-
雄性不育在开花植物中普遍存在,主要表现为雄蕊发育不正常,不能产生具有正常功能的花粉[1]。‘无子瓯柑’Citrus suavissima ‘Seedless’是瓯柑Citrus suavissima的芽变品种,保留了瓯柑肉质饱满、香味特异、耐储藏的优良品质,因果实无核被人们青睐。研究认为,雄性不育是‘无子瓯柑’无核的重要原因之一[2]。张迟等[3]发现‘无子瓯柑’花粉败育始于小孢子母细胞时期,推测其雄性不育与能量代谢异常和营养物质缺乏有关。对矮牵牛Petunia hybrid[4],枸杞Lycium barbarum[5],辣椒Capscum annuum[6]和萝卜Raphanus sativus[7]等植物的研究发现,查尔酮合成酶基因(CHS)的异常表达会引起雄性不育;CHS是黄酮类化合物代谢通路中的关键基因,通过影响查尔酮的产生从而影响黄酮类化合物的生物合成[4],而黄酮类化合物的缺乏/过量是植物雄性不育的重要原因之一。有研究将克隆自10个柑橘种质的CHS基因与温州蜜柑‘国庆4号’Citrus unshiu ‘Guoqing 4’,柚‘冯威’Citrus maxima ‘Fengwei’和甜橙‘红宝石’Citrus sinensis ‘Ruby’的CHS比对,发现不同品种柑橘的CHS基因编码区核苷酸序列相似度极高,达98%以上[8]。本研究以前期工作为基础,以克里曼丁橘Citrus clementina数据库为参照,对‘无子瓯柑’和瓯柑小孢子母细胞时期的花药进行转录组和蛋白质组测序,筛选CHS同源差异表达基因进行克隆和表达量分析,并对CHS基因家族进行生物信息学分析,以期为‘无子瓯柑’雄性不育机理的深入研究打下基础。
-
对小孢子母细胞时期的‘无子瓯柑’和瓯柑花药转录组和蛋白质组数据分析,共得到10个CHS同源基因(表 1);转录组测序结果满足差异表达倍数>1.2且错误发现率<0.01的有3个基因(Ciclev10005133m,Ciclev10001405m,Ciclev10030093m),蛋白质组测序结果满足差异表达倍数>1.2且假设概率<0.05标准的有1个基因(Ciclev10015535m)。得到的4个差异表达CHS基因引物序列如表 2。qRT-PCR特异性引物序列如表 3。
表 1 ‘无子瓯柑’ CHS基因家族成员及其小孢子母细胞时期相对表达量
Table 1. CHS gene family and expression in C. suavissima 'Seedless' at microsporcyte
基因名称 差异表达倍数 错误发现率/假设概率 Ciclev10015535m 0.76 0.004 6b Ciclev10005133m 0.65 0.007 5a Ciclev10001405m 1.32 0.006 3a Ciclev10001413m 5.50 0.595 4a Ciclev10001395m 0.94 0.717 6a Ciclev10028604m 5.50 0.161 3a Ciclev10030093m 0.71 0.007 9a Ciclev10028605m 0.91 0.144 1a Ciclev10030398m 5.50 0.399 2a Ciclev10001905m 0.90 0.064 2a 说明: a表示错误发现率; b表示假设概率 表 2 基因克隆引物
Table 2. Sequences of primer for gene cloning
基因名称 上游引物(5′→3′) 下游引物(5′→3′) Ciclev10005133m ATGGTGACCGTCGATGAAG CAGTGTTGCCGCTGCTTAA Ciclev10001405m ATGGAGAAAGTTAAAGATG TCCCTACTGTTACAACCTAG Ciclev10030093m ATGACGACAGTGAAAAGTAA ACAAATTTCACCAACTACTGA Ciclev10015535m ATGGCAACCGTTCAAGAGAT GTGTCCCCATCAAAGCTTGA 表 3 qRT-PCR引物
Table 3. Sequences of primer for real-time PCR
基因ID 上游引物(5′→3′) 下游引物(5′→3′) GU911361 ATCTGCTGGAAGGTGCTGAG CCAAGCAGCATGAAGATCAA Ciclev10015535m AAGAGCGAGCATATGACGGA CAGCTTCTTTCCCGAGCTTC Ciclev10001405m AATTGTGTCGGGTGCACAAA ATTCCGAACGGACTAAACGC Ciclev10005133m AGCCGAGAACAACAAAGG ATGGGCTTCTCGATCTCAGG Ciclev10030093m CAAGGACCAACAGCAACGAT CTTTCAGCTCGGTCTTGTGG 对克隆得到的‘无子瓯柑’和瓯柑的CHS同源基因序列(CsCHS)进行比对,结果发现:Ciclev10015535m,Ciclev10005133m和Ciclev10030093m在瓯柑和‘无子瓯柑’间存在核苷酸序列变异,但仅Ciclev10030093m在编码氨基酸水平发生了改变(表 4)。
表 4 瓯柑和‘无子瓯柑’的CHS同源基因
Table 4. Alignments of CsCHS nucleotide sequences between Citrus suavissima 'Seedless' and C. suavissima
