-
18世纪60年代工业革命以来,由于全球土地利用变化、工业活动和化石燃料的使用,大量温室气体排放至大气中[1]。甲烷(CH4)和二氧化碳(CO2)等温室气体的大量排放,导致全球增温和气候变化,人类开始关注陆地生态系统碳循环过程和消失的碳汇(missing carbon sink)[1]。了解植物(草地、森林生态系统)对大气CO2吸收和排放的调节作用是人类应对全球气候变化的基础[1-2]。森林生态系统是陆地生态系统物质循环和能量流动的重要组成部分,开展不同生态尺度的森林生态系统碳循环研究对更好地了解陆地生态系统与大气间的碳交换过程,制定全球碳排放和碳交易政策(如欧洲碳排放交易体系等),应对全球气候变化具有参考和服务作用[2-4]。涡动相关系统是目前应用较多的温室气体观测技术。本文主要依据涡动相关观测系统对森林生态系统CO2通量观测值、微气象数据等相关研究成果,讨论森林生态系统CO2通量观测原理和数据预处理、CO2通量动态特征、CO2通量环境影响因素、CO2通量足迹估算等方面的研究成果,为其他森林生态系统碳循环研究提供服务和方法参考。
-
研究森林生态系统碳循环过程就必须对其和大气间碳交换过程进行不同时间尺度/间隔的观测,其中对森林生态系统与大气间垂直碳交换即CO2通量观测是研究森林生态系统碳循环过程的重要研究内容[5-6]。CO2通量是指在一定生态尺度下单位时间单位面积内CO2流通的量,一般以μmol·m−2·s−1为单位,亦可依据不同的科学问题的需要对其质量单位、面积单位和时间单位进行换算[3]。对森林生态系统CO2通量进行观测的方式也较多,如自下而上(bottom-up)的涡动协方差/涡动相关技术和自上而下(top-down)的参数化遥感产品等[3]。20世纪90年代以来,涡动相关系统开始广泛应用于高大植被较多的森林生态系统CO2通量观测[7-8]。如今随着涡动相关系统的推广,为了数据共享和数据处理标准化形成了国际通量网(FLUXNET,https://fluxnet.fluxdata.org/),中国通量网(ChinaFLUX,http://www.chinaflux.org/)等全球-区域的通量和微气象数据共享网络平台[9-10]。依据国际通量网2017年2月的统计结果,目前在其注册的站点全球共914个,其中较多站点为森林生态系统CO2通量观测站点,且多分布于温带地区。基于涡动相关系统森林生态系统CO2通量观测的研究也较多,如森林生态系统的碳源/汇估算、CO2通量观测源区/足迹的计算、CO2通量动态特征的提取、CO2通量预测/建模、地面观测值与遥感观测值的验证等[5-8,11-18]。开展基于涡动相关系统的森林生态系统CO2通量研究,可以为了解陆地生态系统碳循环过程,应对全球气候变化和评估全球碳平衡提供服务和参考[17]。
-
大气湍流是下垫面与大气间进行物质交换和能量流动的主要方式,为记录其过程中物质和能量流通的量,涡动相关系统便因此诞生[8]。该系统一般安装在地面边界层内,在该层中通量随高度变化的影响较小,在该层开展下垫面与大气的碳交换具有较高的空间代表性[8]。涡动相关系统一般以10~20 Hz的采样频率来记录一定观测高度(zm,m)上的微气象信息(三维风速/风向、超声虚温等)和某物质(CO2、H2O和CH4等)流通的量,后一般取一定时间间隔内(30 min)的平均值来记录微气象数据和通量数据,其中已经假设垂直风速的时间平均值为0 m·s−1,CO2通量可依据下式计算[8]:
$$ {F_{\rm{C}}} = \overline {w'{\rho _{\rm{C}}}'} \text{。} $$ (1) 式(1)中:FC为CO2通量(μmol·m−2·s−1或g·m−2·s−1)。w为垂直风速(m·s−1),w'为垂直风速脉动量(m·s−1),代表垂直风速瞬时值与平均值的偏差。ρC为CO2密度(kg·m−3),ρC'为CO2密度脉动量(kg·m−3),代表CO2密度瞬时值与平均值的偏差。公式横上线代表时间平均[8]。当FC<0时代表所观测的区域/下垫面为碳汇(carbon sink),当FC>0时代表所观测区域/下垫面为碳源(carbon source)[8]。
-
通量源区(source area)即代表涡动相关系统所测量CO2通量的下垫面来源。因涡动相关系统的观测受到下垫面、大气边界层环境等因素的影响,观测到的CO2通量只能代表传感器上风向一定区域内的状况,因此在使用这些CO2通量观测值时需要对CO2通量的观测源区的空间代表性进行评估[14]。
通量源区的足迹函数(footprint)代表上风向下垫面中若干个点源所形成的源区对在zm高度上所观测CO2通量F(0, 0, zm)的贡献强度。可由下式计算[18]:
