留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东北地区不同区域野生刺五加种群结构及动态分析

魏洪玲 解胜男 田叙辰 唐中华 刘英 李德文

黄晓杰, 丁金华, 汪大庆. 苏南水网地区绿色空间景观生态风险时空演变与调控策略[J]. 浙江农林大学学报, 2024, 41(6): 1283-1292. DOI: 10.11833/j.issn.2095-0756.20240169
引用本文: 魏洪玲, 解胜男, 田叙辰, 等. 东北地区不同区域野生刺五加种群结构及动态分析[J]. 浙江农林大学学报, 2024, 41(2): 333-342. DOI: 10.11833/j.issn.2095-0756.20230377
HUANG Xiaojie, DING Jinhua, WANG Daqing. Spatiotemporal evolution and regulation strategies of ecological risks in green space landscape in the water network area of southern Jiangsu[J]. Journal of Zhejiang A&F University, 2024, 41(6): 1283-1292. DOI: 10.11833/j.issn.2095-0756.20240169
Citation: WEI Hongling, XIE Shengnan, TIAN Xuchen, et al. Population structure and dynamics of wild Acanthopanax senticosus in different regions of Northeast China[J]. Journal of Zhejiang A&F University, 2024, 41(2): 333-342. DOI: 10.11833/j.issn.2095-0756.20230377

东北地区不同区域野生刺五加种群结构及动态分析

DOI: 10.11833/j.issn.2095-0756.20230377
基金项目: 国家重点研发计划项目(2022YFF1300503);国家科技基础资源调查专项(2019FY1005003);黑龙江省重点研发计划项目(JD22A008);东北林业大学中央高校预研及培育项目(2572023CT11)
详细信息
    作者简介: 魏洪玲(ORCID: 0009-0008-5192-1850),从事植物资源保护与利用研究。E-mail: weily9033@126.com
    通信作者: 李德文(ORCID: 0009-0005-2225-2932),副教授,博士,从事植物资源保护与利用研究。E-mail: lidewen1@126.com
  • 中图分类号: S718.5

Population structure and dynamics of wild Acanthopanax senticosus in different regions of Northeast China

  • 摘要:   目的  分析中国东北地区野生刺五加Acanthopanax senticosus种群结构特征,明确刺五加种群生存现状,预测种群未来的演替趋势,为东北地区野生刺五加种群的保护、利用及可持续发展提供理论依据。  方法  在小兴安岭、张广才岭和长白山具有代表性的生境设立调查样地,并对样地内植物进行调查。通过样地调查和数据统计,绘制刺五加种群的年龄结构图,编制种群静态生命表,拟合其存活曲线、死亡曲线及生存曲线,运用生存分析与数量化动态参数预测种群发展趋势。  结果  ① 3个区域野生刺五加种群的年龄结构均近似于“金字塔”型,幼龄期和成龄期株数占该区域刺五加总株数的68.58%~83.04%,种群年龄结构稳定。② 3个区域野生刺五加种群结构的数量变化动态指数(${V}_{{\rm{p}}n}$)和考虑未来外部干扰的种群年龄结构指数(${V'_{{\rm{p}}n}}$)均大于0,存活曲线均趋于Deevey-Ⅱ型,为增长型种群,且对外界干扰敏感性较强。③ 3个区域1龄级的株数显著低于2、3龄级的株数,表明野生刺五加种子发芽率低,是目前该种群更新和发展的瓶颈。3个区域种群均在前期逐渐减少,后期趋于稳定,但危险率逐渐上升,预示种群后期有衰退的趋势。  结论  目前3个区域野生刺五加种群结构均为增长型,但幼龄级植株数量少,种群老龄个体数量发展潜力较小,种群整体的长期稳定性难以维持。建议加强对1龄级植株的精准抚育管理,通过人为辅助措施提高幼苗的保存率,促进野生刺五加种群的可持续发展。图3表5参35
  • 在城市化快速发展的背景下,城镇建设用地的扩张导致生态空间衰减、系统结构失衡、生态功能下降等问题凸显[1],生态环境面临多重压力和干扰,引起的景观生态风险值得关注。绿色空间是城镇地域范围内对于改善区域生态环境、维持生态系统物质能量循环具有重要作用的生态空间,是由耕地、林地、草地、水域等不同土地单元镶嵌而成的复合生态系统[24]。当前,国内外学者对绿色空间的研究主要集中在绿色空间结构与功能[5]、景观格局动态演化[67]及生态环境效益[89]等方面。景观生态风险评价用于评估自然或人为因素干扰对生态系统及其组分产生不利影响的可能性及损失[10],基于景观格局指数构建景观生态风险评价模型能够定量揭示生态环境健康程度及风险压力的时空分布特征[11]。现有研究主要集中于景观生态风险的静态分析,对时空动态分析视角下景观生态风险演变特征的分析相对薄弱,且研究尺度集中在城市[1213]、城市群[1415]、流域[1617]等典型地区,对具有特殊地域特征的苏南水网地区的研究相对较少。

    苏南水网地区位于经济发达、人口密集的长江三角洲,河流、湖荡众多,水系纵横交错,形成了独特的地域生态空间特征。随着城镇建设用地的迅速扩张,苏南水网地区绿色空间日趋破碎化,生态系统稳定性下降。本研究以苏南水网地区江苏省昆山市为研究对象,利用2000、2010、2020年土地利用数据,定量测度其绿色空间景观格局变化引起的景观生态风险,并探究景观生态风险时空演变特征,依据风险等级转移变化特征划定绿色空间管控分区,提出分区调控策略,为优化水网地区空间景观布局,保护地区生态安全,合理开发绿色空间资源提供理论依据,也为地区景观生态风险管理提供决策支持。

    昆山市位于长江三角洲地区江苏省苏州市东部,31°06′~31°32′N,120°48′~121°09′E,全市下辖周庄镇、锦溪镇、淀山湖镇等10个镇,总面积为931 km2。根据《昆山市统计年鉴》,2000—2020年昆山市户籍总人数增加47.3万人,城镇化率由57.31%提升至78.95%,国内生产总值(GDP)增长4 075.96亿元,经济建设水平居于全国经济百强县首位。昆山市境内地势平坦,属北亚热带季风性湿润气候,四季分明,雨量充沛。境内河港纵横交错,湖荡星罗棋布,水域面积占16.4%,包含白莲湖、傀儡湖、明镜荡等湖荡,水网地区风貌特征明显。

    采用2000、2010、2020年3期 Landsat TM/OLI 遥感影像,数据集来源于地理空间数据云平台(http://www.gscloud.cn/),空间分辨率为30 m×30 m。利用ENVI 5.3软件对各期遥感影像数据进行校准、图像拼接裁剪等处理。参考中国科学院土地利用/土地覆盖分类系统及GB/T 21010—2017《土地利用现状分类》相关标准,结合苏南水网地区地域特点,将研究区划分为耕地、林地、草地、水域、建设用地和未利用地等6类土地利用类型,其中耕地、林地、草地和水域为绿色空间,建设用地和未利用地为非绿色空间。对解译后的土地利用类型数据进行精度验证,Kappa系数均>0.85,符合解译精度要求。

    为了便于景观生态风险指数的空间化表达,本研究基于ArcGIS的渔网分析功能划分景观生态风险小区。依据研究区面积大小及数据精度,采用等间距采样的方法将研究区划分为1.5 km×1.5 km正方形格网,共划分景观生态风险样本小区489个(图1),利用 Fragstats 4.2软件计算各个样本小区内的生态风险指数,作为每个风险小区中心点的景观生态风险值。