基因名称 瓯柑 ‘无子瓯柑’ 开放阅读框长度/bp 同源基因在瓯柑与‘无子瓯柑’间的相似度/% 差异碱基位/bp 氨基酸的变化 命名 GenBank
登录号命名 GenBank
登录号Ciclev10015535m CsCHS1 MK070533 CsCHS5 MK070537 1 176 99 501 无 Ciclev10001405m CsCHS6 MK070536 CsCHS6 MK070536 1 188 100 无 无 Ciclev10005133m CsCHS3 MK070534 CsCHS7 MK070538 1 173 98 549~954 922 bp处苏氨酸突变为丙氨酸 Ciclev10030093m CsCHS4 MK070535 CsCHS8 MK070539 1 179 98 342,495 无 -
图 1表明:小孢子母细胞时期,‘无子瓯柑’与瓯柑相比Ciclev10005133m,Ciclev10030093m和Ciclev10015535m显著下调,Ciclev10001405m显著上调;减数分裂时期,Ciclev10005133m,Ciclev10001405m和Ciclev10015535m显著下调;四分体时期,Ciclev10001405m和Ciclev10030093m显著下调,Ciclev10005133m显著上调。
图 1 ‘无子瓯柑’和瓯柑CHS基因在花药发育过程中的基因表达分析
Figure 1. Expression level of anther in different development stages in C. suavissima 'Seedless' and C. suavissima
由图 2可知:成熟花粉粒时期,‘无子瓯柑’和瓯柑的花丝中CHS基因表达量相仿。花药中Ciclev10001405m和Ciclev10005133m表达量显著高于其他花器官;Ciclev10030093m,Ciclev10005133m和Ciclev10015535m的表达在‘无子瓯柑’和瓯柑的花药中存在显著差异,可能会引起该时期‘无子瓯柑’和瓯柑的花药中黄酮含量的差异。总的来说,花药中Ciclev10001405m表达量远高于花瓣、雌蕊和花丝,推测Ciclev10001405m的表达在花药中具有特异性。
-
克里曼丁橘基因组数据库共鉴定到13个CHS基因家族成员。对CHS蛋白质理化性质的分析表明:编码的氨基酸数量最少的是Ciclev10003127m(309个),最多的是Ciclev10001395m(396个);平均等电点为6.12,所有蛋白质均为酸性蛋白。相比之下,‘无子瓯柑’和瓯柑中,Ciclev10005133m(390个)编码的氨基酸数量最少,Ciclev10001405m(395个)编码的氨基酸数量最多;平均等电点为6.27(表 5)。亚细胞定位结果表明:这些CHS蛋白都分布在细胞质中,说明CHS蛋白在细胞中的分布具有特异性。蛋白质二级结构分析表明:α-螺旋比例和数量均最高,β-转角则相对较少;表现为α-螺旋数量>无规则卷曲数量>延伸链数量>β-转角数量。‘无子瓯柑’与瓯柑中筛选的4个CHS蛋白也表现出相似趋势(表 6),推测α-螺旋在蛋白质二级结构中起主导作用。
表 5 CHS基因及其表达
Table 5. Basic information of CHS genes and proteins
基因名称 氨基酸数量/个 分子量/Da 等电点 Ciclev10015535m 391 42 592.17 6.47 Ciclev10005133m 390 42 676.30 5.84 Ciclev10015900m 328 35 477.11 6.11 Ciclev10001405m 395 42 918.26 6.95 Ciclev10001413m 394 43 364.92 6.56 Ciclev10001395m 396 43 377.16 6.77 Ciclev10028604m 395 43 383.97 5.48 Ciclev10030093m 392 43 406.82 5.82 Ciclev10028605m 395 43 436.08 6.17 Ciclev10030398m 390 429 51.35 6.10 Ciclev10001905m 312 33 958.16 5.44 Ciclev10001806m 330 36 069.43 6.33 Ciclev10003127m 309 33 988.20 5.59 表 6 CHS蛋白二级结构分析
Table 6. Secondary structure analysis of CHS proteins
蛋白名称 α螺旋 延伸链 β转角 无规则卷曲 数量/个 比例/% 数量/个 比例/% 数量/个 比例/% 数量/个 比例/% Ciclev10015535m 161 41.18 65 16.62 32 8.18 133 34.02 Ciclev10005133m 170 43.59 60 15.38 31 7.95 129 33.08 Ciclev10015900m 142 43.29 59 17.99 29 8.84 98 29.88 Ciclev10001405m 160 40.51 63 15.95 28 7.09 144 36.46 Ciclev10001413m 170 43.15 63 15.99 27 6.85 134 34.01 Ciclev10001395m 175 44.19 62 15.66 26 6.57 133 33.59 