-
番茄Lycopersicon esculentum发育过程中果实积累的糖分组成和含量高低是评价果实品质的重要指标。光合作用产生的部分蔗糖经韧皮部卸载到果实,在蔗糖代谢相关酶的作用下形成糖组分结构。杨玉梅[1]报道:蔗糖合成酶(SS)能够调控蔗糖在韧皮部的卸载,当库器官与韧皮部达到一定的蔗糖浓度梯度后,蔗糖会被转运入细胞,且SS活性与库器官中蔗糖输入呈正相关。齐红岩等[2]以番茄‘辽园多丽’Lycopersicon esculentum ‘Liaoyuan Duoli’为研究对象,发现有一小部分蔗糖在组织内运输转移时被分解,到达果实内部后,进一步分解为葡萄糖和果糖。宋曼曼等[3]发现:不同时期番茄果实中各种糖的质量分数不同且不断变化,一般绿熟期果糖与葡萄糖质量分数相对较低,到成熟期达到峰值;绿熟期至转色期,蔗糖质量分数先增加后下降。刘以前等[4]的研究表明,在产量形成期,酸性转化酶(AI)和中性转化酶(NI)的活性较低,SS和蔗糖磷酸合成酶(SPS)的活性较高;在品质形成期,番茄果实以积累果糖为主,AI和NI的活性急剧升高,SS和SPS的活性很低。提高番茄果实的甜度是改善番茄品质的重要环节,而番茄果实的甜度取决于糖分积累中的蔗糖含量[5]。目前,对番茄生长发育过程中糖分的积累与蔗糖代谢相关酶活性变化的研究已较多,但关于营养液中添加不同盐类提高电导率(EC),对水培番茄果实成熟过程中糖组分变化与蔗糖代谢相关酶活性的影响研究较少。本研究探究了不同处理下番茄果实4种糖(蔗糖、葡萄糖、果糖和淀粉)的积累规律,目的在于为今后高品质高风味番茄栽培提供理论依据,也对营养液中添加不同盐类对水培番茄果实糖组分与蔗糖代谢相关酶活性的影响做了初步探索。
Carbohydrate composition and sucrose-metabolizing enzyme activities of hydroponic tomato fruit with salts added to nutrient solutions
-
摘要: 以营养液膜技术水培番茄‘粉太郎2号’ Lycopersicon esculentum ‘Fentailang 2’。测定果皮、果肉、心室隔壁和胶质胎座4个部位的糖质量分数与蔗糖代谢相关酶活性,研究营养液中添加不同盐类(氯化钠、氯化钾、氯化钙和石膏,电导率为0.40 S·m-1)对水培番茄不同生长期果实各部位糖组分和蔗糖代谢相关酶活性的影响。结果显示:转色期各部位4种糖(蔗糖、果糖、葡萄糖、淀粉)的总质量分数较高,成熟期质量分数略有下降;转色期与成熟期各部位以果糖为主,绿熟期以葡萄糖为主。各部位在转色期蔗糖合成较为活跃,在成熟期分解大量蔗糖。营养液中添加氯化钠或氯化钾明显降低成熟期果皮、果肉和心室隔壁的蔗糖质量分数。果实成熟过程中,蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)活性表现为在转色期上升,成熟期下降的倒Ⅴ型趋势。各处理成熟期果实各部位的酸性转化酶(AI)和中性转化酶(NI)活性均大于绿熟期。营养液中添加不同盐类在不同程度上抑制转色期果实SS活性,提高成熟期果实转化酶的活性;添加氯化钾、氯化钙或石膏提高转色期果实SPS活性,添加氯化钠或氯化钾改变果实某些部位SS活性原有的变化趋势。Abstract: To explore the effect of adding different salts to a nutrient solution (NaCl, KCl, CaCl2 or CaSO4·2H2O, the electric conductivity (EC) was controlled at 0.40 S·m-1) on carbohydrate composition and sucrose-metabolizing related enzyme activities of hydroponic tomato fruit during fruit development, the experimental design was totally randomized block, and this experiment cultivated Lycopersicon esculentum 'Fentailang 2' using the nutrient film technique (NFT), and twelve tomato plants were labeled with good growth in every treatment, one tomato fruit with the same size and development degree was selected from the second layers at different growth stages, and content of carbohydrates and sucrose-metabolizing related enzyme activities in four parts of the tomato fruit (peel, pulp, dissepiment, and pectinic) were determined. Significant difference analysis was conducted by least significant difference (LSD). The main results included a total mass fraction of four sugars (sucrose, fructose, glucose, and starch) in each part of the fruit that were relatively high at the color conversion stage and had a slight decline after maturity. Fructose was the main sugar in four parts of the fruit at the stage of color conversion and ripening, and glucose was the main sugar at the green ripening stage. More sucrose (P < 0.05) was accumulated in each part at the color conversion stage, and a large amount (P < 0.05)of sucrose was decomposed at the ripening stage. During fruit ripening, except some treatments sucrose synthase (SS) and sucrose phosphate synthase (SPS) activities rose at the color conversion stage and fell at the ripening stage in the shape of an inverted "V". For all treatments, acid invertase (AI) and neutral invertase (NI) activities in each part of ripened fruits were higher than those at the green ripening stage. Overall, adding NaCl or KCl to the nutrient solution could reduce (P < 0.05)the mass fraction of sucrose in the peel, pulp, and dissepiment of ripened fruits; adding different salts to the nutrient solution could inhibit the SS activity of the color conversion stage fruit in varying degrees and increase invertase activities of ripened fruit; adding KCl, CaCl2, or CaSO4·2H2O could increase (P < 0.05)the SPS activity of the color conversion stage fruit; and adding NaCl or KCl could change the original trend of SS activity in some parts of the fruit.
