-
君迁子Diospyros lotus果实又名黑枣、软枣,为柿科Ebenaceae柿属Diospyros落叶乔木,分为有核和无核2个大类[1-2]。无核君迁子果实可食率高,硬熟期果皮呈浅黄色,软熟期果皮呈黄褐色,后呈黑色,主要分布在河南、河北、山东、陕西、山西等中西部地区,具有肉厚味甜、风味独特、质地细嫩、果汁少、口感好、耐储藏运输等优良特性[2-3],鲜果富含维生素C、维生素A、碘、果胶、膳食纤维等[4]。黑枣具有止渴,去烦热,令人润泽等功效,为“五黑固肾粥”的主要配方之一[5-6]。因此,无核君迁子为药食同源果品,除鲜食外,可加工成枣面、黑枣酒、黑枣醋等,开发价值高,市场潜力巨大。
果实质地、糖含量、糖酸比和黄酮、酚类、单宁等活性物质,是果实内在品质的重要组成部分,对果实的鲜食和加工品质均有重要影响[7-9]。其中,质地变软是果实发育成熟最明显的标志,是果实采收和品质评价的重要指标[10]。无核君迁子果实因其独特的风味和食疗保健价值而深受消费者喜爱,但目前关于无核君迁子的研究主要集中在栽培技术、粗加工技术等方面[11-13],关于发育成熟软化过程中生理指标变化规律的研究尚未见报道。
本研究以不同时期无核君迁子果实为研究对象,测定其单宁、黄酮、总酚、花青素、糖、果胶组分以及果胶降解酶活性,从果实发育、成熟、软化全过程对果实内在品质变化进行了系统研究,并对其相关性进行分析,以期为无核君迁子果实的深入开发利用提供参考。
-
试验材料为中国林业科学研究院经济林研究所选育的‘无核1号’ ‘Wuhe 1’果实,试验基地位于河南省新乡市原阳县原武镇靳屋村(34°55′30″~34°56′45″N,113°46′24″~113°47′59″E)。选择树势健壮、无病虫害的无性系单株10株,从花后约5周至花后27周的6个时期,即2020年6月15日(幼果期)、7月15日(膨大期)、8月15日(青果期)、9月15日(转色期)、10月15日(初熟期)和11月15日(软熟期),在树冠中部外围,按东、南、西、北4个方向采样,每个方向采集果实5个,混合均匀后低温冷藏带回实验室,冰水冲洗后用纱布吸干表面水分,切碎经液氮速冻于−80 ℃超低温冰箱中保存,用于相关指标测定。
-
可溶性单宁和不溶性单宁测定采用Folin-Ciocalteu法,参考余轩[14]的方法,以单宁酸为标准品,测定725 nm处的吸光度。
-
总酚测定采用Folin-Ciocalteu法[15],以没食子酸为标准品,测定760 nm处的吸光度;黄酮测定采用三氯化铝(醋酸-醋酸钠)显色法测定[15],以芦丁为标准品,测定400 nm处的吸光度;花青素测定采用曹建康等[16]的方法,以530 nm处的吸光度D(530)和600 nm处的吸光度D(600)的差值D花青素表示花青素含量。
-
淀粉采用蒽酮比色法测定[16],以葡萄糖为标准品,测定620 nm处的吸光度。糖组分的提取方法参照杜改改等[17]的方法并稍作改进。精密称取试验材料中无核君迁子果肉1.000 g,5 mL蒸馏水沸水提取30 min,冰水中冷却后10 000 g离心20 min,收集上清液。在滤渣中再次准确加入5 mL蒸馏水,重复提取1次,合并2次上清液,0.45 μm微孔滤膜过滤后上机测定。糖组分检测参照GB 5009.8—2016《食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》,色谱柱为CNW Athena NH2-RP(4.6 mm×250.0 mm,5 µm),柱温为40 ℃,流动相为体积分数75%的乙腈水溶液,流速为1.0 mL·min−1,检测器为Waters 2414示差折光检测器,根据峰面积和标准曲线计算果糖、葡萄糖、蔗糖的质量分数。可滴定酸采用酸碱滴定法[16]测定。糖酸比由可溶性糖质量分数与可滴定酸质量分数的比值计算。
-
参考齐秀东等[10]的方法,进行水溶性果胶、离子结合果胶、共价结合果胶的提取,以半乳糖醛酸为标准,用咔唑比色法测定各果胶组分。
多聚半乳糖醛酸酶的提取和测定参考REN等[18]的方法并加以改进,多聚半乳糖醛酸酶活性以每小时每克样品在37 ℃催化半乳糖醛酸水解生成半乳糖醛酸的质量表示,单位为mg·g−1·h−1;果胶裂解酶的提取和测定参考ZHI等[19]的方法并加以改进,果胶裂解酶活性定义为每克组织每分钟分解果胶产生1 nmol不饱和半乳糖醛酸所需的酶量为1个酶活力单位,单位为16.67 nkat·g−1·min−1。
-
利用Excel软件计算各指标的平均值、标准差、线性回归方程等;利用SPSS 20.0进行方差分析、Duncan多重比较(显著性水平为0.05)、Pearson相关性分析,利用Excel和GraphPad Prism 6作图。
-
如图1所示:无核君迁子果实发育成熟过程中可溶性单宁质量分数随着果实的发育成熟不断降低,果实软熟期降至(0.75±0.23) mg·g−1,低于可食用阈值(2.00 mg·g−1)[20],口尝无涩味;不溶性单宁质量分数随着果实成熟过程逐渐上升,软熟期上升至(21.63±0.94) mg·g−1,这可能与果实脱涩过程中可溶性单宁向不溶性单宁的转化有关[21]。
-
如图2A和图2B所示:无核君迁子果实在幼果期和膨大期,果实中黄酮和酚类物质质量分数较低,8月中旬青果期最高,后随着果实的成熟软化逐渐降低。花青素如图2C所示:幼果期最高,初熟期最低,其他时期花青素无显著性差异。
-
由表1可知:无核君迁子果实发育成熟过程中淀粉逐渐积累,呈显著上升趋势(P<0.05),果实软熟期淀粉质量分数高达 (56.70±3.60) mg·g−1。无核君迁子果实中果糖和葡萄糖质量分数呈相似的增加趋势,在6—7月,葡萄糖质量分数高于果糖,8月后果糖质量分数高于葡萄糖。根据甜度值计算方法,定义蔗糖甜度为100,则果糖为175,葡萄糖为75[22]。由此可知,8月后由于果糖质量分数增加且超过葡萄糖,无核君迁子果实甜度呈增加的趋势。蔗糖在7月中旬后的样品中未检出,无核君迁子果实可溶性糖以葡萄糖和果糖为主,因此其糖积累类型为己糖积累型。无核君迁子可滴定酸呈先升后降的变化趋势,在7月中旬达到峰值后随着果实成熟度的增加而下降,导致酸味显著降低。糖酸比呈逐渐上升的变化趋势,糖酸比越高果实甜度越大,说明果实甜味随着发育成熟逐渐增加。
表 1 淀粉、可溶性糖、可滴定酸和糖酸比在果实发育成熟过程中的变化
Table 1. Changes of soluble starch, soluble sugar, titratable acid and sugar-acid ratio during fruit development and ripening
采样时间(月-日) 淀粉/(mg·g−1) 果糖/(mg·g−1) 葡萄糖/(mg·g−1) 蔗糖/(mg·g−1) 可滴定酸/(mg·g−1) 糖酸比 06-15 9.48±0.79 a 9.85±0.34 a 17.25±0.40 a 8.09±0.17 5.05±0.05 e 6.96±0.16 a 07-15 12.27±0.91 ab 11.58±0.53 a 17.68±0.10 a 16.01±0.14 6.05±0.37 d 7.49±0.36 a 08-15 13.74±0.31 b 37.59±0.45 b 33.58±0.56 b − 4.43±0.23 c 16.08±0.80 b 09-15 20.77±1.45 c 60.34±2.41 c 46.63±2.07 c − 4.13±0.17 bc 25.97±1.73 c 10-15 24.90±0.20 d 95.30±2.62 d 78.42±2.53 d − 3.85±0.18 ab 45.22±3.23 d 11-15 56.70±3.60 e 151.85±5.61 e 132.88±4.65 e − 3.54±0.16 a 80.43±3.64 e 说明:同列不同的字母表示差异显著(P<0.05)。−表示未检出 -