Ciclev10028604m 169 42.78 65 16.46 25 6.33 136 34.43 Ciclev10030093m 156 39.80 64 16.33 31 7.91 141 35.97 Ciclev10028605m 161 40.76 66 16.71 32 8.10 136 34.43 Ciclev10030398m 165 42.31 61 15.64 28 7.18 136 34.87 Ciclev10001905m 131 41.99 56 17.95 26 8.33 99 31.73 Ciclev10001806m 133 40.30 53 16.06 22 6.67 122 36.97 Ciclev10003127m 119 38.51 57 18.45 25 8.09 108 34.95 -
现有研究筛选到克里曼丁橘13个CHS蛋白、甜橙7个CHS蛋白、拟南芥4个CHS蛋白和水稻3个CHS蛋白。按照遗传距离可以将CHS蛋白聚类为5个亚家族(图 3)。Group Ⅰ包含3个拟南芥CHS蛋白和2个水稻CHS蛋白。Group Ⅱ包含5个克里曼丁橘CHS蛋白和3个甜橙CHS蛋白。Group Ⅲ包含2个克里曼丁橘CHS蛋白。Group Ⅳ包含3个克里曼丁橘CHS蛋白和3个甜橙CHS蛋白。Group Ⅴ包含上述4个物种的CHS蛋白成员。其中Ciclev10005133m蛋白和Ciclev10015535m蛋白均聚类于Group Ⅴ,Ciclev10030093m蛋白和Ciclev10001405m蛋白则分别聚类于Group Ⅱ和Group Ⅳ。
Cloning and expression analysis of CHS gene family in Citrus suavissima 'Seedless'
-
摘要: 为研究查尔酮合成酶基因(CHS)家族在‘无子瓯柑’Citrus suavissima‘Seedless’雄性不育发生过程中的作用,以克里曼丁橘Citrus clementina基因组数据库为参照,在‘无子瓯柑’和瓯柑Citrus suavissima的转录组和蛋白质组测序结果中筛选出4个CHS同源差异表达基因,并对其克隆和表达量分析,对克里曼丁橘CHS基因家族成员进行生物信息学分析。结果表明:‘无子瓯柑’和瓯柑CHS基因编码区核苷酸序列相似度达98%以上。小孢子母细胞发育各时期CHS基因表达量在瓯柑和‘无子瓯柑’间差异显著。与瓯柑相比,‘无子瓯柑’小孢子母细胞时期Ciclev10005133m,Ciclev10030093m和Ciclev10015535m的表达量显著下调;减数分裂时期Ciclev10005133m,Ciclev10001405m和Ciclev10015535m的表达量显著下调;四分体时期Ciclev10001405m和Ciclev10030093m的表达量显著减少。在花粉粒成熟时期的花蕾中,Ciclev10001405m与Ciclev10005133m在花药中特异性表达。CHS同源基因在花药不同时期中的差异表达可能是‘无子瓯柑’花药发育异常的重要原因,并最终导致‘无子瓯柑’雄性不育。Abstract: Citrus suavissima 'seedless' (Wuzi Ougan), a bud variant of C. suavissima (Ougan), maintaining almost all excellent characteristics of 'Ougan' except for seedlessness, and chalcone synthase (CHS), playing an important role on plants by providing floral organs with different types of flavones, were used in this study. To indicate the role of the CHS gene family in male sterility in Wuzi Ougan, four CHS homologs were differentially expressed in a comparative analysis of transcriptome and proteome between Wuzi Ougan and Ougan. The CHS homologs in Wuzi Ougan and Ougan were isolated and their expressions were individually analyzed in different developmental stages of anthers and floral organs. Then, a bioinformatics analysis of the CHS gene family was carried out based on the clementine mandarin genome. Results showed that the nucleotide sequences of CHS homologs derived from Wuzi Ougan and Ougan shared more than 98% similarity with their homologs in clementine mandarin. Real-time polymerase chain reaction (PCR) showed