-
闽楠Phoebe bournei被列为国家二级保护濒危树种[1−2],是“金丝楠木”的原植物种之一,天然分布于福建、浙江、江西、湖南、云南和广西等省[3]。闽楠木材纹理细致、结构紧密、香气浓郁、防虫耐腐、坚硬不易开裂,是制作高档家具、建筑和雕塑的优质木材。闽楠树体高大挺拔、冠型优美,现已成为中国南方地区珍贵造林与园林绿化树种。然而,干旱、低温等非生物胁迫显著影响闽楠的生长发育,极大限制了林分生产力。
转录因子作为一类与启动子顺式作用元件特异结合、调控功能基因表达的DNA结合蛋白,对植物多种生理生化过程起重要调控作用[4−5]。其中,碱性亮氨酸拉链(bZIP)转录因子是目前已知普遍存在、成员较多、功能复杂且高度保守的基因家族之一[6−7]。bZIP转录因子是按照其高度保守的结构域来命名的,保守结构域包括富含亮氨酸残基的拉链区域和N-X7-R/K碱性区域,由60~80个碱基组成,C端N-X7-R/K碱性区域由20个氨基酸构成,富含精氨酸和赖氨酸,可与DNA特异性结合;N端亮氨酸拉链区域富含亮氨酸,相邻7个氨基酸构成一段连续片段,且第7位碱基是亮氨酸,但亮氨酸拉链区域不完全保守,个别位点的亮氨酸可被甲硫氨酸、缬氨酸及异亮氨酸等疏水性氨基酸所取代[6]。
bZIP转录因子功能多样性,广泛参与调控脱落酸(ABA)、干旱、高盐及高温等多种非生物胁迫。例如,ABA、高盐和干旱胁迫下,ZmbZIP72在玉米Zea mays幼苗各器官上调表达,其异源过表达使拟南芥Arabidopsis thaliana显著改善叶片生理状态,通过减少失水和电解质渗漏来提高转基因株系的抗旱性和耐盐性[8]。高盐、干旱、高温、低温和ABA胁迫下,ZmbZIP4在玉米幼苗各器官被诱导表达,其异源过表达不仅增加拟南芥主根长和侧根数,还显著提高ABA合成,增强植株抵御非生物胁迫能力[9]。水稻Oryza sativa的OsbZIP42可正向调控ABA介导的信号通路,增强水稻过表达植株对干旱胁迫应答的敏感性[10]。bZIP还和ANAC096等转录因子互作,协同提高转基因植株抗旱性[11]。茶树Camellia sinensis的CsbZIP18是ABA信号和冷胁迫的负调控因子,异源过表达导致拟南芥对ABA信号敏感性下降、电解质渗漏升高以及光合效率下降,降低植株耐冻性[12]。bZIP还参与调控其他生物学过程,如组织器官发育[13−14]、盐胁迫[15]、激素和糖信号传递[16]、病虫害防御[17]、光反应和次生代谢物合成调控等[18−19]。
bZIP基因家族成员有进化多样性,成员数量在物种间存在显著差异,例如,拟南芥75个[20]、番茄Solanum lycopersicum 70个[21]、水稻89个[22]、玉米125个[23]、毛果杨Populus trichocarpa 214个[24],而闽楠bZIP成员数量不详,极大限制了闽楠bZIP基因功能研究。因此,本研究对闽楠bZIP转录因子家族成员进行全基因组鉴定,分析其蛋白理化性质,比较进化关系以及ABA处理下的表达水平,为解析bZIP家族成员的基因功能及其在逆境胁迫的调控机制提供理论基础。
Identification and expression analysis of bZIP gene family under ABA treatment in Phoebe bournei
-
摘要:
目的 对闽楠Phoebe bournei bZIP (PbbZIP)转录因子家族成员鉴定,分析其对脱落酸(ABA)信号的响应水平。 方法 基于生物信息学方法,对PbbZIP基因家族进行了全基因组鉴定,分析其蛋白理化特性、基因结构、进化关系、启动子顺式作用元件和ABA处理下的表达分析。 结果 从闽楠12条染色体共鉴定出63个PbbZIPs基因,分为12亚族,不同亚族基因结构和基序差异显著,但同亚族高度保守。PbbZIP基因多数定位在细胞核,其编码蛋白长度为110~835个氨基酸,等电点为4.48~11.95,疏水性为−1.19~−0.19。分布于12条染色体的27对PbbZIPs基因存在共线性关系,是PbbZIP基因家族扩张的主要模式。PbbZIP基因上游启动子区域存在多种与非生物胁迫相关的作用元件,其中ABA、水杨酸、茉莉酸甲酯的响应元件较多。基因表达分析结果表明:2 mmol·L−1ABA处理闽楠1~72 h,17个PbbZIPs基因在叶和根中被ABA信号不同程度地诱导表达,普遍上调,且根基因表达水平普遍低于叶片。 结论 63个PbbZIPs基因序列高度保守,不同亚族间基因结构、染色体定位和保守基序有进化多样性和差异性;叶和根中PbbZIP基因不同程度地响应ABA信号,参与调控其他非生物过程。图9参35 Abstract:Objective This study is aimed to identify the bZIP transcription factor family members from Phoebe bournei and investigate the response levels of its members to abscisic acid (ABA) treatment. Method A bioinformatic method was employed to identify the PbbZIPs family throughout the whole genome and to analyze its physicochemical properties, gene structure, evolutionary relationships, cis-acting elements in promoter, and the expression patterns under ABA treatment by RT-qPCR. Result A total of 63 PbbZIP genes were identified from 12 chromosomes in P. bournei, divided into 12 subfamilies with significantly different in gene structure and motifs, but highly conserved in the same subfamily. Most of the PbbZIPs were localized in the nucleus, and their encoded protein were 110 − 835 amino acid in length, −1.19 − −0.19 in hydrophobicity, and 4.48 − 11.95 in isoelectric point. The 27 pairs of PbbZIPs distributed on 12 chromosomes were featured with collinearity existence, which was the main pattern of PbbZIPs family expansion. A variety of abiotic