    图 1  生态风险小区划分示意图
    Figure 1  Schematic diagram of ecological risk area division

    景观格局指数是反映景观结构组成和空间配置特征的定量指标[18]。基于景观格局指数的生态风险评价方法能够有效评估生态系统受到外部干扰的强弱和内部抵抗力的大小[19]。根据相关研究成果[2021],依据景观格局与生态风险之间的关联,选取景观干扰度指数($ {E}_{i} $)、景观脆弱度指数($ {V}_{i} $)和景观损失度指数($ {R}_{i} $)来构建景观生态风险评价模型。

    各景观格局指数计算方法及生态学含义详见表1

    表 1  景观格局指数及计算方法
    Table 1  Landscape pattern index and their calculation methods
    指数名称 计算方法 生态学含义
    土地利用生态风险指数
     (IERk)
    ${I_{{\text{ER}}k}} = \displaystyle \sum \limits_{i = 1}^N \dfrac{{{A_{ki}}}}{{{A_k}}} \times {R_i} $ Aki为第k个风险小区内土地利用类型i的面积;Ak为第k个风险小区的面积;Ri为第i类景观的景观损失度指数
    景观损失度指数(Ri) Ri=Ei×Vi Ei为景观干扰度指数,Vi为景观脆弱度指数
    景观干扰度指数($ {E}_{i} $) $ {E}_{i}={aC}_{i}+{bN}_{i}+{cD}_{i} $ 表示不同类型景观生态系统所受外界干扰的程度,主要与人类的开发活动有关。其中:$ a、b、c $分别为$ {C}_{i} $、$ {N}_{i}{\mathrm{、}D}_{i} $的权重,且$ a+b+c= $1,参考前人研究[11, 22],将$ a、b、c $分别赋值为0.5、0.3和0.2
    景观破碎度指数($ {C}_{i} $) $ {C}_{i}=\dfrac{{n}_{i}}{{A}_{i}} $ 表示景观被分割的破碎化程度,值越大表明景观破碎程度越高
    景观分离度指数($ {N}_{i} $) $ {N}_{i}=\dfrac{A}{2{A}_{i}}\sqrt{\dfrac{{n}_{i}}{A}} $ 表示某一景观类型中不同斑块间的分离程度,值越大表明景观空间分布越离散,景观结构稳定性越低。$ {n}_{i} $为景观类型$ i $的斑块个数;$ {A}_{i} $为景观类型$ i $的面积;$ A $为景观总面积
    景观优势度指数($ {D}_{i} $) $ {D}_{i}=\dfrac{\left(\dfrac{{n}_{i}}{N}+\dfrac{{q}_{i}}{Q}\right)}{4}+\dfrac{{A}_{i}}{2A} $ 表示斑块在景观中的地位,值越大代表斑块对景观格局演变影响越大。$ {q}_{i} $为景观类型$ i $斑块出现的样方数;$ Q $为样方总数;$ N $为斑块总数
    景观脆弱度指数($ {V}_{i} $) $ {V}_{i}={I}_{{\mathrm{LS}}}\times \left(1-{I}_{{\mathrm{LA}}}\right) $ 表示不同景观类型抵抗外界干扰的敏感程度。其中:ILS为景观敏感度指数,可通过景观干扰度指数和景观易损度指数相乘而得,景观易损度指数根据前人研究成果[2324],结合研究区实际情况赋以权重:未利用地为6,水域为5,耕地为4,草地为3,林地为2,建设用地为1;ILA为景观适应度指数,由斑块丰富密度指数、香农多样性指数、香农均匀度指数相乘而得。3种指数均由Fragstats软件计算而得
    下载: 导出CSV 
    | 显示表格
    3.1.1   绿色空间面积组成对比分析

    通过ArcGIS软件对遥感影像图进行分类处理,得到昆山市2000、2010和2020年3个时期土地利用类型图(图2),并统计得到各土地利用类型面积与占比(表2)。从分析结果来看:2000—2020年昆山市各绿色空间类型面积发生了较大变化,其中耕地面积下降明显,减少20 203.11 hm2,占比下降21.70%;水域面积在2000—2010年小幅增加,占比上升2.24%,2010—2020年水域面积明显下降,减少了5905.17 hm2,占比下降6.34%;林地面积共减少72.90 hm2,而草地面积则增加了143.64 hm2,两者在绿色空间中占比很小。总体而言,研究期间昆山市绿色空间总面积明显减少,反映了建设用地扩张不断侵占市域内的绿色空间,以耕地面积的缩减最为突出。

    图 2  2000—2020年昆山市土地利用类型示意图
    Figure 2  Land use type map of Kunshan City from 2000 to 2020
    表 2  2000—2020年昆山市各用地类型面积变化
    Table 2  Changes in the area of various land types in Kunshan City from 2000 to 2020
    土地利用类型 2000年 2010年 2020年
    面积/hm2 百分比/% 面积/hm2 百分比/% 面积/hm2 百分比/%
    绿色空间 耕地 68 884.11 73.98 51 240.51 55.03 48 681.00 52.28
    林地 122.85 0.13 112.59 0.12 49.95 0.05
    草地 36.36 0.04 78.66 0.08 180.00 0.19
    水域 15 156.36 16.28 17 247.87 18.52 11342.70 12.18
    合计 84 199.68 90.43 68 679.63 73.75 60253.65 64.70
    非绿色空间 建设用地 8 833.95 9.49 24 386.49 26.19 32828.04 35.26
    未利用地 81.36 0.09 48.96 0.05 33.39 0.05
    合计 8 915.31 9.58 24 435.45 26.24 32861.43 35.31
    下载: 导出CSV 
    | 显示表格
    3.1.2   绿色空间面积转移矩阵分析

    为了进一步揭示昆山市绿色空间用地类型的时空演变规律,本研究采用土地利用转移矩阵对昆山市各用地类型之间的转移方向和转换数量进行分析,结果如表3所示。2000—2020年昆山市各绿色空间类型转移存在明显差异:耕地净转出量最大,总量达33 918.84 hm2,主要流向建设用地,转出面积达26 327.86 hm2,转出贡献率为77.62%,反映出建设用地侵占耕地现象普遍;水域面积整体呈现先小幅增加后逐渐减少的趋势,其中2000—2010年水域面积小幅增加了2 091.51 hm2,主要由耕地转入,2010—2020年,水域面积持续减少,主要向耕地和建设用地转出,转出总面积为7 150.64 hm2。总体来看,2000—2020年昆山市绿色空间类型转移以耕地和水域的转出为主,均主要转向建设用地。这反映出昆山市在经济社会快速发展下人为开发建设活动对绿色空间侵占现象较为明显,耕地和水域等绿色空间面临较大生态压力。