$$ F(0,\;0,\;{z_{\rm{m}}}) = \int_{ - \infty }^\infty {\int_0^\infty {{F_0}(x,\;y,\;0)\phi (x,\;y,\;{z_{\rm{m}}}){\rm{d}}x{\rm{d}}y} } \text{。} $$ (2) 式(2)中:通量观测点为原点(0, 0),x轴指向来风方向,F0(x, y,0)为上风向源区中某一个点源(x, y)的通量贡献强度[源强,量纲与F(0, 0, zm)一致]。ϕ(x, y, zm)即为通量足迹函数(flux footprint predictions,FFP) [16],足迹函数的量纲为m−2。通量足迹函数的计算结果主要包括上风向通量足迹贡献峰值的位置(m),以及不同通量足迹贡献百分比(10%~95%)在上风向的位置(m)等信息[16]。由于当通量足迹贡献率为1时,通量源区为无限大,因此在进行通量源区的空间代表性的评估时,一般将通量足迹贡献率设定为80%~90%[16]。近年来,随着通量足迹函数的发展,出现了较多优秀通量足迹计算模型,依据其计算模式可分为解析式模型、拉格朗日随机扩散模型、大涡模拟模型、闭合模型等,具体为FSAM模型[19]、KM01模型[18]、KLJUN模型[16]等。KLJUN模型是目前较新颖的基于尺度(量纲)的通量足迹模型,也是目前应用至森林生态系统通量足迹计算较多的模型之一[14],KLJUN等[16]提供了该通量足迹计算模型的在线计算平台(http://footprint.kljun.net/index.php),并且还提供了该通量足迹计算模型在Matlab和R语言软件平台下的开源代码,可供研究人员进行下载和使用。
-
在使用和分析涡动相关系统对森林生态系统的CO2通量观测值时,需要对CO2通量数据进行质量控制和数据插补。CO2通量数据预处理过程如下表1所示[8]。为了方便和简化CO2通量数据的预处理过程,美国LI-COR公司(https://www.licor.com/)发展了几套基于涡动相关系统的配套通量数据计算软件,包括开源式涡动相关通量处理软件EddyPro。EddyPro集成了包括通量数据修正、质量控制、野点去除、通量足迹计算等预处理过程,使用方便。另外较新的通量处理软件Tovi,除了通量数据预处理功能之外还集成了通量源区绘制、数据插补等数据可视化功能。除了美国LI-COR公司之外,由德国马克斯普朗克生物地球化学研究所发展的通量数据在线预处理,插补和制图工具(https://www.bgc-jena.mpg.de/bgi/index.php/Main/HomePage)也为CO2通量数据和微气象数据的使用和分析提供了方便。
表 1 CO2通量数据预处理方法
Table 1. CO2 flux data preprocessing method
数据类型 数据预处理方法 10~20 Hz高频原始观测数据 频谱修正、野点去除、气体分析仪信号检验、传感器信号强度检验 30 min时间间隔通量和微气象观测数据 坐标轴旋转(2次旋转和3次旋转)、频率响应修正、感热的超声虚温修正、WPL密度修正 通量数据质量控制 通量数据合格率检验(一般要求合格率大于50%)、建立通量数据质量控制指标(0-1-2,1-5,1-9)、通量足迹的空间代表性检验、依据经验值的异常通量值剔除、摩擦风速阈值的确定 在CO2通量数据插补方面一般采用平均日变化、查表法和非线性回归法等[18]进行。其中非线性回归法是基于CO2通量与环境因子关系的经验模型,主要包括基于白天生态系统净交换量和光合有效辐射量对Michaelis-Menten光响应曲线模型和采用夜间生态系统呼吸的Arrhenius模型等[5-6]。一般在森林生态系统CO2通量插补时依据应所缺失通量数据的时间长度来确定插补方法,对缺失时间长度较短(≤14 d)使用平均日变化法和查表法[8],对缺失时间长度较长的(>14 d)则使用非线性回归法,如使用基于光合有效辐射的Landsberg模型[20]和基于土壤温度(Ts)的Arrhenius模型等[21]。
Research progress of CO2 flux in forest ecosystem based on eddy covariance technique: a review
-
摘要: 森林生态系统是陆地生态系统碳循环的重要组成部分,森林对大气二氧化碳(CO2)浓度具有重要的调节作用,开展森林生态系统碳循环研究对更好地了解生物地球化学过程和应对全球气候变化具有重要的科学意义和应用价值。涡动协方差/涡动相关技术是目前应用最广泛的森林生态系统CO2通量观测技术。讨论了基于该技术的森林生态系统CO2通量研究的部分代表性成果,总结了当前森林生态系统CO2通量的主要研究成果并对未来研究提出展望。目前,森林生态系统CO2通量的研究主要集中于:①森林生态系统的碳源/汇估算;② CO2通量观测源区/足迹的计算;③ CO2通量动态特征的提取及其环境影响因子;④基于统计模型的森林生态系统物候特征参数的提取;⑤基于机理模型的气候系统对森林生态系统碳循环的影响。主要结论为:森林生态系统是陆地生态系统的重要碳汇,在对森林生态系统进行CO2通量观测时需对其通量源区的空间代表性进行检验,森林生态系统碳源/汇状态受到树龄、降水和土壤含水量等因素的影响,空气温度是森林生态系统碳循环的重要影响因子。未来森林生态系统CO2通量研究应该集中于提高通量足迹模型计算精度,讨论不同林分对大气CO2的贡献强度。结合气候系统模型和生态生理模型建立植物生理过程参数化模型、预测气候变化对森林碳交换的影响。区域-全球尺度森林生态系统CO2通量研究未来将关注多站点通量,气象数据长时间序列的整合分析,讨论CO2通量气候态特征与碳源/汇的空间格局,更好地了解全球陆地生态系统碳循环机制。