-
Key words:
- horticulture /
- salts /
- hydroponics /
- tomato fruit /
- carbohydrate composition /
- sucrose metabolism related enzymes
-
-
[1] 杨玉梅.不同西瓜种质资源糖分积累规律与糖代谢相关酶关系的研究[D].杨凌: 西北农林科技大学, 2006. YANG Yumei. Study on Sugar Accumulation of Different Watermelon Germplasms and Correlation Between Sugar Metabolism and Related Enzymes[D]. Yangling: Northwest A & F University, 2006. [2] 齐红岩, 李天来, 张洁, 等.番茄果实发育过程中糖的变化与相关酶活性的关系[J].园艺学报, 2006, 33(2):294-299. QI Hongyan, LI Tianlai, ZHANG Jie, et al. Relationship between carbohydrate change and related enzymes activities during tomato fruit development[J]. Acta Hortic Sin, 2006, 33(2):294-299. [3] 宋曼曼, 韩广泉, 樊新民, 等.加工番茄果实糖分含量的变化[J].北方园艺, 2011(4):24-28. SONG Manman, HAN Guangquan, FAN Xinmin, et al. Study on sugar content changes of processing tomato fruit[J]. North Hortic, 2011(4):24-28. [4] 刘以前, 沈火林, 石正强.番茄果实生长发育过程中糖的代谢[J].华北农学报, 2006, 21(3):51-56. LIU Yiqian, SHEN Huolin, SHI Zhengqiang. The sugar metabolism in tomato developing fruits[J]. Acta Agric Boreal-Sin, 2006, 21(3):51-56. [5] 齐红岩, 李天来, 邹琳娜, 等.番茄果实不同发育阶段糖分组成和含量变化的研究初报[J].沈阳农业大学学报, 2001, 32(5):346-348. QI Hongyan, LI Tianlai, ZOU Linna, et al. Changes of composition and content of carbohydrate during tomato fruit development[J]. J Shenyang Agric Univ, 2001, 32(5):346-348. [6] 王永章, 张大鹏.乙烯对成熟期新红星苹果果实碳水化合物代谢的调控[J].园艺学报, 2000, 27(6):391-395. WANG Yongzhang, ZHANG Dapeng. Regulating effects of ethylene on carbohydrate metabolism in 'Starkrimson' apple fruit during the ripening period[J]. Acta Hortic Sin, 2000, 27(6):391-395. [7] 张明方, 李志凌.高等植物中与蔗糖代谢相关的酶[J].植物生理学通讯, 2002, 38(3):289-295. ZHANG Mingfang, LI Zhiling. Sucrose-metabolizing enzymes in higher plants[J]. Plant Physiol Commun, 2002, 38(3):289-295. [8] 秦巧平, 林飞凡, 张岚岚.枇杷果实糖酸积累的分子生理机制[J].浙江农林大学学报, 2012, 29(3):453-457. QIN Qiaoping, LIN Feifan, ZHANG Lanlan. Review of the studies on the accumulation mechanisms of sugar and organic acids in Eriobotrya japonica fruit[J]. J Zhejiang A & F Univ, 2012, 29(3):453-457. [9] 赵建华, 李浩霞, 尹跃, 等. 4种枸杞果实发育过程中糖积累与蔗糖代谢酶的关系[J].浙江农林大学学报, 2016, 33(6):1025-1032. ZHAO Jianhua, LI Haoxia, YIN Yue, et al. Sugar accumulation and sucrose-metabolizing enzyme activities in four Lycium species during fruit development[J]. J Zhejiang A & F Univ, 2016, 33(6):1025-1032. [10] 张永平, 乔永旭, 喻景权, 等.园艺植物果实糖积累的研究进展[J].中国农业科学, 2008, 41(4):1151-1157. ZHANG Yongping, QIAO Yongxu, YU Jingquan, et al. Progress of researches of sugar accumulation mechanism of horticultural plant fruits[J]. Sci Agric Sin, 2008, 41(4):1151-1157. [11] ISLAM S, MATSUI T, YOSHIDA Y. Carbohydrate content and the activities of sucrose synthase, sucrose phosphate synthase and acid invertase in different tomato cultivars during fruit development[J]. Sci Hortic, 1996, 65(2/3):125-136. [12] HO L C. The mechanism of assimilate partitioning and carbo-hydrate compartmentation in fruit in relation to the quality and yield of tomato[J]. J Exp Bot, 1996, 47(spec):1239-1243. [13] 罗海玲, 黄玉辉, 张曼, 等.转化酶与甜瓜果实膨大及糖分积累相关研究[J].南方农业学报, 2011, 42(4):384-387. LUO Hailing, HUANG Yuhui, ZHANG Man, et al. The relationship between invertase activity and sucrose accumulation during the development of fruits in melon[J]. J South Agric, 2011, 42(4):384-387. [14] 武红霞, 邢姗姗, 王松标, 等.'台农1号'芒果果实发育过程中的糖分积累与相关酶活性研究[J].西北植物学报, 2011, 31(9):1811-1815. WU Hongxia, XING Shanshan, WANG Songbiao, et al. Sugar accumulation and related enzyme activities in the developing mango fruits cv.'Tainong 1'[J]. Acta Bot Boreal-Occident Sin, 2011, 31(9):1811-1815. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2018.06.016