    表 3  2000—2020年昆山市地类转移矩阵
    Table 3  Land class transfer matrix in Kunshan City from 2000 to 2020
    时间段 土地利用类型 绿色空间/hm2 非绿色空间/hm2 转出合
    计/hm2
    面积变化
    合计/ hm2
    耕地 林地 草地 水域 建设用地 未利用地
    2000—2010 绿色空间 耕地 46 613.56 41.62 71.57 6 168.10 15 825.59 6.48 68 726.91 −17 577.88
    林地 46.23 41.28 0.07 29.54 5.62 0.00 122.74 −10.60
    草地 14.15 0.00 0.16 15.64 6.29 0.11 36.36 42.30
    水域 3 464.97 28.70 5.97 10 742.95 853.90 2.02 15 098.51 2 033.98
    非绿色空间 建设用地 975.40 0.53 0.90 174.01 7 672.25 0.20 8 823.28 15 544.60
    未利用地 34.72 0.00 0.00 2.25 4.23 40.15 81.36 −32.40
    转入合计 51 149.03 112.14 78.66 17 132.48 24 367.89 48.96 92 889.16
    时间段 土地利用类型 绿色空间/hm2 非绿色空间/hm2 转出合
    计/ hm2
    面积变化
    合计/ hm2
    耕地 林地 草地 水域 建设用地 未利用地
    2010—2020 绿色空间 耕地 39 356.15 8.54 127.00 1 161.04 10 502.27 6.64 51 161.64 −2 650.12
    林地 65.13 25.78 0.13 17.69 3.57 0.00 112.30 −62.47
    草地 2.17 0.00 1.46 0.00 74.73 0.30 78.66 101.34
    水域 6 482.98 14.97 37.18 9 906.54 667.66 6.89 17 116.24 −5 812.93
    非绿色空间 建设用地 2 592.59 0.53 14.22 217.65 21 538.87 1.19 24 365.05 8 439.75
    未利用地 12.50 0.00 0.00 0.38 17.71 18.37 48.96 −15.57
    转入合计 48 511.52 49.82 180.00 11 303.31 32 804.80 33.39 92 882.85
      说明:−表示无此项。
    下载: 导出CSV 
    | 显示表格
    3.2.1   绿色空间景观格局指数时序变化

    运用Fragstats软件计算得到昆山市2000、2010、2020年各绿色空间类型景观格局指数。统计结果表明:2000—2020年昆山市绿色空间景观格局发生了较大变化(表4)。①研究期间耕地破碎度和分离度指数显著上升,表明建设用地快速扩张,促使耕地空间分布趋于离散,破碎化程度加剧,景观优势度不断降低,受外界干扰程度增加。景观损失度逐年上升。②水域破碎度指数先下降后上升,总体呈上升趋势,景观优势度降低,且水域周边城镇较为密集,易受人为活动干扰,使景观脆弱程度不断增加,损失度上升。③林地破碎度、干扰度、脆弱度指数均先下降后上升,总体呈下降趋势,表明林地斑块分布逐渐聚集,景观结构稳定性提升。④草地破碎度指数先上升后下降,表明草地斑块在空间上趋于集聚与整合,抗外界干扰能力提高,景观脆弱度与损失度有所降低。

    表 4  2000—2020年昆山市绿色空间景观格局指数变化
    Table 4  Change of green space landscape pattern index in Kunshan City from 2000 to 2020
    土地利用类型 年份 斑块数量 斑块面积/hm2 破碎度 分离度 优势度 干扰度 脆弱度 损失度
    耕地 2000 1378 68 884.11 0.020 0.973 0.647 0.431 0.082 0.035
    2010 4401 51 240.51 0.086 0.987 0.602 0.459 0.087 0.040
    2020 4667 48 681.00 0.096 0.992 0.597 0.465 0.088 0.041
    林地 2000 494 122.85 4.021 1.000 0.092 2.329 0.222 0.516
    2010 355 112.59 3.153 1.000 0.076 1.892 0.180 0.340
    2020 172 49.95 3.443 1.000 0.046 2.031 0.193 0.392
    草地 2000 56 36.36 1.540 1.000 0.025 1.075 0.153 0.165
    2010 195 78.66 2.479 1.000 0.017 1.551 0.221 0.343
    2020 123 180.00 0.683 1.000 0.047 0.651 0.093 0.060
    水域 2000 4128 15 156.36 0.272 1.000 0.417 0.520 0.124 0.064
    2010 3566 17 247.87 0.207 1.000 0.399 0.483 0.115 0.056
    2020 3770 11 342.70 0.332 1.000 0.365 0.539 0.128 0.069
    下载: 导出CSV 
    | 显示表格
    3.2.2   绿色空间景观生态风险时空分布格局

    基于景观生态风险评价指标计算结果,在ArcGIS 10.2中利用克里金插值法对昆山市生态风险值进行空间插值,得到昆山市绿色空间景观生态风险空间分布图,使用自然断点法将景观生态风险值(IERk)划分为5个等级:低生态风险(0<IERk≤0.026)、较低生态风险(0.026<IERk≤0.031)、中生态风险(0.031<IERk≤0.037)、较高生态风险(0.037<IERk≤0.041)和高生态风险(IERk>0.041),结果如图3,并统计得到不同景观生态风险等级的面积及占比(表5)。

    图 3  2000—2020年昆山市绿色空间景观生态风险空间分布示意图
    Figure 3  Spatial distribution of ecological risks in green space landscape of Kunshan City from 2000 to 2020
    表 5  2000—2020年昆山市绿色空间景观生态风险等级面积及比例
    Table 5  Area and proportion of landscape ecological risk level of green space in Kunshan City from 2000 to 2020
    年份低风险区较低风险区中等风险区较高风险区高风险区
    面积/hm2比例/%面积/hm2比例/%面积/hm2比例/%面积/hm2比例/%面积/hm2比例/%
    20001 116.9025.661 830.8742.06918.0921.09345.157.93141.483.25
    2010642.7819.941 210.4137.55745.5623.13409.3212.70215.826.69
    2020452.7015.93961.0233.81692.6424.37455.5816.03280.269.86
    下载: 导出CSV 
    | 显示表格

    2000—2020年昆山市绿色空间景观生态风险整体呈上升趋势,呈现“南北高,中间低”的空间分布特征。高、较高风险区面积明显上升,面积占比分别增加8.10%、6.61%,主要分布于淀山湖、白莲湖等湖荡密集地区,且不断向湖荡周围辐射扩张。该区域绿色空间类型以水域为主,由于围网养殖等人为活动对水域干扰程度加大,景观损失度逐年增加,使区域风险等级不断升高。中风险区面积小幅上升,面积占比增加3.28%,集中分布于渡头村、双洋潭等地区,并逐步沿较高风险区外围向四周扩散,区域内耕地、水域交错分布,受人为活动干扰较大,生态稳定性下降。较低、低风险区面积明显缩减,占比分别减少8.25%和9.73%,主要分布于研究区中部白渔潭村、荣家厍及北部范潭村、横泾等地区,且分布逐渐变得零散破碎,人为开发建设活动频繁,绿色空间不断减少,抗干扰能力减弱,景观生态风险值有增强趋势。

    3.2.3   绿色空间景观生态风险等级空间变化

    借助景观生态风险等级变化分布(图4)分析2000—2020年期间研究区各风险等级的变化情况。①风险等级升高区域的面积为21 503.12 hm2,占绿色空间总面积的36.69%,其中较低风险区域上升为中风险的区域面积最大,为6 413.09 hm2,其次为中风险区域上升为较高风险区域。主要分布在白莲湖、明镜荡、汪洋荡等地区,区域内湖荡、耕地镶嵌分布,城镇建设用地的扩张使生态斑块破碎化程度加剧,生态结构和功能受到损害,生态系统稳定性和恢复力下降。②风险等级基本不变区域的面积为31 026.25 hm2,占绿色空间总面积的52.61%,其中较低风险区域面积最大,为13 102.74 hm2。主要分布在白渔潭村、荣家厍、范潭村片区等。该区域生态环境相对较好,生态系统结构和整体格局较为完整,对外界干扰具备一定的抵御能力,可维持基本的生态功能。③风险等级降低区域的面积为5 241.88 hm2,占绿色空间总面积的10.70%,其中中风险区域下降为较低风险区域面积最大,为2 925.90 hm2,其次为较低风险区域下降为低风险区域。在空间上集中在大渔新村、朱家湾村、黄家埭等地区。区域内具有较好的生态基底,生态斑块间连续性较强且受经济建设活动干扰较小,生态系统稳定性提高,能够提供较好的生态服务效益。

