-
枸杞Lycium为茄科Solanaceae枸杞属Lycium多年生落叶灌木,具有很强的抗逆性,是改良盐碱地的先锋树种[1]。全世界约有80种,主要分布在北美洲和亚洲[2]。中国自然分布有7种3变种,多分布于西北和华北地区。在诸多种中,绝大多数种质资源未被利用,只有宁夏枸杞Lycium barbarum经过长期自然选择、人工驯化,形成了10多个农家品种[1],其干燥果实具有味甘、性平、归肝、肾经、益精、明目的功能,被历版《中国药典》收载[3]。宁夏农林科学院自20世纪80年代开始枸杞种质资源收集与保存工作,目前,已建成世界上唯一枸杞种质资源圃,保存枸杞种质2 000余份[4]。枸杞属于浆果类植物,其果实中含有丰富糖类物质[5]。SUNG等[6]通过气相色谱-质谱联用仪(GC-MS)在宁夏枸杞果实中检出11种单糖;杨晓萍等[7]通过气相色谱(GC)测定宁夏枸杞果实单糖的种类,主要是果糖、葡萄糖和木糖;欧阳华学等[8]利用高效液相色谱法测定枸杞中单糖和低聚糖,主要是鼠李糖、果糖、葡萄糖等3种单糖和蔗糖、麦芽糖2种低聚糖;冯美等[9]发现枸杞果实中糖的积累主要以葡萄糖和果糖为主;郑国琦等[10]利用高效液相色谱测定不同地区宁夏枸杞果实糖质量分数,果实内的果糖量最高,葡萄糖量其次,蔗糖量最低。蔗糖是植物体内最重要的一种碳水化合物,蔗糖代谢起主要作用的酶有蔗糖合成酶(SS)、磷酸蔗糖合成酶(SPS)和蔗糖转化酶(IN),它们在糖代谢中发挥着重要的作用[11]。目前,枸杞蔗糖代谢的相关研究主要集中在宁夏枸杞[12-15]上,其他种枸杞资源尚未报道。本研究选用4种枸杞为试材,研究枸杞果实发育过程中糖质量分数与蔗糖代谢酶活性的关系,旨在探讨枸杞果实糖积累差异的生理基础,为进一步阐明枸杞品质形成和调控机制提供理论依据。
-
通过气相色谱(GC)法对4种枸杞成熟期果实糖组成和质量分数进行测定(表 1)。宁夏枸杞检测出10种糖,种类最多,分别为果糖、葡萄糖、蔗糖、赤藓糖、阿拉伯糖、鼠李糖、岩藻糖、半乳糖、木糖和山梨糖;云南枸杞和中国枸杞检测到7种糖,分别为果糖、葡萄糖、蔗糖、赤藓糖、阿拉伯糖、岩藻糖和半乳糖;北方枸杞检测到6种糖,分别为果糖、蔗糖、葡萄糖、赤藓糖、阿拉伯糖和半乳糖。在4种枸杞果实中均检测到糖为果糖、葡萄糖、蔗糖、赤藓糖、阿拉伯糖和半乳糖,其中,果糖、葡萄糖和蔗糖质量分数占总糖分的98%以上。宁夏枸杞果实果糖和葡萄糖质量分数最高,北方枸杞次之,云南枸杞和中国枸杞较低。云南枸杞果实蔗糖质量分数最高,北方枸杞次之,宁夏枸杞最低。4种枸杞间3种糖的质量分数均达到显著差异。可见,不同种枸杞的糖组成与质量分数存在较大差异。
表 1 枸杞成熟期果实糖质量分数变化
Table 1. Changes of sugar contents in four wolfberry species at fruit ripening
糖组分 不同种枸杞的糖质量分数/(mg·g-1) 最小显著性差异 (LED,P<0.05) 宁夏枸杞 北方枸杞 云南枸杞 中国枸杞 果糖 48.99±1.081 31.57±1.112 9.39±0.300 14.99±0.221 3.874 葡萄糖 2.34±0.063 1.57±0.077 0.42±0.025 0.71±0.030 0.118 蔗糖 0.43±0.068 1.11±0.156 1.40±0.054 0.96±0.027 0.189 赤藓糖 0.07±0.003 0.16±0.003 0.31±0.025 0.03±0.001 0.027 阿拉伯糖 0.04±0.000 0.05±0.004 0.11±0.008 0.01±0.001 0.011 鼠李糖 0.02±0.000 岩藻糖 0.01±0.001 0.08±0.005 0.01±0.001 0.008 半乳糖 0.02±0.001 0.08±0.004 0.04±0.014 0.02±0.001 0.018 木糖 0.01±0.000 山梨糖 0.02±0.000 甜度值 87.79±2.000 57.46±2.160 18.14±0.600 27.69±0.380 6.900 分析不同种枸杞果实甜度值发现:宁夏枸杞甜度值最高,为87.79;北方枸杞次之,为31.57; 云南枸杞最低,仅为27.69。4种枸杞间甜度值均达到显著差异,这也说明宁夏枸杞口感显著优于其他3种枸杞(表 1)。
-
4种枸杞在果实发育过程中果糖和葡萄糖质量分数变化如图 2A和2B所示。随着果实的生长发育,果糖和葡萄糖质量分数总体呈现出不断升高趋势。从幼果期到青果期果糖和葡萄糖质量分数较低,呈现出缓慢增高趋势。在云南枸杞中未检测出葡萄糖,且中国枸杞2种糖质量分数显著高于其他3种枸杞;从青果期之后,宁夏枸杞、北方枸杞和中国枸杞呈现出显著增长,在初熟期,中国枸杞到达峰值,分别为26.09 mg·g-1和1.03 mg·g-1,而宁夏枸杞和北方枸杞仍缓慢增高,在果实成熟期达到最高值,此时,宁夏枸杞果糖和葡萄糖质量分数为49.08 mg·g-1和2.34 mg·g-1,北方枸杞为31.54 mg·g-1和1.58 mg·g-1,2种枸杞间达到显著差异。在整个果实发育过程中,云南枸杞维持着较低果糖和葡萄糖质量分数,且从初熟期到成熟期显著低于其他3种枸杞。
图 2 4种枸杞果实发育期过程中糖质量分数变化
Figure 2. Changes of sugar contents in four wolfberry species at five stages of ripening