stress-related action elements were found in the upstream promoter region of PbbZIPs, among which ABA, salicylic acid and methyl jasmonate were more abundant response elements and the genes expression of RT-qPCR revealed that 17 PbbZIPs were induced differentially by ABA signals and generally up-regulated in leaves and roots when P. bournei was treated with 2 mmol·L−1ABA for 1 − 72 h, with the relative expression of PbbZIPs in roots being generally lower than that in leaves. Conclusion The 63 PbbZIPs identified from the P. bournei genome were unevenly distributed across the 12 chromosomes and highly similar in gene sequences, whereas the chromosomal localization genetic structure and conserved motifs were evolutionarily diverse and different between subgroups. The PbbZIPs in leaves and roots responded differently to ABA treatment and got involved in the regulation of other abiotic processes. [Ch, 9 fig. 35 ref.] -
Key words:
- Phoebe bournei /
- bZIP family /
- systematic evolution /
- ABA /
- expression analysis
-
-
[1] 丁鑫, 肖建华, 黄建峰, 等. 珍贵木材树种楠木的野生资源调查[J]. 植物分类与资源学报, 2015, 37(5): 629 − 639. DING Xin, XIAO Jianhua, HUANG Jianfeng, et al. Investigation on wild resource of valuable timber tree Phoebe zhennan (Lauraceae) [J]. Plant Diversity and Resources, 2015, 37(5): 629 − 639. [2] 葛永金, 王军峰, 方伟, 等. 闽楠地理分布格局及其气候特征研究[J]. 江西农业大学学报, 2012, 34(4): 749 − 753, 761. GE Yongjin, WANG Junfeng, FANG Wei, et al. Distribution pattern of Phoebe bournei (Hemsl.) Yang and the characteristics of climate [J]. Acta Agriculturae Universitatis Jiangxiensis, 2012, 34(4): 749 − 753, 761. [3] 李娟, 欧汉彪, 林建勇, 等. 我国楠属种质资源分布现状及主要种特征差异[J]. 广西林业科学, 2020, 49(1): 54 − 59. LI Juan, OU Hanbiao, LIN Jianyong, et al. Distribution of Phoebe germplasm resources in China and characteristic differences among main species [J]. Guangxi Forestry Science, 2020, 49(1): 54 − 59. [4] 桑新华, 吴忠义, 黄丛林, 等. 植物逆境抗性相关转录因子的研究进展[J]. 植物学通报, 2004, 21(6): 700 − 708. SANG Xinhua, WU Zhongyi, HUANG Conglin, et al. Progresses on transcription factors related to plant stress-tolerance [J]. Chinese Bulletin of Botany, 2004, 21(6): 700 − 708. [5] 王金英, 丁峰, 潘介春, 等. 植物bZIP转录因子家族的研究进展[J]. 热带农业科学, 2019, 39(6): 39 − 45. WANG Jinying, DING Feng, PAN Jiechun, et al. Research progress of bZIP lineage transcription factors in plant [J]. Chinese Journal of Tropical Agriculture, 2019, 39(6): 39 − 45. [6] 崔荣秀, 张议文, 陈晓倩, 等. 植物bZIP参与胁迫应答调控的最新研究进展[J]. 生物技术通报, 2019, 35(2): 143 − 155. CUI Rongxiu, ZHANG Yiwen, CHEN Xiaoqian, et al. The latest research progress on the stress responses of bZIP involved in plants [J]. Biotechnology Bulletin, 2019, 35(2): 143 − 155. [7] 冉静, 邹杰, 刘爱玲, 等. 植物bZIP转录因子在非生物胁迫中的作用[J]. 湖南农业科学, 2012(7): 11 − 13. RAN Jing, ZOU Jie, LIU Ailing, et al. The role of plant bZIP transcription factors in abiotic stress [J]. Hunan Agricultural Sciences, 2012(7): 11 − 13. [8] YING Shen, ZHANG Dengfeng, FU Jing, et al. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis [J]. Planta, 2012, 235(2): 253 − 266. [9] MA Haizhen, LIU Can, LI Zhaoxia, et al. ZmbZIP4 contributes to stress resistance in maize by regulating aba synthesis and root development [J]. Plant Physiology, 2018, 178(2): 753 − 770. [10] JOO J, LEE Y H, SONG S I. OsbZIP42 is a positive regulator of ABA signaling and confers drought tolerance to rice [J]. Planta, 2019, 249(5): 1521 − 1533. [11] XU Zhengyi, KIM S Y, HYEON D Y, et al. The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses [J]. The Plant Cell, 2013, 25(11): 4708 − 4724. [12] YAO Lina, HAO Xinyuan, CAO Hongli, et al. ABA-dependent bZIP transcription factor, CsbZIP18, from Camellia sinensis negatively regulates freezing tolerance in Arabidopsis [J]. Plant Cell Reports, 2020, 39(4): 553 − 565. [13] SHIN J, BUI D C, KIM S, et al. The novel bZIP transcription factor Fpo1 negatively regulates perithecial development by modulating carbon metabolism in the ascomycete fungus Fusarium graminearum [J]. Environmental Microbiology, 2020, 22(7): 2596 − 2612. [14] STRATHMANN A, KUHLMANN M, HEINEKAMP T, et al. BZI-1 specifically heterodimerises with the tobacco bZIP transcription factors BZI-2, BZI-3/TBZF and BZI-4, and is functionally involved in flower development [J]. The Plant Journal, 2001, 28(4): 397 − 408. [15] GAI Wenxian, MA Xiao, Qiao Yiming, et al. Characterization of the bZIP transcription factor family in pepper (Capsicum annuum L.): CabZIP25 positively modulates the salt tolerance [J/OL]. Frontiers in Plant Science, 2020, 11: 139[2023-05-20]. doi: 10.3389/fpls.2020.00139. [16] THALOR S K, BERBERICH T, LEE S S, et al. Deregulation of sucrose-controlled translation of a bZIP-type transcription factor results in sucrose accumulation in leaves [J/OL]. PLoS One, 2012, 7(3): e33111[2023-05-20]. doi: 10.1371/journal.pone.0033111. [17] NIGAL M C, ANTHONY D M G. Molecular and physiological aspects of nitrate uptake in plants [J]. Trends in Plant Science, 1998, 3(10): 389 − 395. [18] MOHANTY B, LAKSHMANAN M, LIM S, et al. Light-specific transcriptional regulation of the accumulation of carotenoids and phenolic compounds in rice leaves [J/OL]. Plant Signaling & Behavior, 2016, 11(6): e1184808[2023-05-20]. doi: 10.1080/15592324.2016.1184808. [19] PONTES L C G, CARDOSO C M Y, CALLEGARI D M, et al. A cassava CPRF-2-like bZIP transcription factor showed increased transcript levels during light treatment [J]. Protein &Peptide Letters, 2020, 27(9): 904 − 914. [20] JAKOBY M, WEISSHAAR B, DRÖGE-LASER W, et al. bZIP transcription factors in Arabidopsis [J]. Trends in Plant Science, 2002, 7(3): 106 − 111. [21] 朱芸晔, 薛冰, 王安全, 等. 番茄bZIP转录因子家族的生物信息学分析[J]. 应用与环境生物学报, 2014, 20(5): 767 − 774. ZHU Yunye, XUE Bing, WANG Anquan, et al. Comprehensive bioinformatic analysis of bZIP transcription factors in Solanum lycopersicum [J]. Chinese Journal of Applied &Environmental Biology, 2014, 20(5): 767 − 774. [22] NIJHAWAN A, JAIN M, TYAGI A K, et al. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice [J]. Plant Physiology, 2008, 146(2): 323 − 324. [23] 于滔, 王成波, 曹士亮, 等. 玉米bZIP转录因子的生物信息学分析[J]. 