    图 4  2000—2020年昆山市绿色空间景观生态风险等级变化示意图
    Figure 4  Change of landscape ecological risk level of green space in Kunshan City from 2000 to 2020

    基于2000—2020年昆山市绿色空间景观生态风险等级变化特征,将风险等级升高、不变和降低的区域分别划定为重点修复区、协调缓冲区和优化利用区。依据《苏州市“十四五”生态环境保护规划》《昆山市生态环境保护“十四五”规划》《昆山市国土空间总体规划(2021—2035)》等规划政策,结合调控分区的景观生态风险水平,提出有针对性的空间分区调控策略。

    3.3.1   重点修复区实施生态保育,降低绿色空间生态风险

    重点修复区为景观生态风险等级升高的区域,主要表现为较低风险向中风险、中风险向较高风险转移。片区内绿色空间破碎度增加,生态系统稳定性下降,景观生态风险水平不断上升。应加强生态保育与生态修复,对淀山湖、白莲湖等主要核心水域开展生态治理与修复工程,提升水域生态涵养功能;系统梳理、串通河网水系,在河网沿线严格管控开发强度大的建设活动;对破碎的绿色空间斑块进行整合,特别是南部长白荡、明镜荡等水域密集地区,着力提升水网景观的连通性和抗干扰能力,维护绿色空间的完整性与稳定性。

    3.3.2   协调缓冲区加强缓冲区建设,筑牢绿色空间生态安全屏障

    协调缓冲区为景观生态风险等级基本不变的区域,片区内绿色空间生态稳定性较强,能够抵御一定程度的外界干扰,景观生态风险维持在稳定水平。这些区域可作为生态缓冲地,提升绿色空间抗风险能力。通过强化河流水系、滨水绿带等生态廊道结构连通性[25],串联湖荡、农田大型生态斑块,构建水陆联动的网络化生态空间格局;加强傀儡湖、阳澄湖等生境敏感区的缓冲区建设,构建区域生态安全屏障,维护生态保护网络边界,增强区域景观生态风险缓冲能力。

    3.3.3   优化利用区优化生态建设,发挥绿色空间生态效益

    优化利用区为景观生态风险等级降低的区域,主要表现为中风险向较低风险、较低风险向低风险转换。片区内绿色空间生态系统结构较为完整,对外界干扰具有较强的适应能力,景观生态风险水平有所下降。应依托片区内良好的生态优势,适度优化建设,提升水网空间活力,维护生态系统的稳定性。首先明确生态保护红线边界,保护绿色空间健康稳定发展;其次对绿色空间进行分级分类管控,加强对城市生态森林公园、夏驾河湿地公园等核心生态资源的保护与管理,定期监测与评估生态用地的环境状况;同时在生态保护基础上优化建设,结合黄家埭等地区独特的水网空间优势开展科普教育、休闲游憩等服务,提升绿色空间的生态效益。

    本研究表明:绿色空间用地类型转变与景观生态风险具有关联性。研究期间昆山市南部水域及周边地区由于城镇用地扩张,耕地、水域等绿色空间面积持续减少,生态系统结构稳定性下降,景观生态风险等级呈上升趋势。这与于淑会等[26]、陈斌等[27]的研究结论一致。水网地区以纵横交错的河流、湖荡为主体,水域面积较大,易受外界城镇建设用地扩张的干扰而破碎化,景观脆弱度高。本研究结果表明:水域范围内的景观生态风险指数普遍较高。这与何钊全等[28]对延安市的研究存在一定差异。延安市地处黄土丘陵区,林地和耕地是优势景观类型,受经济发展和建设用地扩张影响较大,林地、耕地破碎化程度加剧,抗干扰能力下降,景观损失度增加,使林地与耕地的景观生态风险值较高。

    本研究在快速城镇化背景下,基于景观生态风险评价,加强绿色空间分区规划调控,对提升区域生态安全水平,优化国土空间结构,促进区域可持续发展具有一定理论指导意义。但研究仍存在一定局限性:①研究侧重从景观空间结构变化视角来评价绿色空间景观生态风险状况,对社会、经济等层面影响因素研究不足,还需进一步完善景观生态风险影响因素和驱动机制研究。②生态过程具有复杂性和抽象性,其具体演变过程很难做到定量表述。需要对生态风险展开多尺度分析,深入探讨景观格局生态风险和生态过程的耦合关系,为区域风险管理提供更加科学的依据。

    ①2000—2020年昆山市绿色空间总面积持续减少,其中耕地面积缩减最多;水域面积先小幅增加后持续减少,总体呈减少趋势;林地、草地面积占比较小,维持相对平稳。研究区用地类型转换主要表现为耕地和水域转向建设用地。②2000—2020年昆山市绿色空间景观格局变化特征明显,耕地空间分布在建设用地扩张影响下趋于分散,破碎化程度加大,损失度增加;水域破碎度指数先下降后上升,总体破碎度呈增大趋势,景观受外界干扰增加;林地破碎度、干扰度和脆弱度呈下降趋势,斑块分布呈集聚态势;草地破碎度指数先上升后下降,总体破碎度呈下降趋势,空间分布趋于集聚,景观损失度降低。③2000—2020年昆山市绿色空间景观生态风险等级总体呈上升趋势,其中高风险区、较高风险区面积显著扩大,占比分别增加8.10%、6.61%,空间分布上主要集中在南部淀山湖、白莲湖等水域密集地区,并有进一步向外围蔓延发展的趋势;较低风险区、低风险区面积缩减明显,占比分别下降8.25%和9.73%;景观生态风险以低风险等级向更高一级转变为主,绿色空间受人工建设干扰生态风险不断增强。④依据景观生态风险等级变化特征将研究区划分为重点修复区、协调缓冲区和优化利用区。

  • 图  1  不同区域野生刺五加种群的龄级结构

    Figure  1  Age-class structure of wild A. senticosus populations in different regions

    图  2  不同区域野生刺五加种群存活(A)及死亡曲线(B)

    Figure  2  Survival (A) and killing curves (B) of wild A. senticosus populations in different regions

    图  3  不同地区野生刺五加种群生存函数曲线

    Figure  3  Survival function curves of wild A. senticosus population in different regions

    表  1  不同区域野生刺五加种群分布信息表

    Table  1.   Information on the distribution of wild A. senticosus populations in different regions

    样地株数/株北纬(N)东经(E)平均海拔/m平均郁闭度/%平均坡度/(°)平均株高/m平均基径/cm
    小兴安岭53346°58′48″128°39′36″376.0876.8112.201.12±2.12 a1.48±0.09 a
    张广才岭17145°33′00″128°19′12″253.5657.0014.710.78±0.30 a0.63±0.02 b
    长白山 43642°28′12″127°50′24″825.8172.0017.810.94±0.76 a0.74±0.04 b
      说明:平均株高和平均基径为平均值±标准差。同列不同小写字母代表不同种群间差异显著(P<0.05)。
    下载: 导出CSV

    表  2  不同区域野生刺五加种群龄级与环境因子间的相关系数

    Table  2.   Correlation coefficients of age class and environmental factors of wild A. senticosus populations in different regions

    样地经度纬度海拔坡度坡向坡位郁闭度
    小兴安岭−0.224**0.098*0.134**0.154**0.159**−0.0530.016
    张广才岭−0.191*−0.190*0.1030.1080.052−0.129−0.093
    长白山 0.359**0.298**−0.006−0.325**−0.115*0.033−0.117*
      说明: **表示在P<0.01水平(双侧)上极显著相关; *表示在P<0.05水平(双侧)上显著相关。
    下载: 导出CSV