that Ciclev10005133m, Ciclev10030093m, and Ciclev10015535m were down-regulated at microsporcyte in Wuzi Ougan; whereas, Ciclev10005133m, Ciclev10001405m, and Ciclev10015535m were down-regulated in Wuzi Ougan at meiosis. In terms of tetrad, Ciclev10030093m and Ciclev10001405m were down-regulated in Wuzi Ougan (P < 0.05). After pollen maturation, Ciclev10001405m and Ciclev10005133m were mainly expressed at anthers (P < 0.05). The bioinformatics analysis revealed 13 CHS genes that were identified in clementine mandarin. In conclusion, members of the CHS family maintained high similarity in coding sequence (CDS) and were differentially expressed between Wuzi Ougan and Ougan in anther development, which was expected to contribute to male sterility in Wuzi Ougan.
-
Key words:
- horticulture /
- chalcone synthase (CHS) /
- male sterility /
- Citrus suavissima 'Seedless' /
- gene family
-
表 1 ‘无子瓯柑’ CHS基因家族成员及其小孢子母细胞时期相对表达量
Table 1. CHS gene family and expression in C. suavissima 'Seedless' at microsporcyte
基因名称 差异表达倍数 错误发现率/假设概率 Ciclev10015535m 0.76 0.004 6b Ciclev10005133m 0.65 0.007 5a Ciclev10001405m 1.32 0.006 3a Ciclev10001413m 5.50 0.595 4a Ciclev10001395m 0.94 0.717 6a Ciclev10028604m 5.50 0.161 3a Ciclev10030093m 0.71 0.007 9a Ciclev10028605m 0.91 0.144 1a Ciclev10030398m 5.50 0.399 2a Ciclev10001905m 0.90 0.064 2a 说明: a表示错误发现率; b表示假设概率 表 2 基因克隆引物
Table 2. Sequences of primer for gene cloning
基因名称 上游引物(5′→3′) 下游引物(5′→3′) Ciclev10005133m ATGGTGACCGTCGATGAAG CAGTGTTGCCGCTGCTTAA Ciclev10001405m ATGGAGAAAGTTAAAGATG TCCCTACTGTTACAACCTAG Ciclev10030093m ATGACGACAGTGAAAAGTAA ACAAATTTCACCAACTACTGA Ciclev10015535m ATGGCAACCGTTCAAGAGAT GTGTCCCCATCAAAGCTTGA 表 3 qRT-PCR引物
Table 3. Sequences of primer for real-time PCR
基因ID 上游引物(5′→3′) 下游引物(5′→3′) GU911361 ATCTGCTGGAAGGTGCTGAG CCAAGCAGCATGAAGATCAA Ciclev10015535m AAGAGCGAGCATATGACGGA CAGCTTCTTTCCCGAGCTTC Ciclev10001405m AATTGTGTCGGGTGCACAAA ATTCCGAACGGACTAAACGC Ciclev10005133m AGCCGAGAACAACAAAGG ATGGGCTTCTCGATCTCAGG Ciclev10030093m CAAGGACCAACAGCAACGAT CTTTCAGCTCGGTCTTGTGG 表 4 瓯柑和‘无子瓯柑’的CHS同源基因
Table 4. Alignments of CsCHS nucleotide sequences between Citrus suavissima 'Seedless' and C. suavissima
基因名称 瓯柑 ‘无子瓯柑’ 开放阅读框长度/bp 同源基因在瓯柑与‘无子瓯柑’间的相似度/% 差异碱基位/bp 氨基酸的变化 命名 GenBank
登录号命名 GenBank