无核君迁子果实发育成熟过程中水溶性果胶和离子结合果胶质量分数呈上升的变化趋势(图3A和图3B),均在果实软熟期质量分数最高,分别为(10.59±0.39)、(5.21±0.13) mg·g−1。由图3C可知:共价结合果胶质量分数呈先上升后下降的变化趋势,果实软熟期则显著下降(P<0.05)。如图4所示:无核君迁子果实发育成熟期间多聚半乳糖醛酸酶活性在6—8月逐渐下降,8月后活性逐渐上升,在果实软熟期活性最高,为(20.39±0.18) mg·g−1·h−1;果胶裂解酶活性在果实软熟期显著升高(P<0.05),为(230.48±15.59)×16.67 nkat·g−1·min−1。
-
相关性分析(表2)表明:无核君迁子果实发育成熟过程中,可溶性单宁与总酚、黄酮和可滴定酸呈极显著正相关(P<0.01),与不溶性单宁、淀粉、果糖、葡萄糖、糖酸比、水溶性果胶、离子结合果胶以及多聚半乳糖醛酸酶、果胶裂解酶活性呈极显著负相关(P<0.01),说明无核君迁子可溶性单宁在果实发育成熟过程中逐渐转化为不溶性单宁,其转化过程可能与糖组分和细胞壁组分的变化有关。总酚、黄酮与不溶性单宁、淀粉、果糖、葡萄糖、糖酸比、水溶性果胶、离子结合果胶以及多聚半乳糖醛酸酶、果胶裂解酶活性呈极显著负相关(P<0.01),与可溶性单宁、共价结合果胶呈极显著正相关(P<0.01);花青素与果糖呈显著负相关(P<0.05);淀粉、果糖、葡萄糖均与糖酸比、水溶性果胶、离子结合果胶及多聚半乳糖醛酸酶、果胶裂解酶活性呈极显著正相关(P<0.01),与可滴定酸呈极显著负相关(P<0.01),说明无核君迁子果实发育成熟过程中,在果胶降解酶的参与下,细胞壁果胶组分降解,进而导致果实软化、可溶性糖升高以及活性成分变化;随着果实的发育成熟,可溶性糖上升,可滴定酸下降,从而引起果实糖酸比逐渐上升,果实甜度增加。果实水溶性果胶与离子结合果胶呈极显著正相关(P<0.01),水溶性果胶和离子结合果胶均与多聚半乳糖醛酸酶、果胶裂解酶活性呈极显著正相关(P<0.01);共价结合果胶与多聚半乳糖醛酸酶、果胶裂解酶活性呈显著负相关(P<0.05);多聚半乳糖醛酸酶和果胶裂解酶活性呈极显著正相关(P<0.01),说明多聚半乳糖醛酸酶和果胶裂解酶参与了无核君迁子果实的软化过程,这与果胶降解、细胞壁结构解体有关。
表 2 无核君迁子果实发育成熟过程中各指标的Pearson相关性分析
Table 2. Pearson correlation coefficients analysis of seedless D. lotus fruit
指标 可溶性单宁 不溶性单宁 总酚 黄酮 花青素 淀粉 果糖 葡萄糖 可溶性单宁 1 不溶性单宁 −0.963** 1 总酚 0.706** −0.615** 1 黄酮 0.837** −0.735** 0.908** 1 花青素 0.325 −0.215 0.065 0.406 1 淀粉 −0.973** 0.911** −0.709** −0.808** −0.348 1 果糖 −0.946** 0.841** −0.651** −0.834** −0.500* 0.951** 1 葡萄糖 −0.975** 0.893** −0.679** −0.843** −0.439 0.972** 0.994** 1 可滴定酸 0.666** −0.527* 0.310 0.504* 0.384 −0.678** −0.826** −0.784** 糖酸比 −0.973** 0.892** −0.692** −0.848** −0.431 0.971** 0.991** 0.998** 水溶性果胶 −0.922** 0.941** −0.668** −0.708** −0.201 0.938** 0.803** 0.855** 离子结合果胶 −0.936** 0.942** −0.669** −0.696** −0.133 0.953** 0.831** 0.880** 共价结合果胶 0.453 −0.364 0.819** 0.605** −0.393 −0.453 −0.404 −0.432 多聚半乳糖醛酸酶 −0.941** 0.944** −0.807** −0.846** −0.098 0.891** 0.824** 0.877** 果胶裂解酶 −0.893** 0.920** −0.647** −0.636** −0.030 0.911** 0.765** 0.822** 指标 可滴定酸 糖酸比 水溶性果胶 离子结合果胶 共价结合果胶 多聚半乳糖
醛酸酶果胶裂解酶 可滴定酸 1 糖酸比 −0.784** 1 水溶性果胶 −0.437 0.859** 1 离子结合果胶 −0.524* 0.881** 0.986** 1 共价结合果胶 0.309 −0.443 −0.382 −0.459 1 多聚半乳糖醛酸酶 −0.492* 0.882** 0.896** 0.906** −0.611** 1 果胶裂解酶 −0.463 0.823** 0.969** 0.991** −0.480* 0.888** 1 说明:*表示P<0.05;**表示P<0.01 -
果实是植物储藏淀粉的重要器官之一。本研究表明:淀粉在无核君迁子果实生长发育期间逐渐积累,果实成熟后淀粉质量分数高达(56.70±3.60) mg·g−1。田娟等[23]对22份不同地区火棘Pyracantha果实淀粉质量分数的研究表明:仅有2份资源淀粉的质量分数高于(56.70±3.60) mg·g−1。由此可知:成熟的无核君迁子果实中淀粉质量分数较高,具有潜在的开发利用价值。可溶性糖是水果中的重要营养成分,其种类和构成比例在很大程度上影响果品的甜度和口感[24]。本研究表明:无核君迁子果实中以葡萄糖和果糖为主,糖积累类型为己糖积累型;葡萄糖在果实发育早期高于果糖,后期低于果糖,由于果糖甜度高于葡萄糖,这是果实成熟过程中甜度逐渐增加的主要原因。
多酚和黄酮是植物中广泛存在的次生代谢产物,具有抗氧化、抗衰老、提高免疫力等保健作用。无核君迁子果实总酚和黄酮质量分数在8月中旬最高,此时是提取多酚、黄酮类物质的最佳采收时期。花青素是一类生物活性极强的可溶性黄酮类物质,除具有防治心血管疾病、抗高血压、降血脂、降血糖、抗癌等活性[25-26]外,也是决定果实色泽的主要色素。本研究表明:无核君迁子花青素在果实发育初期最高,随后下降,果实软熟期略有回升,但决定无核君迁子发育过程中颜色变化的花青素种类和质量分数有待深入研究。
根据柿Diospyros kaki单宁在醇中溶解性的不同,分为可溶性单宁和不溶性单宁2类,柿果实涩味主要是由可溶性单宁引起的[27]。本研究表明:无核君迁子果实发育成熟过程中可溶性单宁不断下降,软熟期降至可食用阈值以下,同时也伴随着不溶性单宁逐渐上升的过程。有关涩柿脱涩单宁聚合的研究可归结为缩合学说和凝胶学说[28],胶凝学说认为可溶性单宁在脱涩过程中与果肉中的果胶、多糖发生胶凝反应,形成凝胶,涩味消失。本研究表明:可溶性单宁与不溶性单宁、淀粉、果糖、葡萄糖、水溶性果胶、离子结合果胶以及多聚半乳糖醛酸酶、果胶裂解酶活性呈极显著负相关(P<0.01),这说明无核君迁子果实脱涩过程不仅存在单宁缩合效应,还存在单宁缩合与凝胶综合作用。
果胶主要起着粘连细胞的作用,与果实质地密切相关[10]。研究表明:果胶在果实成熟之前呈不溶状态,随着果实成熟软化逐步降解,使果胶的平均分子质量和果胶多糖交联能力下降,细胞结构随之受损,导致果实软化[24]。而这些过程往往伴随着果胶降解酶,如多聚半乳糖醛酸酶和果胶裂解酶等的参与,它们通过降解果胶多糖组分,使细胞间连接减少,细胞离散而参与果实质地软化,且在果实软化的不同阶段起不同的作用[10]。本研究发现:水溶性果胶和离子结合果胶质量分数呈上升的变化趋势,共价结合果胶质量分数呈先上升后下降的变化趋势。齐秀东等[10]对秋子梨‘京白梨’ Pyrus ussuriensis ‘Jingbaili’发育软化与果胶的关系研究表明:水溶性果胶和离子结合果胶逐渐增加,而共价结合果胶先升后降;罗自生[29]对柿果实软化过程中细胞壁组分的研究表明:水溶性果胶质量分数逐渐增加。这些均与本研究结果一致。相关性分析表明:无核君迁子果实水溶性果胶、离子结合果胶与多聚半乳糖醛酸酶、果胶裂解酶活性呈极显著正相关(P<0.01),共价结合果胶与多聚半乳糖醛酸酶、果胶裂解酶活性呈显著负相关(P<0.05);淀粉、果糖、葡萄糖与水溶性果胶、离子结合果胶及多聚半乳糖醛酸酶、果胶裂解酶活性呈极显著正相关(P<0.01),说明多聚半乳糖醛酸酶、果胶裂解酶参与了细胞壁果胶组分降解,导致无核君迁子果实的软化和可溶性糖的升高。