    表  3  不同区域野生刺五加种群动态变化指数

    Table  3.   Dynamic change index of wild A. senticosus populations in different regions

    样地年龄结构动态变化指数/%$ {{P}_{\max}}$
    V1V2V3V4V5V6V7V8V9V10V11Vpn$ {V'_{ {\rm{p} }n} }$
    小兴安岭−85.37−32.7953.283.51−38.8956.670.0043.5950.0063.6432.330.240.01
    张广才岭−78.95−64.1518.8769.77−7.1435.71−35.7185.7140.680.990.03
    长白山 −59.26−74.2936.197.4638.7142.11−66.6748.4888.2440.870.340.01
      说明:Vn是种群n~n+1龄级的种群个体数量,${V_{{\rm{p}}n} }$是整个种群结构的数量变化动态指数,${V'_{ {\rm{p} }n} }$是考虑未来外部干扰时的种群年龄结构指数,Pmax是种群对完全随机干扰所承担的最大风险概率。−表示无此项。
    下载: 导出CSV

    表  4  不同区域野生刺五加种群的静态生命表

    Table  4.   Static life tables of wild A. senticosus populations in different regions

    样地龄级高度级/cmanan*lnlnlndnqnLnTnenkn
    小兴安岭10~201230810006.911880.1990634543.450.21
    220~40822508126.701690.2172825483.140.23
    340~601221986436.471460.2357018202.830.26
    460~80571534976.211300.2643212502.520.30
    580~100551133675.911070.293148182.230.34
    6100~12090802605.56880.342165051.940.41
    7120~14039531725.15680.401382891.680.50
    8140~16039321044.64460.44811511.450.58
    9160~1802218584.06290.5044701.210.69
    10180~200119293.3760.2126260.990.23
    11200~22047233.14
    张广才岭10~20414310006.913580.3682126782.680.44
    220~4019926426.472480.3951816782.610.49
    340~6053563945.981600.4031410362.630.52
    460~8043332355.46920.391896412.730.50
    580~10013201424.96460.321204072.860.39
    6100~1201414974.57200.21872642.720.23
    7120~140911774.34160.20691672.170.23
    8140~160149614.12320.5245911.480.74
    9160~18024293.38
    长白山 10~201116210006.911980.2090132423.240.22
    220~40271308026.691760.2271423412.920.25
    340~601051016276.441540.2555016272.600.28
    460~8067774736.161320.2840710772.280.33
    580~10062553415.831090.322876701.960.39
    6100~12038382325.45870.381883831.650.47
    7120~14022231454.97650.451121951.350.60
    8140~1606613794.37430.5558831.050.79
    9160~180346363.58210.5925250.690.89
    10180~20042152.70
      说明:n. 龄级;an. 第n龄级内存活的个体数;an*. 匀滑后n龄级内存活的个体数;ln. 标准化存活个体数(一般以1 000为基数);$ {\mathrm{l}\mathrm{n}l}_{n} $. ln的自然对数;dn. n~n+1龄级的标准化死亡数量;$ {q}_{n} $. n~n+1龄级间的死亡率;$ {L}_{n} $. n~n+1龄级之间存活的个体数;$ {T}_{n} $. 从n龄级到超过n龄级的总个体数;$ {e}_{n} $. 进入n龄级个体的生命期望寿命;$ {k}_{n} $. 各龄级间的消失率。−表示无此项。
    下载: 导出CSV

    表  5  不同区域野生刺五加种群存活曲线的检验

    Table  5.   Examination of the survival curves of wild A. senticosus populations in different regions

    种群检验方程FR2显著性
    小兴安岭$ {y={8.405n}^{-0.312}}$22.2950.7120.001
    $ {y={8.272\mathrm{e} }^{-0.08n}}$119.0180.9300.000
    张广才岭$ {y={7.700n}^{-0.302}}$49.6980.8770.000
    $ {y={7.626\mathrm{e} }^{-0.084n}}$390.9440.9820.000
    长白山 $ {y={8.467n}^{-0.334}}$14.6760.6470.005
    $ {y={8.569\mathrm{e} }^{-0.094n}}$54.8980.8730.000
    下载: 导出CSV
  • [1] OBLUCHINSKAYA E D, POZHARITSKAYA O N, ZAKHAROV D V, et al. The biochemical composition and antioxidant properties of Fucus vesiculosus from the Arctic Region [J/OL]. Marine Drugs, 2022, 20(3): 193[2023-05-23]. doi: 10.3390/md20030193.
    [2] KIM Y, JUNG Y J, YOON H J, et al. Simultaneous quantification method for eleutheroside B, eleutheroside E, chiisanoside, and sesamin using reverse-phase high-performance liquid chromatography coupled with ultraviolet detection and integrated pulsed amperometric detection [J/OL]. Heliyon, 2023, 9(1): e12684[2023-05-23]. doi: 10.1016/j.heliyon.2022.e12684.
    [3] 韩忠明, 王云贺, 张永刚, 等. 不同生境刺五加生长发育及光合特性研究[J]. 西北植物学报, 2011, 31(9): 1852 − 1859.

    HAN Zhongming, WANG Yunhe, ZHANG Yonggang, et al. Growth and photosynthetic characteristics of Acanthopanax senticosus in different habitats [J]. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(9): 1852 − 1859.
    [4] 魏东. 东北地区刺五加(Eleutherococcus senticosus)内生细菌/真菌微生物群落组成及分布研究[D]. 哈尔滨: 东北林业大学, 2017.

    WEI Dong. Research on the Composition and Distribution of Endophytic Bacteria and Fungi in Acanthopanax senticosus of Northeast China [D]. Harbin: Northeast Forestry University, 2017.
    [5] SONG Chen, YIN Yishu, QIN Yue, et al. Acanthopanax senticosus extract alleviates radiation-induced learning and memory impairment based on neurotransmitter-gut microbiota communication [J]. CNS Neuroscience &Therapeutics, 2023, 29(S1): 129 − 145.
    [6] WAN Chunlei, WANG Xijun, LIU Hongda, et al. Characterization of effective constituents in Acanthopanax senticosus fruit for blood deficiency syndrome based on the chinmedomics strategy [J/OL]. Open Chemistry, 2023, 21(1): 20220280[2023-05-23]. doi: 10.1515/chem-2022-0280.
    [7] 叶强, 马明磊, 张玉姣, 等. 不同产地刺五加资源遗传多样性差异分析[J/OL]. 分子植物育种, 2023-03-03[2023-05-23]. https://kns.cnki.net/kcms/detail/46.1068.S.20230302.1656.022.html.

    YE Qiang, MA Minglei, ZHANG Yujiao, et al. Analysis of genetic diversity differences of Acanthopanax resources from different origins [J/OL]. Molecular Plant Breeding, 2023-03-03[2023-05-23]. https://kns.cnki.net/kcms/detail/46.1068.S.20230302.1656.022.html.
    [8] JUNG J Y, GWON J, SONG H, et al. Vegetation structure and ecological properties of Eleutherococcus senticosus population [J/OL]. Journal of the Korea Society of Environmental Restoration Technology, 2013, 16(5): 27 − 38.
    [9] 孟祥才, 宋琦, 曹伍林, 等. 从生物学角度探讨刺五加资源破坏原因及保护对策[J]. 世界科学技术(中医药现代化), 2013, 15(4): 634 − 637.

    MENG Xiangcai, SONG Qi, CAO Wulin, et al. Inquiry into reasons of Acanthopanax senticosus resource being damaged from biological standpoint and strategies for protection [J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2013, 15(4): 634 − 637.
    [10] 金司阳, 刘寒, 杨立学, 等. 植物-土壤反馈对刺五加幼苗抗氧化酶系统的影响[J]. 中国实验方剂学杂志, 2020, 26(4): 162 − 166.