表1参64Abstract: Forest ecosystem is an important part of carbon cycle in terrestrial ecosystem. Forests can regulate CO2 concentration in the atmosphere and it is of great scientific significance and application value to conduct carbon cycle research of forest ecosystem for better understanding of biogeochemical processes and coping with global climate change. The eddy covariance technique is currently the most widely used CO2 flux observation technique in forest ecosystem. This paper summarizes the main achievements of CO2 flux in forest ecosystem and discusses some representative results of CO2 flux in forest ecosystem based on this technique. Current studies on CO2 flux in forest ecosystem mainly focus on the following 5 aspects: carbon source/sink estimation of forest ecosystem, calculation of source area/footprint of CO2 flux observations, dynamic characteristics of CO2 flux and its environmental impact factors, extraction of phenological parameters of forest ecosystem based on statistical model, and impact of climate system based on mechanism model on carbon cycle of forest ecosystem. The main conclusions are as follows: The forest ecosystem is an important carbon sink of terrestrial ecosystem. During CO2 flux observation of forest ecosystem, the spatial representativeness of the flux source area needs to be tested. The carbon source/sink status of the forest ecosystem is affected by tree age, precipitation and soil water content. Air temperature is an important factor influencing carbon cycle of forest ecosystem. Future studies on CO2 flux in forest ecosystem should focus on improving the accuracy of flux footprint model, discussing the contributions of different stands to CO2 emissions, and establishing a parametric model of plant physiological process by combining climate system model and ecophysiological model to predict the impact of climate change on forest carbon exchange. The study of CO2 flux in forest ecosystem at the regional-global scale will focus on multi-site flux and integrated analysis of long-term sequence of meteorological and flux data, and discuss the climatology characteristics of CO2 flux and the spatial pattern of carbon source/sink to better understand the carbon cycle of terrestrial ecosystem.[Ch, 1 tab. 64 ref.]