无核君迁子与柿树嫁接成活率高,是中国北方的主要砧木树种,目前对君迁子的研究主要集中在嫁接适宜性及成活率方面,而忽略了其作为果树的经济价值,本研究对其果实资源的开发利用具有参考价值。
Variation patterns of physiological indices of seedless Diospyros lotus during fruit development and ripening
-
摘要:
目的 探讨无核君迁子Diospyros lotus果实发育成熟过程中生理指标的变化规律,为无核君迁子果实资源的进一步开发利用提供参考。 方法 以不同时期无核君迁子果实为材料,测定单宁、总酚、黄酮、花青素、糖和果胶组分以及果胶降解酶活性的变化规律,并分析其相关性。 结果 无核君迁子果实发育成熟过程中,可溶性单宁和花青素不断降低,不溶性单宁、淀粉、果糖、葡萄糖、糖酸比、水溶性果胶、离子结合果胶逐渐上升,总酚、黄酮、可滴定酸和共价结合果胶先升后降;多聚半乳糖醛酸酶和果胶裂解酶活性在果实软熟期显著上升(P<0.05)。相关性分析表明:水溶性果胶、离子结合果胶与多聚半乳糖醛酸酶、果胶裂解酶活性呈极显著正相关(P<0.01),共价结合果胶与多聚半乳糖醛酸酶、果胶裂解酶活性呈显著负相关(P<0.05),淀粉、果糖、葡萄糖与水溶性果胶、离子结合果胶及多聚半乳糖醛酸酶、果胶裂解酶活性呈极显著正相关(P<0.01)。 结论 无核君迁子果实发育成熟过程中,可溶性单宁逐渐下降至可食用阈值以下,多聚半乳糖醛酸酶和果胶裂解酶参与催化细胞壁果胶组分降解,进而引起无核君迁子果实果胶组分变化、可溶性糖升高以及活性成分变化。图4表2参29 Abstract:Objective This study, with an investigation of the variation patterns of physiological indices of seedless Diospyros lotus during fruit development and ripening, is aimed to provide a theoretical basis for the further utilization of such resources. Method With fruits of seedless D. lotus of different stages collected, a survey was conducted of the variation patterns of tannin, total polyphenols and flavonoids, anthocyanins, sugar and pectin composition, as well as the activity of pectin degrading enzyme before an analysis was conducted of the correlation. Result During the fruit development and ripening there was a constant decrease in the contents of soluble tannin and anthocyanin and a gradual increase in the contents of insoluble tannin, starch, fructose, glucose, sugar-acid ratio, water soluble pectin and ironic soluble pectin whereas there was first an increase and then a decrease in the contents of total polyphenols, flavonoids, titratable acids and covalent soluble pectin content. There was a significant increase in the activities of polygalacturonase and pectate lyase at the later stage of fruit ripening (P< 0.05). There was a significant positive correlation between the contents of water soluble pectin and ironic soluble pectin and the activities of polygalacturonase and pectate lyase (P<0.01), a significant negative correlation between the contents of covalent soluble pectin and the activities of polygalacturonase and pectate lyase (P< 0.05) and a significant positive correlation between the contents of starch, fructose and glucose and the contents of water soluble pectin, ironic soluble pectin as well as the activities of polygalacturonase and pectate lyase (P< 0.01). Conclusion During the development and ripening of seedless D. lotus, the content of soluble tannin gradually decreased to below the edibility threshold while polygalacturonase and pectate lyase enzymes were involved in the catalytic degradation of pectin components in the cell wall, which led to the change of pectin components, the increase of soluble sugar content and the change of active components in the fruit. [Ch, 4 fig. 2 tab. 29 ref.] -
森林是陆地生态系统的主体,具有涵养水源、保持水土和调控径流等多种生态服务功能,被称为“绿色水库”[1]。森林主要通过林冠层、灌草层、凋落物层和土壤层截留和储存降水,从而有效涵蓄水分和补充地下水[2−4]。其中,凋落物层作为森林生态系统水源涵养功能垂直结构中的第三水文层,对森林的水源涵养功能有着重要作用。一方面,凋落物覆盖在地表层能够减小雨滴动能、加强雨水入渗和降低土壤水分蒸发[5−6];另一方面,凋落物利用其自身的结构特性,能够吸持超过自身质量2~5倍的水分,可拦蓄超过60%的地表径流量,能有效拦蓄降水和减少土壤侵蚀等[7−8]。此外,凋落物的分解过程,能够促进土壤养分循环、改善土壤结构、增加土壤抗蚀性和土壤持水能力,从而使森林涵养水源功能得到充分的发挥[9−11]。
国内外学者对森林的凋落物层水源涵养功能进行了大量研究,如中国温带地区的森林凋落物层生物量比亚热带和热带高[12];成熟林的凋落物层拦蓄降水量比幼龄林和过熟林大[13];合理的森林密度能提高林地凋落物层的持水能力[14−15]。除气候、林龄和密度对凋落物的持水能力有影响外,不同森林类型凋落物的水源涵养功能也有明显差异[16−17]。有研究表明:人工林的凋落物层生物量和有效拦蓄量大于天然林[18−19];阔叶林的持水性能优于针叶林[20−21];混交林的水源涵养能力比纯林强[8, 22]。上述研究不同森林的水源涵养功能有一定的地域性,普遍规律较弱,因此还需要进一步完善对不同地区森林的凋落物层水文效应研究。
