 袁国栋, 沈磊磊, 王海龙.  死猪炭和竹炭对菜地土壤理化性质和蔬菜产量的影响 . 浙江农林大学学报, 2017, 34(2): 244-252. doi: 10.11833/j.issn.2095-0756.2017.02.007
    [12] 高晓宁, 赵冰, 刘旭梅, 黄文梅.  4个杜鹃花品种对干旱胁迫的生理响应及抗旱性评价 . 浙江农林大学学报, 2017, 34(4): 597-607. doi: 10.11833/j.issn.2095-0756.2017.04.005
    [13] 朱仁欢, 李玮, 郑子成, 李廷轩, 洪月, 何秋佳, 田宗渠.  退耕植茶地土壤碳氮磷生态化学计量学特征 . 浙江农林大学学报, 2016, 33(4): 612-619. doi: 10.11833/j.issn.2095-0756.2016.04.009
    [14] 吴月燕, 陶巧静, 李波, 许丹叶.  西洋杜鹃SRAP体系优化及遗传多样性分析 . 浙江农林大学学报, 2013, 30(6): 844-851. doi: 10.11833/j.issn.2095-0756.2013.06.007
    [15] 司国臣, 张延龙, 梁振旭, 赵冰.  秦岭汉中地区野生杜鹃花种质资源调查研究 . 浙江农林大学学报, 2013, 30(3): 350-353. doi: 10.11833/j.issn.2095-0756.2013.03.007
    [16] 张圆圆, 窦春英, 姚芳, 叶正钱.  氮素营养对重金属超积累植物东南景天吸收积累锌和镉的影响 . 浙江农林大学学报, 2010, 27(6): 831-838. doi: 10.11833/j.issn.2095-0756.2010.06.005
    [17] 徐涌, 叶正钱, 姜培坤, 周国模, 吴家森, 姚芳.  太湖源林区水系源头水质时空变异与原因探析 . 浙江农林大学学报, 2009, 26(5): 607-612.
    [18] 蒋宗垲.  福建柏与杉木人工林细根氮磷养分现存量的动态变化 . 浙江农林大学学报, 2007, 24(1): 33-38.
    [19] 詹伟君, 余有祥, 程晓建, 吴家森, 郑炳松.  仙客来夏季休眠期叶片光合速率和植株氮磷钾质量分数的变化 . 浙江农林大学学报, 2005, 22(2): 176-179.
    [20] 林新春, 俞志雄.  木兰科植物的叶表皮特征及其分类学意义 . 浙江农林大学学报, 2004, 21(1): 33-39.
  • 期刊类型引用(2)

    1. 曲曼姝,刘佳怡,王大儒,张春玲,宋晓华,由春香. ‘雪球’海棠授粉情况对子房发育的影响. 山东农业大学学报(自然科学版). 2024(04): 510-515 . 百度学术
    2. 杨加虎,丁志伟,李莎,刘位芬,李振南,李镇刚. 果树器官脱落研究现状及其展望. 中国蚕业. 2023(03): 49-57 . 百度学术

    其他类型引用(3)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2014.06.015

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2014/6/926

图(4) / 表(2)
计量
  • 文章访问数:  2592
  • HTML全文浏览量:  461
  • PDF下载量:  497
  • 被引次数: 5
出版历程
  • 收稿日期:  2013-12-25
  • 修回日期:  2014-04-10
  • 刊出日期:  2014-12-20

杜鹃花类菌根菌株对桃叶杜鹃幼苗硝酸还原酶活性和氮的影响

doi: 10.11833/j.issn.2095-0756.2014.06.015
    基金项目:

    贵州省农业科技攻关项目 黔科合NY字[2011]3076号

    贵州大学引进人才科研项目 贵大人基合字(2013)07号

    作者简介:

    欧静, 教授, 博士, 从事园林植物资源利用与种苗培育研究。E-mail:coloroj@126.com

    通信作者: 陈训, 研究员, 博士, 从事森林培育与种苗繁育研究。E-mail:chenxunke1956@163.com
  • 中图分类号: S718.4

摘要: 研究12株杜鹃花类菌根(ericoid mycorrhiza, ERM)菌株对2年生桃叶杜鹃Rhododendron annae幼苗生长及矿质元素氮积累的影响。结果表明:接种ERM真菌的植株根系均被有效地感染, 不同菌株促生效应显著, 接种ERM真菌显著增加幼苗地上、地下部分及总生物量。与对照相比, ERM菌株接种后, 显著提高了接种幼苗氮质量分数和硝酸还原酶(NR)活性, 且各处理差异极显著(P < 0.01)。接种苗根部氮质量分数提高了2.0%~40.3%, 叶部提高了2.8%~50.6%。接种苗根部硝酸还原酶活性除菌株TY41外, 其余处理高于对照0.9%~29.3%, 叶部除菌株TY41和菌株TY24外, 高于对照6.5%~43.9%。不同器官硝酸还原酶活性表现为根系大于叶片。

English Abstract

邓璇, 陈春兵, 邓静, 等. 桑葚幼果的落果与正常果的果柄转录组分析[J]. 浙江农林大学学报, 2023, 40(1): 45-54. DOI: 10.11833/j.issn.2095-0756.20220205
引用本文: 欧静, 刘仁阳, 张仁嫒, 等. 杜鹃花类菌根菌株对桃叶杜鹃幼苗硝酸还原酶活性和氮的影响[J]. 浙江农林大学学报, 2014, 31(6): 926-931. DOI: 10.11833/j.issn.2095-0756.2014.06.015
DENG Xuan, CHEN Chunbing, DENG Jing, et al. Transcriptome analysis of abscised and normal surviving young fruit of Morus alba[J]. Journal of Zhejiang A&F University, 2023, 40(1): 45-54. DOI: 10.11833/j.issn.2095-0756.20220205
Citation: OU Jing, LIU Renyang, ZHANG Ren'ai, et al. Nitrate reductase activity and N absorption of Rhododendron annae seedlings with ericoid mycorrhiza inoculation[J]. Journal of Zhejiang A&F University, 2014, 31(6): 926-931. DOI: 10.11833/j.issn.2095-0756.2014.06.015
  • 氮元素是植物生长所需要的重要的大量元素元素之一,在植物生长过程中起到关键作用。菌根真菌氮元素的吸收利用研究被人们所关注[1-2]。通过接种,菌根真菌能有效地促进植株对氮素的吸收利用[3-5]。特殊内生菌根杜鹃花类菌根(ericoid mycorrhiza,ERM),对杜鹃花类植物克服恶劣环境、加强养分吸收和提高生长量起着重要作用[6-8]。ERM菌根共生体能够帮助杜鹃花科Ericaceae植物缓解环境压力,改善营养获取方式,吸收复杂有机态的氮[9-10]。张春英等[11]报道了云锦杜鹃Rhododendron fortunei幼苗接种形成菌根苗后,能提高对各种氮源营养的吸收,直接表现为增加植株的干物质积累。桃叶杜鹃Rhododendron annae为常绿灌木,成年树冠为圆球形,花色丰富,花期为晚春,主要分布于贵州海拔1 800~1 830 m高山地区,在城市园林建设中具有较高的开发应用潜力。野生桃叶杜鹃菌根结构复杂且侵染率较高[12],通过接种,菌根真菌提高了菌根苗叶片的叶绿素含量,增强光合性能,促进了碳同化的高效运转和有机物的积累,提高了菌根苗同源激素含量,最终表现为菌根苗生物量的增加[13-14]。笔者研究ERM菌株接种后对桃叶杜鹃菌根苗硝酸还原酶(NR)活性和氮元素积累的影响,为桃叶杜鹃等高山常绿杜鹃菌根化园林栽培应用提供理论依据与技术支持。