    JIN Siyang, LIU Han, YANG Lixue, et al. Effect of plant and soil feedback on antioxidant system of Acanthopanax senticosus [J]. Chinese Journal of Experimental Traditional Medical Formulae, 2020, 26(4): 162 − 166.
    [11] 张孟文, 钟才荣, 吕晓波, 等. 3种海桑属濒危红树植物的种群结构与动态特征[J]. 植物研究, 2023, 43(2): 231 − 241.

    ZHANG Mengwen, ZHONG Cairong, LÜ Xiaobo, et al. Population structure and dynamic characteristics of three endangered mangrove species from genus Sonneratia [J]. Bulletin of Botanical Research, 2023, 43(2): 231 − 241.
    [12] 徐立清, 崔东海, 王庆成, 等. 张广才岭西坡次生林不同生境胡桃楸幼树根系构型及细根特征[J]. 应用生态学报, 2020, 31(2): 373 − 380.

    XU Liqing, CUI Donghai, WANG Qingcheng, et al. Root architecture and fine root characteristics of Juglans mandshurica saplings in different habitats in the secondary forest on the west slope of Zhangguangcailing, China [J]. Chinese Journal of Applied Ecology, 2020, 31(2): 373 − 380.
    [13] 何潇, 李海奎, 张逸如, 等. 天然次生林碳储量生长模型与固碳能力驱动力研究[J]. 北京林业大学学报, 2023, 45(1): 1 − 10.

    HE Xiao, LI Haikui, ZHANG Yiru, et al. Growth model of carbon storage and driving force of carbon sequestration capacity of natural secondary forests [J]. Journal of Beijing Forestry University, 2023, 45(1): 1 − 10.
    [14] 万猛, 田大伦, 樊巍. 太行山南麓栓皮栎群落结构特征分析[J]. 河南农业大学学报, 2009, 43(2): 139 − 144, 150.

    WAN Meng, TIAN Dalun, FAN Wei. Structural characteristics of the Quercus variabilis forest community in south area of Taihang Mountains [J]. Journal of Henan Agricultural University, 2009, 43(2): 139 − 144, 150.
    [15] 陈晓德. 植物种群与群落结构动态量化分析方法研究[J]. 生态学报, 1999, 18(2): 214 − 217.

    CHEN Xiaode. A study on the method of quantitative analysis for plant population and community structural dynamics [J]. Acta Ecologica Sinica, 1999, 18(2): 214 − 217.
    [16] 赵艳丽, 郭春秀, 安富博, 等. 石羊河下游不同立地类型黑果枸杞种群结构及数量动态研究[J]. 甘肃农业科技, 2022, 53(7): 35 − 43.

    ZHAO Yanli, GUO Chunxiu, AN Fubo, et al. Population structure and quantitative dynamics of Lyciumbarbarum in different site types in the lower reaches of Shiyang River [J]. Gansu Agricultural Science and Technology, 2022, 53(7): 35 − 43.
    [17] 吉也, 曹孟岩, 白楚锋, 等. 峨眉山桫椤种群结构与动态特征[J]. 西北植物学报, 2019, 39(3): 543 − 551.

    JI Ye, CAO Mengyan, BAI Chufeng, et al. Population structure and dynamics of Alsophila spinulosa in Mount Emei [J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(3): 543 − 551.
    [18] 韩忠明. 刺五加种群可持续更新机制的研究[D]. 长春: 吉林农业大学, 2006.

    HAN Zhongming. Study on Sustainable Regeneration Mechanism of Acanthopanax senticosus Population [D]. Changchun: Jilin Agricultural University, 2006.
    [19] 江洪. 云杉种群生态学. 北京: 中国林业出版社, 1992.

    JIANG Hong. Population Ecology of Spruce [M]. Beijing: China Forestry Press, 1992.
    [20] 张锦堂, 潘志立, 田云海, 等. 云龙天池国家级保护区云南松种群年龄结构及动态分析[J]. 生态学报, 2022, 42(22): 9091 − 9099.

    ZHANG Jintang, PAN Zhili, TIAN Yunhai, et al. Age structure and dynamics of Pinus yunnanensis population in Yunlong Tianchi Nature Reserve [J]. Acta Ecologica Sinica, 2022, 42(22): 9091 − 9099.
    [21] HETT J M, LOUCKS O L. Age structure models of Balsam fir and eastern hemlock [J]. Journal of Ecology, 1976, 64(3): 1029 − 1044.
    [22] 于大炮, 周莉, 董百丽, 等. 长白山北坡岳桦种群结构及动态分析[J]. 生态学杂志, 2004, 23(5): 30 − 34.

    YU Dapao, ZHOU Li, DONG Baili, et al. Structure and dynamics of Betula ermanii population on the northern slope of Changbai Mountain [J]. Chinese Journal of Ecology, 2004, 23(5): 30 − 34.
    [23] 毕晓丽, 洪伟, 吴承祯, 等. 黄山松种群统计分析[J]. 林业科学, 2002, 38(1): 61 − 67.

    BI Xiaoli, HONG Wei, WU Chengzhen, et al. Population statistics analysis of Pinus taiwanensis [J]. Scientia Silvae Sinicae, 2002, 38(1): 61 − 67.
    [24] 宋丽萍. 环境因子对刺五加幼苗光合特性和生长的影响[D]. 哈尔滨: 东北林业大学, 2007.

    SONG Liping. Effect of Environmental Factors on the Photosynthetic Characteristic and Growth of Acanthopanax senticosus Seedlings [D]. Harbin: Northeast Forestry University, 2007.
    [25] 王书越, 潘少安, 王明睿, 等. 基于MaxEnt模型评估刺五加在东北地区的空间分布[J]. 生态学报, 2019, 39(9): 3277 − 3286.

    WANG Shuyue, PAN Shaoan, WANG Mingrui, et al. Assessing the geographic distribution of Acanthopanax senticosus in northeastern China based on the MaxEnt model [J]. Acta Ecologica Sinica, 2019, 39(9): 3277 − 3286.
    [26] 刘丽杰, 金慧, 赵莹, 等. 长白山野生植物垂直分布规律探究[J]. 现代园艺, 2018(6): 135.

    LIU Lijie, JIN Hui, ZHAO Ying, et al. Exploring the vertical distribution pattern of wild plants in Changbai Mountain [J]. Modern Horticulture, 2018(6): 135.
    [27] 秦爱丽, 马凡强, 许格希, 等. 珍稀濒危树种峨眉含笑种群结构与动态特征[J]. 生态学报, 2020, 40(13): 4445 − 4454.

    QIN Aili, MA Fanqiang, XU Gexi, et al. Population structure and dynamic characteristics of a rare and endangered tree species Michelia wilsonii Finet et Gagn [J]. Acta Ecologica Sinica, 2020, 40(13): 4445 − 4454.
    [28] DAS D S, DASH S S, MAITY D, et al. Population structure and regeneration status of tree species in old growth Abies pindrow dominant forest: a case study from western Himalaya, India [J/OL]. Trees, Forests and People, 2021, 5: 100101 [2023-05-23]. doi: 10.1016/j. tfp. 2021.100101.
    [29] 解婷婷, 苏培玺, 周紫鹃, 等. 荒漠绿洲过渡带沙拐枣种群结构及动态特征[J]. 生态学报, 2014, 34(15): 4272 − 4279.