坝上地区属于典型的土石山区,年降水量少、土壤层薄和水土保持能力低,但同时也是京津冀一道重要的屏障,对坝上地区森林的水土保持研究非常重要[23−24]。目前对坝上地区森林的研究多以人工林和纯林为对象,且主要是单一森林类型的比较研究[20, 25−26],针对不同森林类型的凋落物层水源涵养功能研究较少,这就不能准确评估该区域的水源涵养能力,难以制定有效的水土保持措施。基于此,本研究选取坝上崇礼地区的华北落叶松Larix gmelinii var. principis-rupprechtii林、白桦Betula platyphylla林、山杨Populus davidiana-白桦混交林(杨桦混交林)和华北落叶松-白桦混交林(落桦混交林) 4种森林类型,对其森林凋落物层的生物量以及不同分解层持水能力进行定量分析,比较不同森林类型凋落物层的水源涵养功能,以期为坝上地区森林生态系统的植被恢复和水土保持能力提升提供科学依据。
1. 研究地区与方法
1.1 研究区概况
研究区在河北崇礼森林生态系统观测研究站,该区位于河北省张家口市和平林场内(40°47′~41°17′N,114°17′~115°34′E),海拔为814.0~2 174.0 m,属温带大陆性季风气候。地形大部分为山地,地势呈现由西北向东南倾斜的趋势,年均气温为3.7 ℃,年均降水量为300.0 mm,降水集中在夏季,时有冰雹和暴雨灾害。土壤以栗钙土、棕壤土、褐土和草甸土为主。植被属于暖温带落叶阔叶林和温带草原类型,植物区系呈现较大的过渡特点,在暖温带落叶阔叶林类型中,森林类型主要是天然次生林植被,以白桦和山杨面积最大,人工针叶林有华北落叶松、云杉Picea asperata、马尾松Pinus massoniana和油松Pinus tabuliformis等。
1.2 样地设置
在查阅张家口市和平林场森林资源档案和野外调查的基础上,2022年6—9月,在张家口市和平林场内选取林龄为35 a,且具有代表性的4种森林类型为研究对象,包括华北落叶松林(PL)、白桦林(NP)、杨桦混交林(NBP)和落桦混交林(PBL)。每种类型森林设置3块20 m×30 m的样地,共计12块,进行木本植物每木检尺,记录海拔、坡度、坡向等信息。样地基本概况见表1。
表 1 样地基本概况Table 1 Basic information of the sample plots森林类型 海拔/m 坡向 坡度/(°) 树高/m 胸径/cm 密度/(株·hm−2) 郁闭度 华北落叶松林 1 846.7 阴坡 18.0±1.5 16.0±0.9 30.2±0.3 1 033.0±90.3 0.75±0.21 白桦林 1 648.7 阴坡 20.7±3.3 10.8±0.2 11.0±0.5 3 339.0±152.5 0.80±0.11 杨桦混交林 1 685.5 阴坡 25.0±3.9 10.0±0.5 10.6±0.9 3 525.0±118.1 0.83±0.10 落桦混交林 1 696.0 阴坡 19.0±2.7 12.0±0.8 16.2±0.8 2 890.0±106.9 0.70±0.15 说明:数据为平均值±标准误。 1.3 凋落物层调查
在每个样地内随机设置5个0.5 m×0.5 m的凋落物小样方,将样方内凋落物按照分解程度,划分为半分解层(凋落物形状不完整且开始腐烂,肉眼可以分辨出大体形状)和未分解层(凋落物的形态和颜色基本保持原状,外表无被分解痕迹),使用钢卷尺(1 mm精度)分别测定凋落物各层厚度,分层收集样方内的凋落物,带回实验室称量,在85 ℃烘干后称量,计算单位面积凋落物的生物量。
1.4 凋落物持水能力测定
采用浸泡法,在每个样方内取适量烘干的凋落物样品,装入尼龙网袋后浸入水中,分别测定浸水0.5、1.0、2.0、4.0、6.0、8.0、10.0、12.0、24.0 h后凋落物质量的变化,计算凋落物的最大持水率、自然含水率、最大拦蓄率、有效拦蓄率、最大持水量、有效拦蓄量和最大拦蓄量。计算公式如下:
$$ {R}_{\mathrm{h}\mathrm{m}\mathrm{a}\mathrm{x}}=\frac{{G}_{24}-{G}_{\mathrm{干}}}{{G}_{\mathrm{干}}}\times 100\% \text{;} $$ (1) $$ {R}_{\mathrm{O}}=\frac{{G}_{\mathrm{鲜}}-{G}_{\mathrm{干}}}{{G}_{\mathrm{干}}}\times 100\% \text{;} $$ (2) $$ {R}_{\mathrm{M}}={R}_{\mathrm{h}\mathrm{m}\mathrm{a}\mathrm{x}}-{R}_{\mathrm{O}} \text{;} $$ (3) $$ {R}_{\mathrm{S}}=0.85 {R}_{\mathrm{h}\mathrm{m}\mathrm{a}\mathrm{x}}-{R}_{\mathrm{O}} \text{;} $$ (4) $$ {W}_{\mathrm{h}\mathrm{m}\mathrm{a}\mathrm{x}}={R}_{{\mathrm{hmax}}}\times {G}_{\mathrm{C}} \text{;} $$ (5) $$ W_{\mathrm{s}}=(0.85 {W}_{{\mathrm{hmax}}}-{R}_{\mathrm{O}})\times {G}_{\mathrm{C}} \text{;} $$ (6) $$ W_{\mathrm{u}}=({R}_{\mathrm{h}\mathrm{m}\mathrm{a}\mathrm{x}}-{R}_{\mathrm{O}})\times {G}_{\mathrm{C}} 。 $$ (7) 式(1)~(7)中:Rhmax、RO、RM和RS分别代表凋落物层的最大持水率(%)、自然含水率(%)、最大拦蓄率(%)和有效拦蓄率(%);Whmax、Ws和Wu分别代表最大持水量(t·hm−2)、有效拦蓄量(t·hm−2)和最大拦蓄量(t·hm−2);GC、G鲜、G干、G24分别为凋落物生物量(t·hm−2)、自然状态下的质量(g)、烘干后的质量(g)、浸泡24 h后的质量(g);0.85为有效拦蓄系数。
1.5 数据处理
运用Excel 2010和SPSS 19.0进行数据处理和统计分析,用单因素方差分析(one-way ANOVA)和最小显著极差法(LSD)分析不同森林凋落物层的厚度、蓄积量和持水能力差异,采用Origin 2021作图。
2. 结果与分析
2.1 不同森林类型凋落物层的生物量和厚度
4种森林类型凋落物层厚度为32.3~62.7 mm (表2),从大到小依次为落桦混交林、华北落叶松林、白桦林、杨桦混交林,其中,华北落叶松林和落桦混交林显著大于杨桦混交林(P<0.05)。凋落物层总生物量为8.27~23.33 t·hm−2,从大到小依次为华北落叶松林、落桦混交林、杨桦混交林、白桦林,其中,华北落叶松林显著大于其他3种森林类型(P<0.05)。
表 2 不同森林类型凋落物层的厚度和生物量Table 2 Litter thickness and biomass of different forest types森林类型 半分解层 未分解层 厚度/mm 总生物量/(t·hm−2) 生物量/(t·hm−2) 比例/% 生物量/(t·hm−2) 比例/% 华北落叶松林 15.75±2.41 a 67.51 7.57±2.09 a 32.49 53.0±8.70 ab 23.33±4.47 a 白桦林 5.47±0.65 b 66.14 2.80±0.78 bc 33.86 36.0±6.90 bc 8.27±1.11 b 杨桦混交林 5.79±0.09 b 50.09 5.78±0.50 ab 49.91 32.0±1.86 c 11.56±0.42 b 落桦混交林 13.41±2.18 a 90.61 1.40±0.16 c 9.39 62.0±3.70 a 14.80±2.03 b 说明:数据为平均值±标准误。同列不同字母表示同一指标不同森林类型间差异显著(P<0.05)。 从凋落物的未分解层和半分解层生物量来看,未分解层生物量为华北落叶松林最大,落桦混交林最小,华北落叶松林和杨桦混交林显著大于落桦混交林(P<0.05);半分解层生物量为华北落叶松林最大,白桦林最小,华北落叶松林和落桦混交林显著大于杨桦混交林和白桦林(P<0.05)。从凋落物的半分解层和未分解层生物量所占比例来看,4种森林的半分解层生物量所占比例均大于未分解层,且极端比例出现在落桦混交林,其半分解层占比最大,为90.61%。