-
Key words:
- forest ecosystem /
- eddy covariance technique /
- carbon dioxide flux /
- carbon cycle
-
表 1 CO2通量数据预处理方法
Table 1. CO2 flux data preprocessing method
数据类型 数据预处理方法 10~20 Hz高频原始观测数据 频谱修正、野点去除、气体分析仪信号检验、传感器信号强度检验 30 min时间间隔通量和微气象观测数据 坐标轴旋转(2次旋转和3次旋转)、频率响应修正、感热的超声虚温修正、WPL密度修正 通量数据质量控制 通量数据合格率检验(一般要求合格率大于50%)、建立通量数据质量控制指标(0-1-2,1-5,1-9)、通量足迹的空间代表性检验、依据经验值的异常通量值剔除、摩擦风速阈值的确定 -
[1] FIELD C B. Plant physiology of the “missing” carbon sink [J]. Plant Physiol, 2001, 125(1): 25 − 28. [2] XU Sixiao, ZHAO Xinqun, FU Yuling, et al. Characterizing CO2 fluxes for growing and non-growing seasons in a shrub ecosystem on the Qinghai-Tibet Plateau [J]. Sci China Ser D-Earth Sci, 2005, 48(suppl I): 133 − 140. [3] RUIMY A, JARVIS P G, BALDOCCHI D D, et al. CO2 fluxes over plant canopies and solar radiation: a review [J]. Adv Ecol Res, 1995, 26: 1 − 68. [4] CHEVALLIER J. Carbon futures and macroeconomic risk factors: a view from the EUETS [J]. Energy Econ, 2009, 31(4): 614 − 625. [5] 徐小军,周国模,杜华强,等. 缺失数据插补方法及其参数估计窗口大小对毛竹林CO2通量估算的影响[J]. 林业科学, 2015, 51(9): 141 − 149. XU Xiaojun, ZHOU Guomo, DU Huaqiang, et al. Effects of interpolation and window sizes in Phyllostachys edulis forest for parameter estimation on calculation of CO2 flux [J]. Sci Silv Sin, 2015, 51(9): 141 − 149. [6] 徐小军,周国模,莫路锋,等. 一种面向下垫面不均一的森林碳通量监测方法[J]. 中国科学: 信息科学, 2013, 43(10): 1342 − 1352. XU Xiaojun, ZHOU Guomo, MO Lufeng, et al. Study on carbon flux measurement using wireless sensor network under inhomogeneous surface condition [J]. Sci Sin Inf, 2013, 43(10): 1342 − 1352. [7] NOORMETS A, CHEN Jiqun, GU Lianhong, et al. The phenology of gross ecosystem productivity and ecosystem respiration in temperate hardwood and conifer chronosequences[M]//NOORMETS A. Phenology of Ecosystem Processes, New York: Springer, 2009: 59 − 85. [8] AUBINET M, VESALA T, PAPALE D. Eddy Covariance: A Practical Guide to Measurement and Data Analysis[M].[s. l.]: Springer Science & Business Media, 2012. [9] 龚元,赵敏,姚鑫,等. 城市生态系统复合下垫面碳通量特征: 以上海市奉贤大学城为例[J]. 长江流域资源与环境, 2017, 26(1): 91 − 99. GONG Yuan, ZHAO Min, YAO Xin, et al. Study on carbon flux characteristics of the underlying surface of urban ecosystem: a case study of Shanghai Fengxian University City [J]. Resour Environ Yangtze Basin, 2017, 26(1): 91 − 99. [10] 龚元,郭智娟,张凯迪,等. 植被对亚热带城市生态系统CO2通量的影响[J]. 生态学报, 2019, 39(2): 530 − 541. GONG Yuan, GUO Zhijuan, ZHANG Kaidi, et al. Impact of vegetation on CO2 flux of a subtropical urban ecosystem [J]. Acta Ecol Sin, 2019, 39(2): 530 − 541. [11] ZHANG Kun, LIU Naiwen, CHEN Yue, et al. Comparison of different machine learning method for GPP estimation using remote sensing data[C]// IOP. IOP Conference Series: Materials Science and Engineering.