登录号Ciclev10015535m CsCHS1 MK070533 CsCHS5 MK070537 1 176 99 501 无 Ciclev10001405m CsCHS6 MK070536 CsCHS6 MK070536 1 188 100 无 无 Ciclev10005133m CsCHS3 MK070534 CsCHS7 MK070538 1 173 98 549~954 922 bp处苏氨酸突变为丙氨酸 Ciclev10030093m CsCHS4 MK070535 CsCHS8 MK070539 1 179 98 342,495 无 表 5 CHS基因及其表达
Table 5. Basic information of CHS genes and proteins
基因名称 氨基酸数量/个 分子量/Da 等电点 Ciclev10015535m 391 42 592.17 6.47 Ciclev10005133m 390 42 676.30 5.84 Ciclev10015900m 328 35 477.11 6.11 Ciclev10001405m 395 42 918.26 6.95 Ciclev10001413m 394 43 364.92 6.56 Ciclev10001395m 396 43 377.16 6.77 Ciclev10028604m 395 43 383.97 5.48 Ciclev10030093m 392 43 406.82 5.82 Ciclev10028605m 395 43 436.08 6.17 Ciclev10030398m 390 429 51.35 6.10 Ciclev10001905m 312 33 958.16 5.44 Ciclev10001806m 330 36 069.43 6.33 Ciclev10003127m 309 33 988.20 5.59 表 6 CHS蛋白二级结构分析
Table 6. Secondary structure analysis of CHS proteins
蛋白名称 α螺旋 延伸链 β转角 无规则卷曲 数量/个 比例/% 数量/个 比例/% 数量/个 比例/% 数量/个 比例/% Ciclev10015535m 161 41.18 65 16.62 32 8.18 133 34.02 Ciclev10005133m 170 43.59 60 15.38 31 7.95 129 33.08 Ciclev10015900m 142 43.29 59 17.99 29 8.84 98 29.88 Ciclev10001405m 160 40.51 63 15.95 28 7.09 144 36.46 Ciclev10001413m 170 43.15 63 15.99 27 6.85 134 34.01 Ciclev10001395m 175 44.19 62 15.66 26 6.57 133 33.59 Ciclev10028604m 169 42.78 65 16.46 25 6.33 136 34.43 Ciclev10030093m 156 39.80 64 16.33 31 7.91 141 35.97 Ciclev10028605m 161 40.76 66 16.71 32 8.10 136 34.43 Ciclev10030398m 165 42.31 61 15.64 28 7.18 136 34.87 Ciclev10001905m 131 41.99 56 17.95 26 8.33 99 31.73 Ciclev10001806m 133 40.30 53 16.06 22 6.67 122 36.97 Ciclev10003127m 119 38.51 57 18.45 25 8.09 108 34.95 -
[1] 曹庆芹, 伊华林, 邓秀新.果树雄性不育研究进展[J].果树学报, 2005, 22(6):678-681. CAO Qingqin, YI Hualin, DENG Xiuxin. Advances in research on male sterility in fruit crops[J]. J Fruit Sci, 2005, 22(6):678-681. [2] HU Zhiyong, ZHANG Min, WEN Qigen, et al. Abnormal microspore development leads to pollen abortion in a seedless mutant of 'Ougan' mandarin (Citrus suavissima Hort. ex Tanaka)[J]. J Amer Soc Hort Sci, 2007, 132(6):777-782. [3] 张迟, 张敏, 朱铨, 等. '瓯柑'及其无子突变体花粉发育的细胞学观察[J].果树学报, 2014, 31(2):265-269. ZHANG Chi, ZHANG Min, ZHU Quan, et al. Cytological observation of pollen development in 'Ougan' (Citrus suavissima Hort. ex Tanaka) and its seedless mutant[J]. J Fruit Sci, 2014, 31(2):265-269. [4] NAPOLI C A, FAHY D, WANG Huayu, et al. White anther:a petunia mutant that abolishes pollen flavonol accumulation, induces male sterility, and is complemented by a chalcone synthase transgene[J]. Plant Physiol, 1999, 120(2):615-622. [5] ZHENG Rui, YUE Sijun, XU Xiaoyan, et al. Proteome analysis of the wild and YX-1 male sterile mutant anthers of wolfberry (Lycium barbarum L.)