    • 12株供试菌株从野生桃叶杜鹃根部分离得到,编号为TY02,TY07,TY12,TY14,TY18,TY19,TY21,TY24,TY29,TY34,TY35和TY41[14]。分离菌株培养液为PDA培养基,置于28 ℃摇床上黑暗振荡160 r·min-1,培养15 d打碎并制成液体菌剂备用。

    • 试验苗为实验室通过种子和土壤灭菌后培养的2年生实生桃叶杜鹃苗。育苗基质采自百里杜鹃风景区桃叶杜鹃林下腐殖质土,土样带回实验室进行土壤理化性质试验。供试土壤理化性质如下:pH 4.8,有机质44.1 g·kg-1,全氮1.5 g·kg-1,全磷0.2 g·kg-1,碱解氮269.0 mg·kg-1,速效磷7 mg·kg-1,速效钾206. mg·kg-1

    • 育苗基质经121 ℃高温蒸汽灭菌2 h,自然冷却后80 ℃烘2 h,然后放置室温后装入花盆(规格24 cm × 16 cm × 20 cm)。花盆装基质3 kg·盆-1,移植无菌桃叶杜鹃幼苗1株·盆-1。接种处理采用单因素完全随机设计,试验设13个处理(含对照ck),5盆·处理-1,重复3次。移栽3 d后每株苗根部各施入真菌液体菌剂10 mL,以浇不含菌的PDA培养液为对照,以后隔7 d浇1次菌液,连续浇3次结束,试验处理严格保证土壤微生物区系一致。接种后随机放置贵州大学林学院苗圃温室进行培养,按照常规育苗方法进行管理。

    • 接种培养180 d后,随机取出幼苗10株·盆-1,流水洗净后吸干水分,在105 ℃杀青20 min,置于80 ℃烘箱48 h烘干至恒量,取出后分别称量地下部分(根)和地上部分(叶、茎和芽)的干质量,计算总生物量。采用Phillips等[15]的改进法统计侵染率。测定苗分地下根系及地上部分全氮采用H2SO4-H2O2消煮-半微量蒸馏法。用分光光度计测定法测定硝酸还原酶(NR)活性。以上测试重复3次。

    • 运用Excel 2003记录及绘图;使用SPSS 11.5软件进行统计分析,采用单因素方差分析(one-way ANOVA),应用Duncan多重分析法进行方差检验(P=0.01)。

    • 图 1可以看出:接种苗菌根侵染率达到45.0%~74.1%。不同菌株对幼苗的侵染率表现出差异性,说明不同菌株与幼苗之间有相互选择性。

      图  1  接种不同ERM菌株桃叶杜鹃菌根侵染率

      Figure 1.  Mycorrhizal colonsation of different strains inoculation of Rhododendron annae seedlings

    • 表 1可以看出:不同菌株侵染对桃叶杜鹃地上部分和地下根系生物量的影响存在显著差异,接种苗地上部分干质量比对照增加2.5%~99.7%,地下部分干质量增加6.0%~27.3%,接种苗总生物量比对照增加3.9%~61.2%。从植株外观上也明显看出接种对宿主生物量的影响较大(图 2)。

      表 1  不同ERM菌株接种对桃叶杜鹃幼苗干质量的影响(平均值±标准差)

      Table 1.  Effects of inoculation with different ericoid mycorrhizal strains on growth of Rhododendron annae seedling (mean±SD)