随着枸杞果实的生长发育,4种枸杞果实蔗糖质量分数呈现出2种变化趋势(图 2C),其中,宁夏枸杞和中国枸杞呈现出“降—升—降”趋势,从幼果期到色变期缓慢降低,在青果期中国枸杞出现第1个低谷值,之后缓慢升高,而宁夏枸杞继续不断降低,在色变期宁夏枸杞出现低谷值,而中国枸杞呈现出峰值,随后两者均呈现出快速降低,在果实成熟期到达最低值。北方枸杞和云南枸杞从幼果期到青果期缓慢升高,在青果期到达到最高,值分别为6.76 mg·g-1和5.40 mg·g-1,接着继续降低。在初熟期北方枸杞达到低谷值,而云南枸杞继续降低,且在整个发育过程中两者间均未达到显著差异。
-
4种枸杞果实发育期过程中果实AI活性变化如图 3A所示,随着果实发育,AI活性呈现出2种变化趋势,宁夏枸杞呈现出先升后降的趋势,在果实发育的色变期之前AI活性增幅较小,没达到显著差异;随后快速升高,在果实发育的初熟期达到最高峰。然后又呈现出缓慢降低趋势。北方枸杞、云南枸杞和中国枸杞呈现出逐渐升高的趋势,在果实发育的色变期前缓慢升高,随后快速升高,成熟期达到最高值。在果实成熟期云南枸杞AI活性最高,达191.07 μmol·g-1·h-1,中国枸杞次之,北方枸杞最低,且显著低于云南枸杞和中国枸杞。在整个果实发育过程中北方枸杞维持较低AI活性。因此,可以看出从果实发育的幼果期到色变期,供试材料AI活性低、种间变化小,但从色变期到果实成熟,供试材料AI活性高、种间变化大。
图 3 4种枸杞果实发育期过程中蔗糖代谢酶活性变化
Figure 3. Changes of sucrose-metabolizing enzymes activity in four wolfberry species at five stages of ripening
图 3B所示:从幼果期到色变期宁夏枸杞 NI活性缓慢升高,随后缓慢降低,接着又升高,在果实成熟期升至最高,为45.29 μmol·g-1·h-1;北方枸杞、云南枸杞和中国枸杞呈现出先升后降变化趋势,从幼果期到青果期不断升高,在色变期中国枸杞升至最高值,为81.07 μmol·g-1·h-1,而北方枸杞和云南枸杞继续升高,且在初熟期两者到达峰值,分别为62.50 μmol·g-1·h-1和119.46 μmol·g-1·h-1,两者间差异显著,随后缓慢降低。在整个果实发育过程,云南枸杞保持着较高NI活性,而宁夏枸杞和北方枸杞维持着较低NI活性。
4种枸杞果实发育期过程中果实SPS活性变化如图 3C所示,宁夏枸杞SPS活性呈现出先降后升的变化趋势,从幼果期到初熟期SPS活性缓慢降低,在初熟期低出现谷值,从初熟期到成熟期SPS活性缓慢升高;北方枸杞和中国枸杞从幼果期到青果期不断升高,在青果期中国枸杞升值最高值,达26.51 μmol·g-1·h-1,而北方枸杞继续升高,在初熟期达到最高值,为21.41 μmol·g-1·h-1,随后两者基本维持稳定水平;随着果实生长发育云南枸杞SPS活性总体呈现出降低趋势,从幼果期到色变期呈现出平稳状态,接着缓慢降低,在果实成熟降至最低,为12.95 μmol·g-1·h-1,显著低于北方枸杞和中国枸杞。在整个果实发育过程中,北方枸杞和中国枸杞保持着较高SPS活性,云南枸杞维持着较低SPS活性。可见,4种枸杞在果实发育过程中SPS活性差异较大。
4种枸杞果实发育期过程中果实SS活性变化(图 3D)表明:宁夏枸杞、云南枸杞和中国枸杞随着果实生长发育,从果实幼果期到色变期SS活性缓慢降低,从色变期到初熟期缓慢升高,在初熟期宁夏枸杞和中国枸杞达到峰值,而云南枸杞继续升高,且在整个果实发育过程中,宁夏枸杞SS活性显著高于后2种枸杞,后2种枸杞间无显著差异;北方枸杞SS活性呈现出不断降低趋势,从幼果期到青果期缓慢降低,随后显著下降,从初熟期到成熟期又缓慢下降,且此时期显著低于宁夏枸杞。
-
4种枸杞果实发育过程中糖质量分数与蔗糖代谢酶活性之间相关性分析表明:宁夏枸杞果糖质量分数与葡萄糖质量分数极显著正相关(r=0.993),与蔗糖质量分数显著负相关(r=- 0.830),与AI活性显著正相关(r=0.807),其蔗糖质量分数与AI活性显著负相关(r=-0.934);北方枸杞果糖质量分数与葡萄糖质量分数极显著正相关(r= 0.987),与AI和NI活性显著正相关(r=0.949和0.809),其蔗糖质量分数与AI和NI活性显著负相关(r=- 0.866和- 0.917),其蔗糖质量分数SS显著正相关(r=0.870);云南枸杞果糖质量分数与葡萄糖质量分数极显著正相关(r=0.999),与AI活性显著正相关(r=0.912),与SPS活性显著负相关(r=0.870),其葡萄糖质量分数与AI活性显著正相关(r=0.918),其葡萄糖质量分数与SPS活性显著负相关(r=- 0.891);中国枸杞果糖质量分数与葡萄糖质量分数显著正相关(r=0.925),其蔗糖质量分数与AI活性显著负相关(r=-0.806)(表 2)。可见,枸杞果实发育过程中降低蔗糖质量分数有利于果实中果糖和葡萄糖积累,转化酶在枸杞果实糖积累过程中发挥着重要作用。
表 2 4种枸杞果实糖质量分数与蔗糖代谢酶活性的相关系数
Table 2. Correlation coefficients between sugar content and activity of sucrose-metabolizing enzymes in 4 wolfberry species