[s. l.]: IOP Publishing, 2019, 490(6): 062010. doi: 10.1088/1757-899X/490/6/062010. [12] NEY P, GRAF A, BOGENA H, et al. CO2 fluxes before and after partial deforestation of a central European spruce forest [J]. Agric For Meteorol, 2019, 274: 61 − 74. [13] PILLAI N D, NANDY S, PATEL N R, et al. Integration of eddy covariance and process-based model for the intra-annual variability of carbon fluxes in an Indian tropical forest [J]. Biodiversity Conserv, 2019, 28(6): 1 − 19. [14] KIM J H, HWANG T, SCHAAF C L, et al. Seasonal variation of source contributions to eddy-covariance CO2 measurements in a mixed hardwood-conifer forest [J]. Agric For Meteorol, 2018, 253/254: 71 − 83. [15] JOINER J, YOSHIDA Y, ZHANG Y, et al. Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data [J]. Remote Sensing, 2018, 10(9): 1346. [16] KLJUN N, CALANCA P, ROTACH M W, et al. A simple two-dimensional parameterisation for flux footprint prediction (FFP) [J]. Geoscientif Mod Dev, 2015, 8(11): 3695 − 3713. [17] WOFSY S C, GOULDEN M L, MUNGER J W, et al. Net exchange of CO2 in a mid-latitude forest [J]. Science, 1993, 260(5112): 1314 − 1317. [18] NEFTEL A, SPIRIG C, AMMANN C. Application and test of a simple tool for operational footprint evaluations [J]. Environ Pollut, 2008, 152(3): 644 − 652. [19] SCHMID H P. Source areas for scalars and scalar fluxes [J]. Bound-Lay Meteorol, 1994, 67(3): 293 − 318. [20] LANDSBERG J J, WARING R H. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning [J]. For Ecol Manage, 1997, 95(3): 209 − 228. [21] LLOYD J, TAYLOR J A. On the temperature dependence of soil respiration [J]. Funct Ecol, 1994, 8(3): 315 − 323. [22] PILEGAARD K, HUMMELSHØJ P, JENSEN N O, et al. Two years of continuous CO2 eddy-flux measurements over a Danish beech forest [J]. Agric For Meteorol, 2001, 107(1): 29 − 41. [23] PITA G, GIELEN B, ZONA D, et al. Carbon and water vapor fluxes over four forests in two contrasting climatic zones [J]. Agric For Meteorol, 2013, 180: 211 − 224. [24] GU Lianhong, POST W M, BALDOCCHI D D, et al. Characterizing the seasonal dynamics of plant community photosynthesis across a range of vegetation types[M]//NOORMETS A. Phenology of Ecosystem Processes. New York: Springer, 2009: 35 − 58. [25] BRACHO R, STARR G, GHOLZ H L, et al. Controls on carbon dynamics by ecosystem structure and climate for southeastern U.S. slash pine plantations [J]. Ecol Monogr, 2012, 82(1): 101 − 128. [26] BESNARD S, CARVALHAIS N, ARAIN M A, et al. Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests[J]. PLoS One, 2019, 14(2): e0211510. doi: 10.1371/journal.pone. 0211510. [27] 纪小芳,鲁建兵,杨军,等. 凤阳山针阔混交林碳通量变化特征及其影响因子[J]. 东北林业大学学报, 2019, 47(3): 49 − 55. JI Xiaofang, LU Jianbing, YANG Jun, et al. Carbon flux variation characteristics and its influencing factors in coniferous and broad-leaved mixed forest in Fengyang Mountain [J]. J Northeast For Univ, 2019, 47(3): 49 − 55. [28] 王春林,于贵瑞,周国逸,等. 