2.2 不同森林类型凋落物层的最大持水量和最大持水率
如图1所示:凋落物层的最大持水量从大到小依次为华北落叶松林、落桦混交林、杨桦混交林、白桦林,与总生物量的变化规律一致,华北落叶松林显著大于白桦林(P<0.05)。半分解层最大持水量为10.55~33.37 t·hm−2,华北落叶松林和落桦混交林显著大于白桦林和杨桦混交林(P<0.05);未分解层最大持水量为2.98~16.35 t·hm−2,华北落叶松林和杨桦混交林显著大于落桦混交林(P<0.05)。此外,除杨桦混交林外,华北落叶松林、白桦林和落桦混交林的半分解层最大持水量明显大于未分解层。
凋落物层的最大持水率白桦林最大,为231.15%,杨桦混交林和落桦混交林次之,华北落叶松林最小,为208.92%,不同森林类型间最大持水率无显著差异。半分解层最大持水率为182.17%~220.90%,从大到小依次为白桦林、华北落叶松林、落桦混交林、杨桦混交林,不同森林类型间无显著差异。未分解层最大持水率为208.77%~274.51%,从大到小依次为杨桦混交林、白桦林、落桦混交林、华北落叶松林,杨桦混交林显著大于华北落叶松林和落桦混交林(P<0.05)。除华北落叶松林外,其他3种森林类型未分解层最大持水率均大于半分解层。
2.3 不同森林类型凋落物层的拦蓄能力
2.3.1 凋落物层的最大拦蓄量和最大拦蓄率
如图2所示:4种森林类型凋落物层最大拦蓄量为华北落叶松林最大,为39.05 t·hm−2,白桦林最小,为16.73 t·hm−2,与最大持水量的变化规律一致,华北落叶松林显著大于其他3种森林类型(P<0.05)。半分解层最大拦蓄量从大到小依次为华北落叶松林、落桦混交林、白桦林、杨桦混交林,华北落叶松林和落桦混交林与白桦林、杨桦混交林存在显著差异(P<0.05);未分解层最大拦蓄量从大到小依次为杨桦混交林、华北落叶松林、白桦林、落桦混交林,其中,杨桦混交林显著大于白桦林、落桦混交林(P<0.05),华北落叶松林显著大于落桦混交林(P<0.05)。
凋落物层的最大拦蓄率从大到小依次为白桦林、杨桦混交林、落桦混交林、华北落叶松林,与凋落物层最大持水率的变化规律一致,其中,白桦林和杨桦混交林显著大于落桦混交林、华北落叶松林(P<0.05)。半分解层最大拦蓄率为151.84%~192.28%,从大到小依次为白桦林、华北落叶松林、落桦混交林、杨桦混交林,其中,白桦林显著大于落桦混交林、杨桦混交林(P<0.05)。未分解层最大拦蓄率为175.43%~257.56%,从大到小依次为杨桦混交林、白桦林、落桦混交林、华北落叶松林,其中,杨桦混交林显著大于其他3种森林类型(P<0.05),华北落叶松林显著小于其他3种森林类型(P<0.05)。
2.3.2 凋落物层的有效拦蓄量和有效拦蓄率
如图3所示:4种森林凋落物层有效拦蓄量为13.90~31.56 t·hm−2,从大到小依次为华北落叶松林、落桦混交林、杨桦混交林、白桦林,与最大持水量和最大拦蓄量变化规律一致,华北落叶松林显著大于其他3种森林类型(P<0.05)。半分解层华北落叶松林和落桦混交林有效拦蓄量分别为20.78和17.36 t·hm−2,显著大于白桦林(8.60 t·hm−2)和杨桦混交林(7.20 t·hm−2)(P<0.05);未分解层有效拦蓄量为2.87~14.87 t·hm−2,杨桦混交林最大,华北落叶松林和白桦林次之,落桦混交林最小。
凋落物层的有效拦蓄率为138.95%~172.94%,从大到小依次为白桦林、杨桦混交林、落桦混交林、华北落叶松林,与凋落物层最大持水率和最大拦蓄率变化规律一致,其中,白桦林和杨桦混交林显著大于落桦混交林、华北落叶松林(P<0.05)。半分解层有效拦蓄率为124.51%~159.14%,从大到小依次为白桦林、华北落叶松林、落桦混交林、杨桦混交林,其中,白桦林显著大于落桦混交林和杨桦混交林(P<0.05)。未分解层有效拦蓄率为144.12%~216.38%,从大到小依次为杨桦混交林、白桦林、落桦混交林、华北落叶松林,其中,杨桦混交林显著大于其他3种森林类型(P<0.05),华北落叶松林显著小于其他3种森林类型(P<0.05)。
2.4 不同森林类型凋落物层的吸水特性
2.4.1 凋落物层的持水量随浸水时长的变化
如图4所示:4种森林类型凋落物层持水量在浸水最初2.0 h内都迅速增加,处于快速吸水状态;在浸水2.0~8.0 h内,凋落物层持水量增加逐渐变缓;在浸水12.0 h后持水量增加明显较少,接近稳定状态;24.0 h后持水量达到最大值,处于饱和状态。不同森林类型凋落物半分解层和未分解层持水量变化有差异,半分解层持水量从大到小依次为白桦林、华北落叶松林、落桦混交林、杨桦混交林,未分解层持水量从大到小依次为杨桦混交林、白桦林、落桦混交林、华北落叶松林。对4种森林类型凋落物层持水量(w)与浸水时长(t)的关系进行拟合发现:持水量与浸水时间呈较好的对数函数关系(表3),关系式为$ {w}=k\mathrm{ln}t+b $。其中:k为系数,b为常数。
表 3 不同森林类型凋落物持水量和吸水速率与浸水时长的拟合方程Table 3 Simulated equations between water holding capacity, water absorption rate, and soaking time of litter in different forest types森林类型 凋落物层 持水量(w)与时长(t) 吸水速率(y)与时长(t) 回归方程 R2 回归方程 R2 华北落叶松林 未分解层 w=0.14 lnt+1.63 0.97 y=1.63 t−0.93 0.99 半分解层 w=0.11 lnt+1.79 0.94 y=1.78 t−0.91 0.99 白桦林 未分解层 w=0.23 lnt+1.75 0.98 y=1.73 t−0.89 0.99 半分解层 w=0.15 lnt+1.80 0.97 y=1.80 t−0.92 0.99 杨桦混交林 未分解层 w=0.16 lnt+2.12 0.98 y=2.11 t−0.93 0.99 半分解层 w=0.11 lnt+1.63 0.94 y=1.63 t−0.94 0.99 落桦混交林 未分解层 w=0.22 lnt+1.52 0.98 y=1.52 t−0.89 0.99 半分解层 w=0.17 lnt+1.62 0.97 y=1.60 t−0.91 0.92 2.4.2 凋落物的吸水速率随浸水时长的变化
如图5所示:4种森林类型凋落物层吸水速率在浸水最初2.0 h内急剧下降,在浸水2.0~8.0 h,吸水速率逐渐变缓,在浸水24.0 h时,吸水速率基本为0。半分解层的吸水速率从大到小依次为白桦林、华北落叶松林、落桦混交林、杨桦混交林,未分解层的吸水速率从大到小依次为杨桦混交林、白桦林、落桦混交林、华北落叶松林。对4种森林类型凋落物层吸水速率(y)与浸水时长(t)的关系进行拟合发现:凋落物吸水速率与浸水时长呈较好的幂函数关系(表3),关系式为$ y=k{t}^{n} $。其中:k为系数,n为指数。
3. 讨论