材料 葡萄糖 蔗糖 酸性转化酶 中性转化酶 磷酸蔗糖合成酶 蔗糖合成酶 宁夏枸杞 果糖 0.993** -0.830* 0.807* 0.554 -0.500 -0.241 葡萄糖 -0.804 0.684 0.627 -0.423 -0.246 蔗糖 -0.934* -0.604 0.804 0.665 北方枸杞 果糖 0.987** -0.748 0.949** 0.809* 0.391 -0.784 葡萄糖 -0.635 0.895* 0.716 0.319 -0.695 蔗糖 -0.866* -0.917* -0.473 0.870* 云南枸杞 果糖 0.999** -0.720 0.912* 0.629 -0.896* -0.366 葡萄糖 -0.727 0.918* 0.647 -0.891* -0.371 蔗糖 -0.811* -0.592 0.739 -0.311 中国枸杞 果糖 0.925* -0.531 0.713 -0.063 -0.721 -0.247 葡萄糖 -0.741 0.759 -0.367 -0.648 -0.249 蔗糖 -0.806* 0.634 0.204 0.646 说明*代表显著水平(P<0.05);**代表极显著水平(P<0.01)
Sugar accumulation and sucrose-metabolizing enzyme activities in four Lycium species during fruit development
-
摘要: 为了探讨枸杞Lycium果实糖积累差异及其品质形成的生理机制,以4种枸杞为试材,在枸杞果实发育期间,测定果实糖质量分数与蔗糖代谢酶活性变化。结果表明:宁夏枸杞Lycium barbarum果实中检测到10种糖,云南枸杞L.yunnanense和中国枸杞L.chinense果实中检测到7种糖,北方枸杞L.chinense var.potaninii果实中检测到6种糖;成熟期枸杞果实以果糖、葡萄糖和蔗糖为主。在果实发育过程中4种枸杞果糖和葡萄糖质量分数整体呈现出逐渐升高趋势,果实发育的后期升高幅度高于初期;而蔗糖质量分数呈现出2种变化趋势,不同发育时期种间有差异。4种枸杞蔗糖代谢酶活性在枸杞果实发育过程中差异较大,其中,酸性转化酶(AI)在果实发育的初期活性较低,种间差别小,但在果实发育的后期活性高,种间差别大。在整个果实发育过程中供试种蔗糖合成酶(SS)活性始终高于磷酸蔗糖合成酶(SPS);云南枸杞维持着较低果糖和葡萄糖质量分数。3种枸杞果实中果糖质量分数与AI活性显著正相关(P<0.05),转化酶在枸杞果实糖积累过程中发挥着重要作用。图3表2参23Abstract: To explore differences between sugar accumulation and fruit quality formation for the physiology of Lycium, sugar contents and sucrose-metabolizing enzyme activities in four Lycium species (Lycium barbarum, Lycium yunnanense, Lycium chinense, and Lycium chincnse var. potaninii) were determined during five stages of fruit development. The relationship between sugar contents and sucrose-metabolizing enzyme activities was determined using Data Processing System (DPS 14.5). Results of the gas phase chromatography (GC) showed ten sugars in L. barbarum, seven sugars in L. yunnanense and Lycium chinense, and six sugars in L. chinense var. potaninii. At the mature stage the main sugars were fructose, glucose, and sucrose. The fructose and glucose contents increased gradually with fruit growth and development, with growth rates of sugars in late fruit development stages being much higher than in the early stages. Sucrose content showed two changing trends during fruit development stages, and there were great differences among species for developmental stages. Also, during the fruit development process, three of the sucrose-metabolizing enzyme activities had large differences:acid