黑龙江农业科学, 2016(4): 1 − 5. YU Tao, WANG Chengbo, CAO Shiliang, et al. Bioinformatics analysis of the bZIP transcription factor in maize [J]. Heilongjiang Agricultural Sciences, 2016(4): 1 − 5. [24] 王升级, 孙赫, 党慧. 盐胁迫条件下杨树bZIP转录因子全基因组分析[J]. 山西农业大学学报, 2018, 38(8): 1 − 7, 14. WANG Shengji, SUN He, DANG Hui. Genome-wide analysis of the bZIP transcription factors in Populus in response to salt stress [J]. Journal of Shanxi Agricultural University, 2018, 38(8): 1 − 7, 14. [25] HAN Xiao, ZHANG Junhong, HAN Shuang, et al. The chromosome-scale genome of Phoebe bournei reveals contrasting fates of terpene synthase (TPS)-a and TPS-b subfamilies [J/OL]. Plant Communications, 2022, 3(6): 100410[2023-05-20]. doi: 10.1016/j.xplc.2022.100410. [26] CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194 − 1202. [27] BALOGLU M C, ELDEM V, HAJYZADEH M, et al. Genome-wide analysis of the bZIP transcription factors in cucumber [J/OL]. PLoS One, 2014, 9(4): e96014[2023-05-20]. doi: 10.1371/journal.pone.0096014. [28] CORRÊA L G G, RIAÑO-PACHON D M, SCHRAGO C G, et al. The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes [J/OL]. PLoS One, 2008, 3(8): e2944[2023-05-20]. doi: 10.1371/journal.pone.0002944. [29] ZHAO Kai, CHEN Song, YAO Wenjing, et al. Genome-wide analysis and expression profile of the bZIP gene family in poplar [J/OL]. BMC Plant Biology, 2021, 21(1): 122[2023-05-20]. doi: 10.1186/s12870-021-02879-w. [30] DUAN Lili, MO Zejun, FAN Yue, et al. Genome-wide identification and expression analysis of the bZIP transcription factor family genes in response to abiotic stress in Nicotiana tabacum L. [J/OL]. BMC Genomics, 2022, 23(1): 318[2023-05-20]. doi: 10.1186/s12864-022-08547-z. [31] HAN Xueyuan, MAO Linchun, LU Wenjing, et al. Positive regulation of the transcription of AchnKCS by a bZIP transcription factor in response to ABA-Stimulated suberization of kiwifruit [J]. Journal of Agricultural and Food Chemistry, 2019, 67(26): 7390 − 7398. [32] CHEA W L, WOONHEE B, SUNG C L. Roles of pepper bZIP protein CaDILZ1 and its interacting partner RING-type E3 ligase CaDSR1 in modulation of drought tolerance [J]. The Plant Journal, 2018, 96(2): 452 − 467. [33] 薛翀, 邱诗蕊, 李虹, 等. 烟草bZIP基因家族的鉴定及其A亚族在ABA处理下的表达分析 [J]. 分子植物育种, 2020, 18(17): 5607 − 5621. XUE Chong, QIU Shirui, LI Hong, et al. Identification of bZIP gene family and gene expression analysis of its subgroup A gene under ABA treatment in Nicotiana tabacum [J]. Molecular Plant Breeding, 2020, 18(17): 5607 − 5621. [34] 武立伟, 徐志超, 王清, 等. 响应ABA胁迫的甘草bZIP转录因子的系统筛选与分析 [J]. 药学学报, 2022, 57(3): 818 − 830. WU Liwei, XU Zhichao, WANG Qing, et al. Systematic screening and analysis of bZIP transcription factors in Glycyrrhiza uralensis and their response to ABA stress [J]. Acta Pharmaceutica Sinica, 2022, 57(3): 818 − 830. [35] 孙晓丽, 李勇, 才华, 等. 拟南芥bZIP1转录因子通过与ABRE元件结合调节ABA信号传导[J]. 作物学报, 2011, 37(4): 612 − 619. SUN Xiaoli, LI Yong, CAI Hua, et al. Arabidopsis bZIP1 transcription factor binding to the ABRE cis-element regulates abscisic acid signal transduction [J]. Acta Agronomica Sinica, 2011, 37(4): 612 − 619. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230342