凋落物层生物量受到凋落物的分解速率、积累时间以及林龄、密度、森林类型、立地条件和气候等因素的影响[27−29]。本研究发现:4种森林类型凋落物层的生物量和厚度有明显差异,落桦混交林厚度最大,杨桦混交林厚度最小,这可能是阔叶树种的凋落物比针叶树更容易分解[30]。华北落叶松林凋落物层生物量最大,白桦林最小,且华北落叶松林显著大于其他3种森林类型,这与冀西北清水河流域的4种森林类型[18]的研究结果相近。一方面可能是由于华北落叶松林对光和养分等资源利用能力强,地上部植物生长状况好;另一方面是其叶片年凋落量大且分解速率慢,导致其生物量大[31]。另外,4种森林类型中凋落物未分解层生物量占比均小于半分解层,尤其是落桦混交林占比最小,这与崇陵流域4种森林类型的研究结果相似[5],可能是由于未分解层分解较快,凋落物现存量较少。而冀北山地6种人工林的未分解层生物量均大于半分解层[32],这主要是因为其林龄尚小且分解时间较短,使得凋落物未分解层累积量高。此外,4种森林类型凋落物厚度和生物量变化不一致,这与滨海沙地4种防护林凋落物层的研究结果不一致[33],可能是由于针叶树凋落物分解速率慢,而阔叶树凋落物分解较快,以及与凋落物的结构也有关系,导致华北落叶松林和杨桦混交林凋落物厚度较低,但生物量最大,落桦混交林和白桦林凋落物厚度较大,但生物量偏低。
本研究表明:凋落物层最大持水率从大到小依次为白桦林、杨桦混交林、落桦混交林、华北落叶松林。这一方面是因为阔叶树种的凋落物层易分解,且其分解后结构变疏松,导致吸水速率大[34];另一方面,针叶树种的叶片富含油脂,叶片角质层发达难分解,亲水性较差,导致其持水率低[20]。而凋落物层最大持水量从大到小依次为华北落叶松林、落桦混交林、杨桦混交林、白桦林,其变化规律与最大持水率相反,这与阔叶林凋落物层持水能力优于针叶林的研究结果不一致[20−21],因为最大持水量除与凋落物性质有关外,还主要取决于生物量大小,最大持水量与生物量呈线性正相关关系[35]。4种森林类型凋落物层最大持水率总体表现为未分解层大于半分解层,而持水量表现为半分解层大于未分解层,这与大兴安岭兴安落叶松Larix gmelinii林凋落物的研究结果不一致[36],这可能是随着凋落物的分解,其单位面积可持水性物质减少,导致半分解层最大持水率减小。此外,不同森林类型凋落物的持水能力有差异的原因也是多样的,凋落物持水性能还受到立地条件和人为干扰等因素的影响。
4种森林类型凋落物层最大拦蓄量、有效拦蓄量与最大持水量变化规律一致。凋落物层最大拦蓄率、有效拦蓄率与最大持水率变化规律基本一致,这与湖南会同杉木Cunninghamia lanceolata人工林的研究结果相似[8]。华北落叶松林和落桦混交林凋落物层有效拦蓄量大于杨桦混交林和白桦林,说明华北落叶松林和落桦混交林拦蓄降水能力优于杨桦混交林和白桦林,这可能是因为华北落叶松林生产力高、生长状况好和林下植物多样性高,林内环境更适宜凋落物积累,导致凋落物层有效拦蓄量较大。而白桦和山杨属于次生林,林地曾受人为干扰,凋落物分解速率快且积累量少,造成白桦林凋落物有效拦蓄量低。有效拦蓄量不仅与凋落物现存量有关外,还受凋落物分解程度和气候等因素的影响,因此不同分解层凋落物拦蓄能力有差异[2]。
4种森林类型凋落物的持水量和吸水速率与浸水时间呈现相似的规律,在浸水初期,凋落物由于表面水势差较大而迅速吸水;随着浸水时间的延长,持水量逐渐增大并趋向饱和,吸水速率逐渐减小并趋向稳定;凋落物层持水量、吸水速率与浸水时长分别呈现较好的对数和幂函数关系。这与冀西北山地[19]和小五台山地区[37]森林凋落物持水过程的研究结果一致,表明林地凋落物在降水前期能快速吸水,发挥拦蓄降水作用,有助于保持水土和涵养水源。
以往的研究中大多认为天然林的水土保持能力在各个层面均比人工林更好[38],而本研究结果表明:坝上地区人工林(华北落叶松林)与天然林(白桦林、杨桦混交林)的凋落物持水性能之间差异不显著,而人工林凋落物层生物量显著大于天然林,凋落物层最大持水量和有效拦蓄量比天然林提高了71.93%、59.96%,其凋落物层的综合水源涵养效果比天然林更好,这与青海省塔尔沟小流域森林凋落物层的研究结果相似[38]。这一方面可能是落叶松林适宜坝上地区的水热条件,生长状况好,凋落物累积量较多;另一方面,山杨和白桦属于次生林,前期的人为干扰对其水土保持能力也有一定的影响。此外,森林的水文功能除与凋落物层有关外,还受林冠层、土壤层和树木生态特性等多种因素的影响。综上,在不同的区域内,天然林凋落物层的水源涵养效果不一定都是最优,而人工辅助措施营造的人工林也能显著提高林地水土保持效果,这为后期研究人工林的生态效益提供新的认识。
4. 结论
本研究表明:白桦林和杨桦混交林凋落物层的持水率和拦蓄率较高。但综合考虑凋落物层厚度、生物量、持水量和拦蓄水量等各项水文指标,落叶松林和落桦混交林凋落物层水源涵养能力更强。因而,在后期坝上地区的林业规划过程中,可以考虑引种人工针叶林,或在阔叶纯林中混交针叶树种等措施,充分发挥人工林凋落物层的生态效益,实现森林的水源涵养能力提升。
-
表 1 淀粉、可溶性糖、可滴定酸和糖酸比在果实发育成熟过程中的变化
Table 1. Changes of soluble starch, soluble sugar, titratable acid and sugar-acid ratio during fruit development and ripening
采样时间(月-日) 淀粉/(mg·g−1) 果糖/(mg·g−1) 葡萄糖/(mg·g−1) 蔗糖/(mg·g−1) 可滴定酸/(mg·g−1) 糖酸比 06-15 9.48±0.79 a 9.85±0.34 a 17.25±0.40 a 8.09±0.17 5.05±0.05 e 6.96±0.16 a 07-15 12.27±0.91 ab 11.58±0.53 a 17.68±0.10 a 16.01±0.14 6.05±0.37 d 7.49±0.36 a 08-15 13.74±0.31 b 37.59±0.45 b 33.58±0.56 b − 4.43±0.23 c 16.08±0.80 b 09-15 20.77±1.45 c 60.34±2.41 c 46.63±2.07 c − 4.13±0.17 bc 25.97±1.73 c 10-15 24.90±0.20 d 95.30±2.62 d 78.42±2.53 d − 3.85±0.18 ab 45.22±3.23 d 11-15 56.70±3.60 e 151.85±5.61 e 132.88±4.65 e − 3.54±0.16 a 80.43±3.64 e 说明:同列不同的字母表示差异显著(P<0.05)。−表示未检出 表 2 无核君迁子果实发育成熟过程中各指标的Pearson相关性分析
Table 2. Pearson correlation coefficients analysis of seedless D. lotus fruit
指标 可溶性单宁 不溶性单宁 总酚 黄酮 花青素 淀粉 果糖 葡萄糖 可溶性单宁 1 不溶性单宁 −0.963** 1 总酚 0.706** −0.615** 1 黄酮 0.837** −0.735** 0.908** 1 花青素 0.325 −0.215 0.065 0.406 1 淀粉 −0.973** 0.911** −0.709** −0.808** −0.348 1 果糖 −0.946** 0.841** −0.651** −0.834** −0.500* 0.951** 1 葡萄糖 −0.975** 0.893** −0.679** −0.843** −0.439 0.972** 0.994** 1 可滴定酸 0.666** −0.527* 0.310 0.504* 0.384 −0.678** −0.826** −0.784** 糖酸比 −0.973** 0.892** −0.692** −0.848** −0.431 0.971** 0.991** 0.998** 水溶性果胶 −0.922** 0.941** −0.668** −0.708** −0.201 0.938** 0.803** 0.855** 离子结合果胶 −0.936** 0.942** −0.669** −0.696** −0.133 0.953** 0.831** 0.880** 共价结合果胶 0.453 −0.364 0.819** 0.605** −0.393 −0.453 −0.404 −0.432 多聚半乳糖醛酸酶 −0.941** 0.944** −0.807** −0.846** −0.098 0.891** 0.824** 0.877** 果胶裂解酶 −0.893** 0.920** −0.647** −0.636** −0.030 0.911** 0.765** 0.822** 指标 可滴定酸 糖酸比 水溶性果胶 离子结合果胶 共价结合果胶 多聚半乳糖