鼎湖山常绿针阔叶混交林CO2通量估算[J]. 中国科学D辑: 地球科学, 2006, 36(suppl 1): 119 − 129. WANG Chunlin, YU Guirui, ZHOU Guoyi, et al. CO2 flux evaluation over the evergreen coniferous and broad-leaved mixed forest in Dinghushan, China [J]. Sci China Ser D Earth Sci, 2006, 36(suppl 1): 119 − 129. [29] BALDOCCHI D. Flux footprints within and over forest canopies [J]. Bound-Lay Meteorol, 1997, 85(2): 273 − 292. [30] 金莹,张志强,方显瑞,等. 杨树人工林生态系统通量贡献区分析[J]. 生态学报, 2012, 32(12): 3966 − 3974. JIN Ying, ZHANG Zhiqiang, FANG Xianrui, et al. Footprint analysis of turbulent flux over a poplar plantation in Northern China [J]. Acta Ecol Sin, 2012, 32(12): 3966 − 3974. [31] 龚笑飞,陈丽萍,莫路锋. 基于FSAM模型的毛竹林碳通量贡献区研究[J]. 西南林业大学学报, 2015, 35(6): 37 − 44. GONG Xiaofei, CHEN Liping, MO Lufeng. Research of flux footprint of anji bamboo forest ecosystems based on the FSAM model [J]. J Southwest For Univ, 2015, 35(6): 37 − 44. [32] OGUNJEMIYO S O, KAHARABATA S K, SCHUEPP P H, et al. Methods of estimating CO2, latent heat and sensible heat fluxes from estimates of land cover fractions in the flux footprint [J]. Agric For Meteorol, 2003, 117(3/4): 125 − 144. [33] 张慧. 中亚热带人工林碳水通量贡献区的评价研究[D]. 南京: 南京信息工程大学, 2012. ZHANG Hui. The Study of Flux Footprint in Typical Subtropical Monsoon Man-Planted Forest[D]. Nanjing: Nanjing University of Information Science and Technology, 2012. [34] 唐祥,陈文婧,李春义,等. 北京八达岭林场人工林净碳交换及其环境影响因子[J]. 应用生态学报, 2013, 24(11): 3057 − 3064. TANG Xiang, CHEN Wenjing, LI Chunyi, et al. Net carbon exchange and its environmental affecting factors in a forest plantation in Badaling, Beijing of China [J]. Chin J Appl Ecol, 2013, 24(11): 3057 − 3064. [35] WANG Weiguo, DAVIS K J. A numerical study of the influence of a clearcut on eddy-covariance fluxes of CO2 measured above a forest [J]. Agric For Meteorol, 2008, 148(10): 1488 − 1500. [36] 李小梅,张秋良. 兴安落叶松林生长季碳通量特征及其影响因素[J]. 西北农林科技大学学报: 自然科学版, 2015, 43(6): 121 − 128. LI Xiaomei, ZHANG Qiuliang. Carbon flux and its impact factors of Larix gmelinii forest ecosystem during growing season [J]. J Northwest A&F Univ Nat Sci Ed, 2015, 43(6): 121 − 128. [37] 牛晓栋,江洪,张金梦,等. 浙江天目山老龄森林生态系统CO2通量特征[J]. 应用生态学报, 2016, 27(1): 1 − 8. NIU Xiaodong, JIANG Hong, ZHANG Jinmeng, et al. Characteristics of CO2 flux in an old growth mixed forest in Tianmu Mountain, Zhejiang, China [J]. Chin J Appl Ecol, 2016, 27(1): 1 − 8. [38] 张一平,沙丽清,于贵瑞,等. 热带季节雨林碳通量年变化特征及影响因子初探[J]. 