    XIE Tingting, SU Peixi, ZHOU Zijuan, et al. Structure and dynamic characteristics of Calligonum mongolicum population in the desert-oasis ecotone [J]. Acta Ecologica Sinica, 2014, 34(15): 4272 − 4279.
    [30] 何斌, 李青, 陈群利, 等. 贵州省西北部马尾松人工林种群数量特征与动态[J]. 中南林业科技大学学报, 2020, 40(11): 129 − 137, 155.

    HE Bin, LI Qing, CHEN Qunli, et al. Quantitative characteristics and population dynamics of Pinus massoniana plantation in northwest Guizhou Province [J]. Journal of Central South University of Forestry Science and Technology, 2020, 40(11): 129 − 137, 155.
    [31] 曹建国. 刺五加生活史型特征及其形成机制的研究[D]. 哈尔滨: 东北林业大学, 2004.

    CAO Jianguo. Study on the Characteristics and Mechanisms about Plant Life Cycle Forms of Acanthopanax senticosus [D]. Harbin: Northeast Forestry University, 2004.
    [32] 谢立红, 黄庆阳, 曹宏杰, 等. 五大连池火山蒙古栎种群结构及动态特征[J]. 浙江农林大学学报, 2022, 39(5): 960 − 970.

    XIE Lihong, HUANG Qingyang, CAO Hongjie, et al. Population structure and dynamic characteristics of Quercus mongolica in Wudalianchi Volcanoes, China [J]. Journal of Zhejiang A&F University, 2022, 39(5): 960 − 970.
    [33] 金鑫. 山西刺五加生存群落特征研究[D]. 太原: 山西师范大学, 2018.

    JIN Xin. Analysis on Characteristics of Acanthopanax senticosus Communities in Shanxi [D]. Taiyuan: Shanxi Normal University, 2018.
    [34] 孟祥才, 颜丙鹏, 孙晖, 等. 不同性别类型刺五加根茎和茎有效成分季节积累规律的研究[J]. 时珍国医国药, 2012, 23(3): 601 − 603.

    MENG Xiangcai, YAN Bingpeng, SUN Hui, et al. The seasonal accumulating study on effective constituent contents in different sexual types of rhizome and stem of Acanthopanax senticosus [J]. Lishizhen Medicine and Materia Medica Research, 2012, 23(3): 601 − 603.
    [35] 张孟文, 钟才荣, 吕晓波, 等. 3种海桑属濒危红树植物的资源分布与濒危现状[J]. 植物科学学报, 2022, 40(4): 484 − 491.

    ZHANG Mengwen, ZHONG Cairong, LÜ Xiaobo, et al. Distribution and status of three endangered mangrove plants of the genus Sonneratia [J]. Plant Science Journal, 2022, 40(4): 484 − 491.
  • [1] 沈伟康, 吴江, 官凯程, 杨佰润, 洪旭杰, 王江.  台州地区雁荡山系和括苍山系森林群落结构与物种组成分析 . 浙江农林大学学报, 2025, 42(1): 34-44. doi: 10.11833/j.issn.2095-0756.20240416
    [2] 曹羚, 金晟康, 叶尔江·拜克吐尔汉, 努尔斯娅·阿不都热苏力, 车畅.  额敏县新疆野苹果种群空间分布格局及其关联性 . 浙江农林大学学报, 2023, 40(2): 390-397. doi: 10.11833/j.issn.2095-0756.20220267
    [3] 谢立红, 黄庆阳, 曹宏杰, 杨帆, 王继丰, 王建波, 倪红伟.  五大连池火山蒙古栎种群结构及动态特征 . 浙江农林大学学报, 2022, 39(5): 960-970. doi: 10.11833/j.issn.2095-0756.20210785
    [4] 谢立红, 曹宏杰, 黄庆阳, 杨帆, 王继丰, 王建波, 倪红伟.  五大连池火山森林群落多样性与稳定性 . 浙江农林大学学报, 2021, 38(2): 235-245. doi: 10.11833/j.issn.2095-0756.20200255
    [5] 张中惠, 郭建斌, 王彦辉, 王晓.  六盘山辽东栎林种群结构和空间分布格局 . 浙江农林大学学报, 2021, 38(6): 1091-1099. doi: 10.11833/j.issn.2095-0756.20200707
    [6] 范忆, 楼一恺, 库伟鹏, 戴其林, 王铮屹, 赵明水, 余树全.  天目山紫楠种群年龄结构与点格局分析 . 浙江农林大学学报, 2020, 37(6): 1027-1035. doi: 10.11833/j.issn.2095-0756.20190631
    [7] 汪紫阳, 尹世逵, 李颖, 李耀翔.  基于可见/近红外光谱识别东北地区常见木材 . 浙江农林大学学报, 2019, 36(1): 162-169. doi: 10.11833/j.issn.2095-0756.2019.01.020
    [8] 李亚藏, 冯仲科, 黄季夏, 杨柳.  基于GIS和RS的东北地区东北虎生境适宜性评价 . 浙江农林大学学报, 2016, 33(2): 265-271. doi: 10.11833/j.issn.2095-0756.2016.02.011
    [9] 徐沂春, 胡绍庆, 赵宏波.  基于AFLP分子标记的不同类型野生桂花种群遗传结构分析 . 浙江农林大学学报, 2014, 31(2): 217-223. doi: 10.11833/j.issn.2095-0756.2014.02.009
    [10] 梁振旭, 张延龙, 李林昊, 张晓骁.  陕南卷丹10个野生种群数量性状变异分析 . 浙江农林大学学报, 2014, 31(6): 885-891. doi: 10.11833/j.issn.2095-0756.2014.06.009
    [11] 马凯, 夏国华, 闫道良, 谢文远, 严彩霞, 吴家森, 李根有.  珍稀濒危植物堇叶紫金牛生存群落结构特征及物种多样性 . 浙江农林大学学报, 2012, 29(4): 498-509. doi: 10.11833/j.issn.2095-0756.2012.04.004
    [12] 龚弘娟, 李洁维, 蒋桥生, 张静翅, 叶开玉.  珍稀濒危植物金花猕猴桃优势群落特征 . 浙江农林大学学报, 2012, 29(2): 301-306. doi: 10.11833/j.issn.2095-0756.2012.02.022
    [13] 苏月秀, 彭道黎, 谢晨, 黄东.  西北地区退耕还林工程实施情况调查分析 . 浙江农林大学学报, 2011, 28(5): 810-814. doi: 10.11833/j.issn.2095-0756.2011.05.022
    [14] 庄倩, 赵利群, 朱松岩.  3个牡丹组内亚组间远缘杂交品种在东北地区的适应性 . 浙江农林大学学报, 2011, 28(6): 918-921. doi: 10.11833/j.issn.2095-0756.2011.06.013
    [15] 凌飞.  浙中地区野生观赏攀援植物资源调查与分析 . 浙江农林大学学报, 2007, 24(3): 308-312.
    [16] 郑荣泉, 陈迁进, 胡一中.  浙江金华南山猕猴资源初步调查 . 浙江农林大学学报, 2003, 20(1): 41-43.
    [17] 金则新.  浙江天台山落叶阔叶林优势种群结构与动态分析 . 浙江农林大学学报, 2001, 18(3): 245-251.
    [18] 柴希民.  日本松干蚧的捕食性天敌及其数量动态 . 浙江农林大学学报, 1999, 16(4): 336-340.
    [19] 吴承祯, 洪伟, 林成来.  黄山松种群数量动态研究 . 浙江农林大学学报, 1998, 15(3): 274-279.
    [20] 黄必恒, 施拱生.  柑桔冻害的数量化回归分析 . 浙江农林大学学报, 1996, 13(4): 441-447.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230377