醛酸酶果胶裂解酶 可滴定酸 1 糖酸比 −0.784** 1 水溶性果胶 −0.437 0.859** 1 离子结合果胶 −0.524* 0.881** 0.986** 1 共价结合果胶 0.309 −0.443 −0.382 −0.459 1 多聚半乳糖醛酸酶 −0.492* 0.882** 0.896** 0.906** −0.611** 1 果胶裂解酶 −0.463 0.823** 0.969** 0.991** −0.480* 0.888** 1 说明:*表示P<0.05;**表示P<0.01 -
[1] YAMAGISHI M, MATSUMOTO S, NAKATSUKA A, et al. Identification of persimmon (Diospyros kaki) cultivars and phenetic relationships between Diospyros species by more effective RAPD analysis [J]. Sci Hortic, 2005, 105(2): 283 − 290. [2] MAO Weitao, YAO Guoxin, WANG Shangde, et al. Chromosome-level genomes of seeded and seedless date plum based on third-generation DNA sequencing and Hi-C analysis[J/OL]. For Res, 2021, 1: 9[2021-05-01]. doi: 10.48130/FR-2021-0009. [3] 唐霞, 梁爽, 张华, 等. 发酵型黑枣酒加工工艺的研究[J]. 食品工业, 2015, 36(9): 1 − 5. TANG Xia, LIANG Shuang, ZHANG Hua, et al. Study on processing technology of fermentation dateplum persimmon wine [J]. Food Ind, 2015, 36(9): 1 − 5. [4] 畅凌冰, 王治军, 梁臣, 等. 黑枣的价值及繁育[J]. 绿色科技, 2012(10): 68 − 69. CHANG Lingbing, WANG Zhijun, LIANG Chen, et al. Study of values and breeding of dateplum persimmon [J]. J Green Sci Technol, 2012(10): 68 − 69. [5] 滕宁宁, 王明, 吴一飞, 等. 君迁子药学研究概况[J]. 辽宁中医药大学学报, 2010, 12(9): 81 − 82. TENG Ningning, WANG Ming, WU Yifei, et al. Overview of pharmacological research of Diospyros lotus L. [J]. J Liaoning Univ Tradit Chin Med, 2010, 12(9): 81 − 82. [6] 乔小全, 任广跃, 乔梦, 等. 干燥方式对黑枣粉品质特性的影响[J]. 食品与机械, 2018, 34(8): 189 − 194, 220. QIAO Xiaoquan, REN Guangyue, QIAO Meng, et al. Effects of different drying methods on the powder quality characteristic in dateplum persimmon [J]. Food Mach, 2018, 34(8): 189 − 194, 220. [7] TIEMAN D, ZHU Guangtao, RESENDE M, et al. A chemical genetic roadmap to improved tomato flavor [J]. Science, 2017, 355: 391 − 394. [8] 程焕. 杨梅风味特征组分鉴定及变化规律的研究[D]. 杭州: 浙江大学, 2017. CHENG Huan. Study on the Flavor Characteristics and Changes of Chinese bayberry (Myrica rubra)[D]. Hangzhou: Zhejiang University, 2017. [9] 关军锋. 果实品质生理[M]. 北京: 科学出版社, 2008: 1 − 18. GUAN Junfeng. Physiology of Fruit Quality[M]. Beijing: Science Press, 2008: 1 − 18. [10] 齐秀东, 魏建梅, 高海生, 等. 梨果实发育软化与果胶多糖降解特性的关系[J]. 中国农业科学, 2015, 48(15): 3027 − 3037. QI Xiudong, WEI Jianmei, GAO Haisheng, et al. Pectin polysaccharide degradation in relation to the texture softening in pear fruit [J]. Sci Agric Sin, 2015, 48(15): 3027 − 3037. [11] 周淑荣, 郭文场, 刘佳贺. 黑枣的栽培管理[J]. 特种经济动植物, 2018, 21(11): 48 − 49. ZHOU Shurong, GUO Wenchang, LIU Jiahe. Cultivation and management of dateplum persimmon [J]. Spec Econ Anim Plant, 2018, 21(11): 48 − 49. [12] 刘春晖, 谢春阳. 响应面法对黑枣真空冷冻干燥时间工艺的优化[J]. 食品工业, 2015, 36(3): 199 − 202. LIU Chunhui, XIE Chunyang. Optimization of process dateplum persimmon vacuum freeze drying time of response surface method [J]. Food Ind, 2015, 36(3): 199 − 202. [13] 昝立峰, 杨香瑜, 张策, 等. 响应面优化涉县无核黑枣果酒发酵工艺[J]. 食品研究与开发, 2019, 40(8): 139 − 144. ZAN Lifeng, YANG Xiangyu, ZHANG Ce, et al. Optimization of fermentation of dateplum fruit wine by response surface methodology [J]. Food Res Dev, 2019, 40(8): 139 − 144. [14] 余轩. ‘磨盘柿’果实乙醇和冻融脱涩技术的研究[D]. 武汉: 华中农业大学, 2010. YU Xuan. Ethanol and Frozen-Thawing Treatments for ‘Damopan’ Persimmon Astringency Removal[D]. Wuhan: Huazhong Agricultural University, 2010. [15] 韩卫娟, 李加茹, 李华威, 等. 不同(品)种柿叶总酚与总黄酮含量年动态变化研究[J]. 