invertase(AI) activity was low in the early fruit development stage with no major differences among species, but in later stages AI was high with species differences. During the fruit development process sucrose synthase (SS) activity in the four materials was higher than sucrose phosphate synthase (SPS) with the contents of fructose and glucose in L. yunnanense maintaining a lower level. Fructose content and AI activity were significantly (P<0.05) and positively correlated (r=0.807,0.949 and 0.912) among the three species, Thus, increasing AI activity was favorable to hexose (fructose and glucose) accumulation, and invertase played an important role in sugar accumulation of wolfberry fruit.[Ch, 3 fig. 2 tab. 23 ref.]
-
Key words:
- botany /
- Lycium spp. /
- fruit /
- sugar accumulation /
- sucrose-metabolizing enzymes
-
表 1 枸杞成熟期果实糖质量分数变化
Table 1. Changes of sugar contents in four wolfberry species at fruit ripening
糖组分 不同种枸杞的糖质量分数/(mg·g-1) 最小显著性差异 (LED,P<0.05) 宁夏枸杞 北方枸杞 云南枸杞 中国枸杞 果糖 48.99±1.081 31.57±1.112 9.39±0.300 14.99±0.221 3.874 葡萄糖 2.34±0.063 1.57±0.077 0.42±0.025 0.71±0.030 0.118 蔗糖 0.43±0.068 1.11±0.156 1.40±0.054 0.96±0.027 0.189 赤藓糖 0.07±0.003 0.16±0.003 0.31±0.025 0.03±0.001 0.027 阿拉伯糖 0.04±0.000 0.05±0.004 0.11±0.008 0.01±0.001 0.011 鼠李糖 0.02±0.000 岩藻糖 0.01±0.001 0.08±0.005 0.01±0.001 0.008 半乳糖 0.02±0.001 0.08±0.004 0.04±0.014 0.02±0.001 0.018 木糖 0.01±0.000 山梨糖 0.02±0.000 甜度值 87.79±2.000 57.46±2.160 18.14±0.600 27.69±0.380 6.900 表 2 4种枸杞果实糖质量分数与蔗糖代谢酶活性的相关系数
Table 2. Correlation coefficients between sugar content and activity of sucrose-metabolizing enzymes in 4 wolfberry species
材料 葡萄糖 蔗糖 酸性转化酶 中性转化酶 磷酸蔗糖合成酶 蔗糖合成酶 宁夏枸杞 果糖 0.993** -0.830* 0.807* 0.554 -0.500 -0.241 葡萄糖 -0.804 0.684 0.627 -0.423 -0.246 蔗糖 -0.934* -0.604 0.804 0.665 北方枸杞 果糖 0.987** -0.748 0.949** 0.809* 0.391 -0.784 葡萄糖 -0.635 0.895* 0.716 0.319 -0.695 蔗糖 -0.866* -0.917* -0.473 0.870* 云南枸杞 果糖 0.999** -0.720 0.912* 0.629 -0.896* -0.366 葡萄糖 -0.727 0.918* 0.647 -0.891* -0.371 蔗糖 -0.811* -0.592 0.739 -0.311 中国枸杞 果糖 0.925* -0.531 0.713 -0.063 -0.721 -0.247 葡萄糖 -0.741 0.759 -0.367 -0.648 -0.249 蔗糖 -0.806* 0.634 0.204 0.646 说明*代表显著水平(P<0.05);**代表极显著水平(P<0.01) -