中国科学D辑: 地球科学, 2006, 36(suppl 1): 139 − 152. ZHANG Yiping, SHA Liqing, YU Guirui, et al. Annual variation of carbon flux and impact factors in the tropical seasonal rain forest of Xishuangbanna, SW China [J]. Sci China Ser D Earth Sci, 2006, 36(suppl 1): 139 − 152. [39] LIU Yunfen, SONG Xia, YU Guirui, et al. Seasonal variation of CO2 flux and its environmental factors in evergreen coniferous plantation [J]. Sci China Ser D Earth Sci, 2005, 48(suppl 1): 123 − 132. [40] TUCKER C J, PINZON J E, BROWN M E, et al. An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data [J]. Int J Remote Sens, 2005, 26(20): 4485 − 4498. [41] RICHARDSON A D, BLACK T A, CIAIS P, et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity [J]. Philos Trans Roy Soc B Biol Sci, 2010, 365(1555): 3227 − 3246. [42] NIU Shuli, FU Yuling, GU Lianhong, et al. Temperature sensitivity of canopy photosynthesis phenology in northern ecosystems[C]//SCHWARTZ M. Phenology: An Integrative Environmental Science. Dordrecht: Springer, 2013: 503 − 519. [43] GONSAMO A, CHEN J M, PRICE D T, et al. Land surface phenology from optical satellite measurement and CO2 eddy covariance technique [J]. J Geophys Res Biogeosci, 2012, 117(G3): 1 − 18. [44] LIPOVETSKY S. Double logistic curve in regression modeling [J]. J Appl Statist, 2010, 37(11): 1785 − 1793. [45] MANCUSO S, PASQUALI G, FIORINO P. Phenology modelling and forecasting in olive (Olea europaea L.) using artificial neural networks [J]. Adv Hortic Sci, 2002, 16(3): 155 − 164. [46] PAPALE D, VALENTINI R. A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization [J]. Global Change Biol, 2003, 9(4): 525 − 535. [47] HE Honglin, YU Guirui, ZHANG Leiming, et al. Simulating CO2 flux of three different ecosystems in China FLUX based on artificial neural networks [J]. Sci China Ser D Earth Sci, 2006, 49(2): 252 − 261. [48] 唐欢,李振旺,丁蕾,等. 基于地面涡度数据的中国草原区GPP遥感产品验证[J]. 草业科学, 2018, 35(11): 2568 − 2583. TANG Huan, LI Zhenwang, DING Lei, et al. Validation of GPP remote sensing products using eddy covariance flux observations in the grassland area of China [J]. Pratac Sci, 2018, 35(11): 2568 − 2583. [49] 杜启勇,林爱文,付醒. 基于遥感和美国碳通量观测数据的GPP模型比较研究[J]. 测绘与空间地理信息, 2018, 41(2): 138 − 141, 146. DU Qiyong, LIN Aiwen, FU Xing. Comparison of multiple GPP models using remote sensing and American carbon flux data [J]. Geomat Spat Inf Technol, 2018, 41(2): 138 − 141, 146. [50] 刘啸添,周蕾,石浩,等. 基于多种遥感植被指数、叶绿素荧光与CO2通量数据的温带针阔混交林物候特征对比分析[J]. 生态学报, 2018, 38(10): 3482 − 3494. LIU Xiaotian, ZHOU Lei, SHI Hao, et al. Phenological characteristics of temperate coniferous and broad-leaved mixed forests based on multiple remote sensing vegetation indices, chlorophyll fluorescence and CO2 flux data [J]. Acta Ecol Sin, 2018, 38(10): 3482 − 3494. [51] 史桂芬,贺伟光. 涡度相关技术在农田生态系统通量研究中的应用[J]. 现代农业科技, 2019(6): 141 − 143. SHI Guifen, HE Weiguang. Application of eddy covariance technology in flux research of farmland ecosystem [J]. Mod Agric Sci Technol, 2019(6): 141 − 143. [52] 同小娟,张劲松,孟平. 基于涡度相关法的森林生态系统碳交换及其控制机制[J]. 