      处理 地上部分生物量 地下部分生物量 总生物量
      干质量/g 增幅/% 干质量/g 增幅/% 干质量/g 增幅/%
      ck 0.213±0.003 A 0.0 0.183±0.027 A 0.0 0.396±0.030 A 0.0
      TY02 0.335±0.001 D 57.3 0.210±0.011 ABCDE 14.4 0.544±0.010 E 37.4
      TY07 0.267±0.004 C 25.3 0.212±0.008 DCDE 15.8 0.479±0.004 D 21.0
      TY12 0.365±0.001 E 71.4 0.223±0.004 CDE 21.6 0.588±0.004 E 48.5
      TY14 0.219±0.007 AB 2.7 0.203±0.006 ABCD 10.7 0.411±0.010 AB 3.8
      TY18 0.425±0.009 G 99.7 0.214±0.012 BCDE 16.5 0.639±0.021 F 61.4
      TY19 0.275±0.006 C 29.3 0.197±0.002 ABC 7.6 0.473±0.005CD 19.4
      TY21 0.260±0.002C 21.9 0.206±0.006 ABCDE 12.5 0.466±0.004 CD 17.7
      TY24 0.235±0.005 B 10.3 0.201±0.010 ABCD 9.8 0.436±0.008 BC 10.1
      TY29 0.397±0.001 F 86.4 0.233±0.015 CD 27.3 0.630±0.014 F 59.1
      TY34 0.259±0.030 C 21.6 0.204±0.006 ABCD 11.3 0.463±0.033 CD 16.9
      TY35 0.377±0.002 EF 76.8 0.227±0.006 DE 23.8 0.604±0.008 EF 52.5
      TY41 0.218±0.002 AB 2.5 0.194±0.002 AB 6.0 0.413±0.004 AB 4.3
      说明:同列不同大写字母表示差异达到极显著水平(P < 0.01)。

      图  2  不同ERM菌株接种处理桃叶杜鹃幼苗外形比较

      Figure 2.  Appearance of Rhododendron annae seedling inoculationed with different strains of ericoid mycorrhizae

    • 图 3可见:接种苗地上部分叶的氮质量分数均高于对照,除TY19,其他菌根差异极显著(P < 0.01),较未接种处理,接种幼苗叶部氮质量分数提高2.8%~50.6%。地下根系氮质量分数除TY19低于对照外(差异不显著),其他处理均高于对照,且差异极显著(P < 0.01),接种苗根部氮质量分数提高2.0%~40.3%。这表明通过接种处理后,增强了幼苗对氮的吸收,但不同菌株之间的影响有差异。

      图  3  不同ERM菌株接种对桃叶杜鹃幼苗氮的影响

      Figure 3.  Effect on nitrogen content in Rhododendron annae seedling inoculationed with different strains of ericoid mycorrhizae

      图 4可以看出:不同菌株接种提高了幼苗硝酸还原酶活性,且各处理差异极显著(P < 0.01)。接种苗根部硝酸还原酶活性除TY41外,高于对照0.9%~29.3%,叶部硝酸还原酶活性除TY41和TY24外,高于对照6.5%~43.9%。不同器官硝酸还原酶活性表现为根系 > 叶片。

      图  4  不同ERM菌株接种对桃叶杜鹃幼苗硝酸还原酶活性的影响

      Figure 4.  Effect on nitrate reductase active in Rhododendron annae seedling inoculationed with different strains of ericoid mycorrhizae

    • 表 2相关性分析可知:侵染率与地下部分干质量呈极显著正相关,与总生物量和叶部硝酸还原酶活性呈显著相关关系。这表明侵染率的高低直接影响桃叶杜鹃幼苗的生物量积累、硝酸还原酶活性。根部及叶部硝酸还原酶活性与地上干质量、总生物量有相关性,但叶部的相关性大于根部;叶部硝酸还原酶活性与叶部氮质量分数呈极显著正相关关系。

      表 2  菌根侵染率、生物量、氮吸收量及硝酸还原酶活性Pearson相关系数

      Table 2.  Pearson correlation coefficient of mycorrhizal colonize, biomass, nitrogen content and nitrate reductase activity