中国农业大学学报, 2016, 21(2): 31 − 40. HAN Weijuan, LI Jiaru, LI Huawei, et al. Annual variation of total polyphenol and flavonoid contents in leaves of different species (varieties) of Diospyros [J]. J China Agric Univ, 2016, 21(2): 31 − 40. [16] 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007: 8 − 54. CAO Jiankang, JIANG Weibo, ZHAO Yumei. Postharvest Physiological and Biochemical Experimental Guidance for Fruits and Vegetables [M]. Beijing: China Light Industry Press, 2007: 8 − 54. [17] 杜改改, 李泰山, 刁松锋, 等. 6个杏李品种果实甜酸风味品质分析[J]. 果树学报, 2017, 34(1): 41 − 49. DU Gaigai, LI Taishan, DIAO Songfeng, et al. Analysis of sweet and sour flavor in six Prunus domestica×armeniaca cultivars and evaluation of their flavor quality [J]. J Fruit Sci, 2017, 34(1): 41 − 49. [18] REN Yuanyuan, SUN Pengeng, WANG Xuanxuan, et al. Degradation of cell wall polysaccharides and change of related enzyme activities with fruit softening in Annona squamosa during storage[J/OL]. Postharvest Biol Technol, 2020, 166: 111203[2021-05-20]. doi: 10.1016/j.postharvbio.2020.111203. [19] ZHI Huanuan, LIU Qiqi, XU Juan, et al. Ultrasound enhances calcium absorption of jujube fruit by regulating the cellular calcium distribution and metabolism of cell wall polysaccharides [J]. J Sci Food Agric, 2017, 97(15): 5202 − 5210. [20] 孙鹏, 李加茹, 韩卫娟, 等. 涩柿资源果实CO2脱涩难易及其与表型、内含物相关性[J]. 中国农业大学学报, 2016, 21(6): 28 − 40. SUN Peng, LI Jiaru, HAN Weijuan, et al. CO2 de-actringence status among astringent persimmon resources and its correlation with fruit morphological characteristics and content of active ingredients [J]. J China Agric Univ, 2016, 21(6): 28 − 40. [21] BUBBA M D, GIORDANI E, PIPPUCCI L, et al. Changes in tannins, ascorbic acid and sugar content in astringent persimmons during on-tree growth and ripening and in response to different postharvest treatments [J]. J Food Compos Anal, 2009, 22: 668 − 677. [22] 赵剑波, 吴本宏, 姜全, 等. 桃种质资源糖酸品质研究进展[J]. 北方园艺, 2008(4): 107 − 109. ZHAO Jianbo, WU Benhong, JIANG Quan, et al. Advances on quality of sugars and acids in peach germplasm rresources [J]. North Hortic, 2008(4): 107 − 109. [23] 田娟, 王磊, 陈庆富. 不同地区火棘果实中淀粉含量的研究[J]. 河南农业科学, 2011, 40(11): 109 − 112. TIAN Juan, WANG Lei, CHEN Qingfu. The variation of starch content in Pyracantha fruit of different regions [J]. J Henan Agric Sci, 2011, 40(11): 109 − 112. [24] 叶玉平. 细胞壁多糖降解引起采后菠萝果实成熟软化机理的初步研究[D]. 湛江: 广东海洋大学, 2014. YE Yuping. Preliminary Study on the Mechanism of Ripening and Softening of Postharvest Pineapple Fruit by Induced Degradation of Cell Wall Polysaccharides [D]. Zhanjiang: Guangdong Ocean University, 2014. [25] 王华, 李茂福, 杨媛, 等. 果实花青素生物合成分子机制研究进展[J]. 植物生理学报, 2015, 51(1): 29 − 43. WANG Hua, LI Maofu, YANG Yuan, et al. Recent advances on the molecular mechanisms of anthocyanin synthesis in fruits [J]. Plant Physiol J, 2015, 51(1): 29 − 43. [26] 张慧文, 张玉, 马超美. 原花青素的研究进展[J]. 食品科学, 2015, 36(5): 296 − 304. ZHANG Huiwen, ZHANG Yu, MA Chaomei. Progress in procyanidins research [J]. Food Sci, 2015, 36(5): 296 − 304. [27] 王玥. 柿果胶与单宁互作及其对柿果涩味的影响[D]. 武汉: 华中农业大学, 2019. WANG Yue. The Interaction between Persimmon Pectin and Persimmon Tannin and Its Effect on the Astringency of Persimmon[D]. Wuhan: Huazhong Agricultural University, 2019. [28] 张宝善, 伍晓红, 陈锦屏. 柿单宁研究进展[J]. 陕西师范大学学报(自然科学版), 2008, 36(1): 99 − 105. ZHANG Baoshan, WU Xiaohong, CHEN Jinping. Research progress in procyanidins [J]. J Shaanxi Norm Univ Nat Sci Ed, 2008, 36(1): 99 − 105. [29] 罗自生. GA3对柿果实成熟软化及细胞壁组分代谢的影响[J]. 浙江大学学报(农业与生命科学版), 2006, 32(4): 415 − 419. LUO Zisheng. Effect of GA3 on ripening and cell wall component metabolism of persimmon fruit [J]. J Zhejiang Univ Agric Life Sci, 2006, 32(4): 415 − 419. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210421