Growth stage and plant sex with chemical compounds of industrial hemp stalks
-
摘要: 研究工业大麻Cannabis sativa秆生长周期和植株性别对三大素(纤维素、半纤维素、木质素)生成规律的影响,可为该材料在新能源和可再生纤维制备方面的利用提供参考。用SAS软件分别分析不同生长期和植株性别对工业大麻秆三大素质量分数的相关性。结果表明:生长期对工业大麻秆纤维素、木质素质量分数的影响显著(P<0.05),对半纤维素质量分数的影响不显著(P>0.05);植株性别对工业大麻秆纤维素和半纤维素质量分数的影响显著(P<0.05),对木质素质量分数的影响不显著(P>0.05)。在整个生长期,三大素质量分数分别为380.8~525.0 gkg-1,174.2~275.5 gkg-1,109.8~235.8 gkg-1;随生长期的延长,纤维素和半纤维素质量分数先增加后减小,木质素质量分数呈增加趋势,即在工业大麻秆的生长过程中纤维素和半纤维素的合成要早于木质素。生长期77 d时植株开始出现雌、雄性别的表观差异,雌株的纤维素和木质素质量分数大于雄株的,半纤维素小于雄株的;但雌雄株之间的化学成分差异产生的原因还有待进一步进行研究。图6表1参21Abstract: Studying the influence of growth stage and plant sex on chemical compounds of industrial hemp stalks could provide a reference for renewable fiber preparation and new energy. The cellulose, hemicellulose, and lignin contents of industrial hemp stalks were tested by the high performance liquid chromatography (HPLC) and China chemical compounds analysis standard for paper making raw materials (GB/T 2677-1993). Results showed that growth stage had a significant effect (P<0.05) on cellulose content and lignin content of industrial hemp stalks but not on hemicellulose content. Meanwhile, plant gender significantly affected (P<0.05) cellulose content and hemicellulose content of industrial hemp stalks but not lignin content. For the entire growth period of hemp stalk, the range of cellulose content was from 380.8 to 525.0 gkg-1, of hemicellulose content was from 174.2 to 275.5 gkg-1, and of lignin content was from 109.8 to 235.8 gkg-1. As time increased, the mass fractions of cellulose and hemicellulose increased first and then decreased (The P value of cellulose was P =0.015 2 and hemicelluloses was P=0.945 9 with SAS software); whereas the mass fraction of lignin increased steadily (P<0.000 1 with SAS software). Also, synthesis of cellulose and hemicellulose was earlier than lignin. Differences between male and female gender became apparent by the 77th day of growth with cellulose (P =0.004 0 with SAS software) and lignin (P =0.123 7 with SAS software) contents of female plants being higher than male plants, and the hemicellulose content lower (P =0.001 0 with SAS software). Reasons for differences in the chemical compounds between male and female plants will require further study.[Ch, 6 fig. 1 tab. 21 ref.]
-
Key words:
- botany /
- growth stage /
- plant gender /
- industrial hemp stalk /
- cellulose /
- hemicellulose /
- lignin
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2015.05.018
计量
- 文章访问数: 2640
- HTML全文浏览量: 358
- PDF下载量: 594
- 被引次数: 0