      项目 侵染率 地下部分干质量 地下部分干质量 总生物量 根部氮量分数 叶部氮质量分数 根部硝酸还原酶活性 叶部硝酸还原酶活性
      侵染率 1
      地下部分干质量 0.706** 1
      地上部分干质量 0.584 0.831** 1
      总生物量 0.613* 0.872** 0.996** 1
      根部氮质量分数 0.595 0.308 0.119 0.144 1
      叶部氮质量分数 0.565 0.451 0.490 0.496 0.360 1
      根部硝酸还原酶活性 0.515 0.505 0.647* 0.642* 0.207 0.423 1
      叶部硝酸还原酶活性 0.579* 0.653 0.815** 0.806** 0.194 0.272** 0.763** 1
      说明:*差异达到显著水平(P < 0.05);**差异达到极显著水平(P < 0.01)。
    • 研究桃叶杜鹃菌根氮效应极有意义,因为对于杜鹃花科植物来说,土壤中能供给此类植物的氮养分多数以有机态形式存在,因此在杜鹃花科植物氮养分吸收中菌根共生体起到了重要的作用。对于杜鹃花类菌根吸收利用氮素的原因可能有:①由于杜鹃花生长土壤为酸性土,pH值较低,土壤中铵盐比硝酸盐多,氮素矿物化过程缓慢,氨离子在土壤中的流动性不大,其扩散速度一般会小于根的吸收速度,所以,杜鹃花类植物的吸收根周围会形成一个缺氮区。根外菌丝越过缺氮区能够把远处的铵盐吸收到菌根中来。②ERM真菌的吸收系统对氮有很高的亲和力,能在含氮量少的低浓度溶液中吸收氨离子。③利用植物所不能利用的或很少利用的有机氮源[16]

      本研究得出桃叶杜鹃幼苗接种后,地上部分与地下部分的氮含量均显著增加,说明菌根真菌促进了幼苗对氮的吸收与利用。这与云锦杜鹃菌根苗试验结果相似[11, 17]。宋福强等[18]认为菌根改善宿主植物的氮营养状况的作用主要表现在2个方面,一是根外菌丝直接吸收土壤氮的作用;二是菌根首先改善植物的磷营养状况,进而促进植物对土壤氮的吸收作用。菌根真菌提高植物对氮、磷元素的吸收报道很多,桃叶杜鹃接种后根部与叶部的磷含量均比对照增加且大于氮的吸收强度(文章待发),有些宿主吸收氮的强度大于磷,这可能与不同宿主及不同菌根有关,因此,菌根是否先通过改善植物的磷营养状况,进而促进植物对土壤氮的吸收有待试验和验证。施氮情况下,菌根宿主云锦杜鹃[11]、刺槐Robinia pseudoacacia[19]生物量增加,吸氮量及硝酸还原酶活性发生变化。由于本研究所有基质均一致,未额外添加不同氮源,所以菌根真菌吸收和利用氮源情况及与宿主的共生机理关系还需进一步深入研究。

      Foissner等[20]采用激光共聚焦的方法发现真菌激发子诱导烟草表皮细胞浆和叶绿素的一氧化氮迸发。一氧化氮影响植物的生长发育等生理代谢过程,而硝酸过原酶硝酸还原酶普遍具有合成一氧化氮的功能。Kaiser等[21]发现,硝酸还原酶催化NO2-产生的一氧化氮在脱落酸诱导气孔关闭的过程中有重要的作用,通过对脱落酸钝感型等突变体的研究发现,由硝酸还原酶催化生成的一氧化氮是脱落酸诱导气孔关闭所必需。在相关性分析数据中,桃叶杜鹃菌根苗根部硝酸还原酶与地下根部生物量相关,与地上部和总生物量显著相关,叶部硝酸还原酶与地上根部生物量相关,与地上部和总生物量极显著相关。接种后菌根苗体内的脱落酸含量增加[15],这说明生物量的增加与接种真菌具有很大关系。硝酸还原酶是一种诱导酶,同时是一种调节酶和限速酶,存在于植物的根部质体中和叶绿体中,菌根真菌是如何激活和诱导硝酸还原酶,菌根植物硝酸还原酶是如何合成一氧化氮等分子机制有待深入研究。

参考文献 (21)

目录

/

返回文章
返回