[1] 白守宁. 宁夏枸杞研究[M]. 银川:宁夏人民出版社,1999:3-10. [2] 董静洲,杨俊军,王瑛. 我国枸杞属物种资源及国内外研究进展[J]. 中国中药杂志,2008,33(18):2020-2027. DONG Jingzhou, YANG Junjun, WANG Ying. Resoures of Lycium species and related research progress[J]. China J Chin Mater Med, 2008, 33(18):2020-2027. [3] 国家药典委员会. 中华人民共和国药典:2010年版一部[M]. 北京:中国医药科技出版社,2010:232-233. [4] 赵建华,安巍,石志刚,等. 枸杞种质资源若干植物学数量性状描述指标的探讨[J]. 园艺学报,2008,35(2):301-306. ZHAO Jianhua, AN Wei, SHI Zhigang, et al. Evaluation criteria of some botanical quantitative characteristics of wolfberry (Lycium L.) germplasm resources[J]. Acta Hortic Sin, 2008, 35(2):301-306. [5] ZHAO Jianhua, LI Haoxia, XI Wanpeng, et al. Changes in sugars and organic acids in wolfberry (Lycium barbarum L.) fruit during development and maturation[J]. Food Chem, 2015, 173:718-724. [6] SUNG C K, OH M J, KIM C J. On the composition of free sugars, fatty acids, free amino acids and minerals in Lycium fructus[J]. J Agric Sci Chungnam Univ, 1994, 21(1):22-27. [7] 杨晓萍,张声华. 枸杞子糖类的研究[J]. 林产化学与工业,1998,18(2):65-68. YANG Xiaoping, ZHANG Shenghua. Studies on saccharides in fruits of Lycium chinense[J]. Chem Ind For Prod, 1998, 18(2):65-68. [8] 欧阳华学,黎源倩,肖全伟. 高效液相色谱法同时测定枸杞中单糖和低聚糖的含量[J]. 四川大学学报:医学版,2007,38(6):1040-1042. OUYANG Huaxue, LI Yuanqian, XIAO Quanwei. Simultaneous determination of monosaccharides and oligosaccharides in Lycium barbarum L. by high performance liquid chromatography[J]. J Sichuan Univ Med Sci Ed, 2007, 38(6):1040-1042. [9] 冯美,孙慧芳. 枸杞果实转色前后糖积累与相关酶活性的研究[J]. 宁夏农林科技,2007(4):9-10. FENG Mei, SUN Huifang. Study on sugar accumulation and metabolizing enzymes in wolfberry (Lycium barbarum L.) fruits before and after fruit color turning[J]. Ningxia J Agric For Sci Technol, 2007(4):9-10. [10] 郑国琦,罗霄,郑紫燕,等. 宁夏枸杞果实糖积累和蔗糖代谢相关酶活性的关系[J]. 西北植物学报,2008,28(6):1172-1178. ZHENG Guoqi, LUO Xiao, ZHENG Ziyan, et al. Relationship between sugar accumulation and its metabolizing enzymes in Lycium barbarum L.[J]. Acta Bot Boreal-Occident Sin, 2008, 28(6):1172-1178. [11] 张上隆,陈昆松. 果实品质形成与调控的分子生[M]. 北京:中国农业出版社,2007:1-2. [12] FENG Mei. Study on the Berry Development and Chemical Composition Accumulation During Berry Development of Lycium barbarum L.[D]. Yinchuan:Ningxia University, 2005. 冯美. 枸杞果实生长发育及化学成分积累规律的研究[D]. 银川:宁夏大学,2005:23-26. [13] 张萍,郑国琦,郑国保,等. 亏缺灌溉对枸杞果实糖积累和蔗糖代谢相关酶活性的影响[J]. 干早地区农业研究,2009,27(6):160-163. ZHANG Ping, ZHENG Guoqi, ZHENG Guobao, et al. Effects of deficit irrigation on accumulation of sugar and activity of sugar metabolism-related enzyme of Lycium barbarum L.