温带林业研究, 2018, 1(2): 1 − 9, 14. TONG Xiaojuan, ZHANG Jinsong, MENG Ping. Carbon exchange between forest ecosystems and the atmosphere and its control mechanisms based on the eddy covariance method [J]. J Temp For Res, 2018, 1(2): 1 − 9, 14. [53] LAI Chunta, KATUL G, OREN R, et al. Modeling CO2 and water vapor turbulent flux distributions within a forest canopy [J]. J Geophys Res Atmos, 2000, 105(D21): 26333 − 26351. [54] MEDLYN B E, ROBINSON A P, CLEMENT R, et al. On the validation of models of forest CO2 exchange using eddy covariance data: some perils and pitfalls [J]. Tree Physiol, 2005, 25(7): 839 − 857. [55] BALDOCCHI D D, WILSON K B. Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales [J]. Ecol Mod, 2001, 142(1/2): 155 − 184. [56] PARK H, IIJIMA Y, YABUKI H, et al. The application of a coupled hydrological and biogeochemical model (CHANGE) for modeling of energy, water, and CO2 exchanges over a larch forest in eastern Siberia [J]. J Geophys Res Atmos, 2011, 116: D15102. [57] XIE Zhenghui, WANG Linying, JIA Binghao, et al. Measuring and modeling the impact of a severe drought on terrestrial ecosystem CO2 and water fluxes in a subtropical forest [J]. J Geophys Res Biogeosci, 2016, 121(10): 2576 − 2587. [58] CHEN Xiongwen. Modeling the effects of global climatic change at the ecotone of boreal larch forest and temperate forest in northeast China [J]. Clim Change, 2002, 55(1/2): 77 − 97. [59] SHI Tingting, GUAN Dexin, WANG Anzhi, et al. Modeling canopy CO2 and H2O exchange of a temperate mixed forest [J]. J Geophys Res Atmos, 2010, 115(D7): D17117. [60] 李雪建,毛方杰,杜华强,等. 双集合卡尔曼滤波LAI同化结合BEPS模型的竹林生态系统碳通量模拟[J]. 应用生态学报, 2016, 27(12): 3797 − 3806. LI Xuejian, MAO Fangjie, DU Huaqiang, et al. Simulating of carbon fluxes in bamboo forest ecosystem using BEPS model based on the LAI assimilated with Dual Ensemble Kalman Filter [J]. Chin J Appl Ecol, 2016, 27(12): 3797 − 3806. [61] 陈晨,沃文伟,范文义. 森林生态系统碳循环模型参数优化[J]. 东北林业大学学报, 2016, 44(5): 15 − 19. CHEN Chen, WO Wenwei, FAN Wenyi. Optimization of ecosystem carbon cycle model parameters [J]. J Northeast For Univ, 2016, 44(5): 15 − 19. [62] 杨延征,马元丹,江洪,等. 基于IBIS模型的1960−2006年中国陆地生态系统碳收支格局研究[J]. 生态学报, 2016, 36(13): 3911 − 3922. YANG Yanzheng, MA Yuandan, JIANG Hong, et al. Evaluating the carbon budget pattern of Chinese terrestrial ecosystem from 1960 to 2006 using Integrated Biosphere Simulator [J]. Acta Ecol Sin, 2016, 36(13): 3911 − 3922. [63] 王萍. 基于IBIS模型的东北森林净第一性生产力模拟[J]. 生态学报, 2008, 29(6): 3213 − 3220. WANG Ping. Simulation of forest net primary productivity in northeastern China with IBIS [J]. Acta Ecol Sin, 2008, 29(6): 3213 − 3220. [64] 王培娟,谢东辉,张佳华,等. 长白山森林植被NPP主要影响因子的敏感性分析[J]. 地理研究, 2008, 27(2): 323 − 331. WANG Peijuan, XIE Donghui, ZHANG Jiahua, et al. Sensitivity analysis for primary factors of the forest net primary productivity in Changbaishan Natural Reserve based on process model [J]. Geogr Res, 2008, 27(2): 323 − 331. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190412