[J]. PLoS One, 2012, 7(7):e41861. [6] 陈遥, 彭彦, 刘峰, 等.辣椒CHS基因表达的定量分析及与雄性不育的相关性[J].湖南农业大学学报(自然科学版), 2013, 39(3):259-264. CHEN Yao, PENG Yan, LIU Feng, et al. The quantitative analysis of CHS in Capsicum annuum L. and its correlation to male sterility[J]. J Hunan Agric Univ Nat Sci, 2013, 39(3):259-264. [7] XIE Yang, ZHANG Wei, WANG Yan, et al. Comprehensive transcriptome-based characterization of differentially expressed genes involved in microsporogenesis of radish CMS line and its maintainer[J]. Funct Integr Genomic, 2016, 16(5):529-543. [8] 王志彬, 申晚霞, 朱世平, 等.柑橘CHS基因序列多态性及表达水平对类黄酮生物合成的影响[J].园艺学报, 2015, 42(3):435-444. WANG Zhibin, SHEN Wanxia, ZHU Shiping, et al. Polymorphism and expression of chalcone synthase gene in citrus related to the flavonoids content[J]. Acta Hortic sin, 2015, 42(3):435-444. [9] 朱咪咪, 张迟, 常爱玲, 等. '无籽'瓯柑小孢子母细胞减数分裂特性基因RAD51和MS1的表达差异分析[J].浙江农林大学学报, 2016, 33(6):921-927. ZHU Mimi, ZHANG Chi, CHANG Ailing, et al. Expression of microsporocyte meiosis with special genes RAD51 and MS1 in Citrus suavissima 'seedless'[J]. J Zhejiang A&F Univ, 2016, 33(6):921-927. [10] QIU Lingling, JIANG Bo, FANG Jia, et al. Analysis of transcriptome in hickory (Carya cathayensis), and uncover the dynamics in the hormonal signaling pathway during graft process[J]. BMC Genomics, 2017, 17(1):935. [11] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4):402-408. [12] YU Chinsheng, LIN Chinjen, HWANG Jennkang. Predicting subcellular localization of proteins for gram-negative bacteria by support vector machines based on n-peptide compositions[J]. Protein Sci, 2004, 13(5):1402-1406. [13] ZHANG Yi, QU Lijia, LIU Meihua, et al. Structural and expressional analysis of a cDNA that expresses predominantly in rice stamens[J]. Chin Sci Bull, 1998, 43(9):765-769. [14] AKADA S, DUBE S K. Organization of soybean chalcone synthase gene clusters and characterization of a new member of the family[J]. Plant Mol Biol, 1995, 29(2):189-199. [15] ZHENG Honghong, QU Lijia, LIU Meijia, et al. An anther-specific chalcone synthase-like gene D5 related to rice pollen development[J]. Chin Sci Bull, 2000, 45(21):1921-1926. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2019.05.013