[J]. Agric Res Arid Areas, 2009, 27(6):160-163. [14] 郑国琦. 宁夏枸杞果实结构、发育与糖分积累关系研究[D]. 西安:西北大学,2011:37-39. ZHENG Guoqi. The Studies on the Relationship Between the Structure, Development and Sugar Accumulation in Fruits of Lycium barbarum L.[D]. Xi'an:Northwest University, 2011. [15] 赵建华,李浩霞,周旋,等. 干旱胁迫对宁夏枸杞生长及果实糖分积累的影响[J]. 植物生理学报,2012,48(11):1063-1068. ZHAO Jianhua, LI Haoxia, ZHOU Xuan, et al. Influence of drought stress on plant growth and sugar accumulation in fruit of Lycium barbarum L.[J]. Plant Physiol J, 2012, 48(11):1063-1068. [16] LOWELL C A, TOMLINSON P T, KOCH K E. Sucrose-metabolizing enzymes in transport tissues and adjacent sink structures in developing citrus fruit[J]. Plant Physiol, 1989, 90(4):1394-1402. [17] 张永平,乔永,喻景权,等. 园艺植物果实糖积累的研究进展[J]. 中国农业科学, 2008, 41(4):1151-1157. ZHANG Yongping,QIAO Yong,YU Jingquan,et al. Progress of researches of sugar accumulation mechanism of horticultural plant fruits[J]. Sci Agric Sin, 2008, 41(4):1151-1157. [18] 齐红岩,李天来,张洁,等. 番茄果实发育过程中糖的变化与相关酶活性的关系[J]. 园艺学报,2006,33(2):294-299. QI Hongyan, LI Tianlai, ZHANG Jie, et al. Relationship between carbohydrate change and related enzymes activities during tomato fruit development[J]. Acta Hortic Sin, 2006, 33(2):294-299. [19] 秦巧平,林飞凡,张岚岚. 枇杷果实糖酸积累的分子生理机制[J]. 浙江农林大学学报, 2012, 29(3):453-457. QIN Qiaoping, LIN Feifan, ZHANG Lanlan. Review of the studies on the accumulation mechanisms of sugar and organic acids in Eriobotrya japonica fruit[J]. J Zhejiang A & F Univ, 2012, 29(3):453-457. [20] 张上隆,陈昆松. 果实品质形成与调控的分子生理[M]. 北京:中国农业出版社,2007. [21] 冯美, 宋长冰. 枸杞果实发育过程中果实色素、糖含量的变化[J]. 北方园艺,2005(6):68-69. FENG Mei, SONG Changbing. Changes on sugar and pigment content in wolfberry fruit during the development[J]. Northern Hortic, 2005(6):68-69. [22] 赵智中,张上隆,徐昌杰,等. 蔗糖代谢相关酶在温州蜜柑果实糖积累中的作用[J]. 园艺学报,2001,28(2):112-118. ZHAO Zhizhong, ZHANG Shanglong, XU Changjie, et al. Roles of sucrose-metabolizing enzymes in accumulation of sugars in Satsuma mandarin fruit[J]. Acta Hortic Sin, 2007, 28(2):112-118. [23] 赵建华,李浩霞,安巍,等. 干旱胁迫对宁夏枸杞叶片蔗糖代谢及光合特性的影响[J]. 西北植物学报,2013,33(5):970-975. ZHAO Jianhua, LI Haoxia, AN Wei, et al. Sugar metabolism and photosynthetic characteristics in leaf of Lycium barbarum L. under drought stress[J]. Acta Bot Boreal-Occident Sin, 2013, 33(5):970-975. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2016.06.014