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2024/2/333

图(3) / 表(5)
计量
  • 文章访问数:  612
  • HTML全文浏览量:  128
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-25
  • 修回日期:  2023-10-13
  • 录用日期:  2023-10-17
  • 网络出版日期:  2024-03-21
  • 刊出日期:  2024-04-01

东北地区不同区域野生刺五加种群结构及动态分析

doi: 10.11833/j.issn.2095-0756.20230377
    基金项目:  国家重点研发计划项目(2022YFF1300503);国家科技基础资源调查专项(2019FY1005003);黑龙江省重点研发计划项目(JD22A008);东北林业大学中央高校预研及培育项目(2572023CT11)
    作者简介:

    魏洪玲(ORCID: 0009-0008-5192-1850),从事植物资源保护与利用研究。E-mail: weily9033@126.com

    通信作者: 李德文(ORCID: 0009-0005-2225-2932),副教授,博士,从事植物资源保护与利用研究。E-mail: lidewen1@126.com
  • 中图分类号: S718.5

摘要:   目的  分析中国东北地区野生刺五加Acanthopanax senticosus种群结构特征,明确刺五加种群生存现状,预测种群未来的演替趋势,为东北地区野生刺五加种群的保护、利用及可持续发展提供理论依据。  方法  在小兴安岭、张广才岭和长白山具有代表性的生境设立调查样地,并对样地内植物进行调查。通过样地调查和数据统计,绘制刺五加种群的年龄结构图,编制种群静态生命表,拟合其存活曲线、死亡曲线及生存曲线,运用生存分析与数量化动态参数预测种群发展趋势。  结果  ① 3个区域野生刺五加种群的年龄结构均近似于“金字塔”型,幼龄期和成龄期株数占该区域刺五加总株数的68.58%~83.04%,种群年龄结构稳定。② 3个区域野生刺五加种群结构的数量变化动态指数(${V}_{{\rm{p}}n}$)和考虑未来外部干扰的种群年龄结构指数(${V'_{{\rm{p}}n}}$)均大于0,存活曲线均趋于Deevey-Ⅱ型,为增长型种群,且对外界干扰敏感性较强。③ 3个区域1龄级的株数显著低于2、3龄级的株数,表明野生刺五加种子发芽率低,是目前该种群更新和发展的瓶颈。3个区域种群均在前期逐渐减少,后期趋于稳定,但危险率逐渐上升,预示种群后期有衰退的趋势。  结论  目前3个区域野生刺五加种群结构均为增长型,但幼龄级植株数量少,种群老龄个体数量发展潜力较小,种群整体的长期稳定性难以维持。建议加强对1龄级植株的精准抚育管理,通过人为辅助措施提高幼苗的保存率,促进野生刺五加种群的可持续发展。图3表5参35

English Abstract

黄晓杰, 丁金华, 汪大庆. 苏南水网地区绿色空间景观生态风险时空演变与调控策略[J]. 浙江农林大学学报, 2024, 41(6): 1283-1292. DOI: 10.11833/j.issn.2095-0756.20240169
引用本文: 魏洪玲, 解胜男, 田叙辰, 等. 东北地区不同区域野生刺五加种群结构及动态分析[J]. 浙江农林大学学报, 2024, 41(2): 333-342. DOI: 10.11833/j.issn.2095-0756.20230377
HUANG Xiaojie, DING Jinhua, WANG Daqing. Spatiotemporal evolution and regulation strategies of ecological risks in green space landscape in the water network area of southern Jiangsu[J]. Journal of Zhejiang A&F University, 2024, 41(6): 1283-1292. DOI: 10.11833/j.issn.2095-0756.20240169
Citation: WEI Hongling, XIE Shengnan, TIAN Xuchen, et al. Population structure and dynamics of wild Acanthopanax senticosus in different regions of Northeast China[J]. Journal of Zhejiang A&F University, 2024, 41(2): 333-342. DOI: 10.11833/j.issn.2095-0756.20230377
  • 刺五加Acanthopanax senticosus为五加科Araliaceae五加属Eleutherococcus多年生落叶小灌木, 是第三纪孑遗植物,在《中国植物红皮书——稀有濒危植物》中被列为濒危植物,其体内含有苷类、黄酮类、有机酸类、香豆素类、多糖类、挥发油、微量元素和氨基酸等多种化学成分[12],全株均可入药,具有治疗心血管疾病和抗衰老等保健功能[3],在《野生药材资料保护管理条例》中被列为国家三级保护物种。野生刺五加是森林资源的重要组成部分,对于维持生态平衡有重要的作用。刺五加分布区主要在中国黑龙江省(小兴安岭、张广才岭等)、吉林省(汪清、长白山等)、辽宁省(新宾、本溪等),其中小兴安岭及长白山北部蕴藏量尤为丰富[4]。目前,关于野生刺五加的研究主要在药理药效[56]、生殖生态[78]、资源保护[9]及栽培利用[10]等方面,关于野生刺五加资源的分布规律和种群结构鲜有报道。

    植物种群结构是种群最基本的特征[11]。本研究以中国东北地区3个区域内野生刺五加种群为研究对象,采用静态生命表、存活曲线、死亡曲线和生存分析等方法研究野生刺五加种群年龄结构与动态特征,旨在揭示野生刺五加种群的生存现状,预测种群未来的演替趋势,以期为东北地区野生刺五加种群的可持续发展提供理论依据。

    • 2021年4—9月,在查阅相关文献和野外踏查的基础上,选择小兴安岭、张广才岭和长白山区域内野生刺五加分布相对密集的地段进行野外调查。各地区概况如下。

      小兴安岭位于黑龙江省北部(46°22′~50°10′N,126°04′~129°13′E),山脉呈西北—东南走向,海拔为500~1000 m,山势和缓,属低山丘陵地形。年平均气温为−2.0~2.0 ℃, 无霜期为 100.0~130.0 d,最冷为1月,平均气温为−20.0~−25.0 ℃,最热为7月,平均气温为19.0~21.0 ℃,年平均降水量为500.0~700.0 mm,多集中在6—8月,年均相对湿度为70%,属于北温带大陆性季风气候。土壤以暗棕色森林土为主,有机质丰富。小兴安岭地区森林植被丰富,是中国重点的林木基地,森林覆盖率达到了72.6%,红松Pinus koraiensis蓄积量达 4300 多万m3,中国一半以上的红松都生长在此。植被类型以红松-落叶阔叶混交林为主,与刺五加种群伴生的主要乔灌木树种有红松、水曲柳Fraxinus mandshurica、臭冷杉Abies nephrolepis、色木槭Acer mono、白桦Betula platyphylla、暴马丁香Syringa reticulata var. amurensis、东北山梅花Philadelphus schrenkii、忍冬Lonicera japonica、舞鹤草Maianthemum bifolium等。

      张广才岭位于黑龙江省东南部(45°20′~46°25′N,127°36′~128°39′E),山势高峻,地形复杂,属于流水侵蚀山地,平均海拔为800 m。年平均气温为2.3~3.7 ℃,年平均冻结期为160.0~229.0 d,季节冻土深度为1.8~2.5 m。年平均降水量为440.0~640.0 mm,多集中在6—9月,占全年降水量的50%~70%,年平均蒸发量为1100~2500 mm,属于中温带大陆性季风气候。土壤以黑钙土为主,pH为7.0~7.5。植被类型主要为红松、云杉Picea asperata、冷杉Abies fabri及各种阔叶树的针阔混交林和灌丛等,与刺五加种群伴生的主要乔灌木树种有落叶松Larix gmelinii、蒙古栎Quercus mongolica、胡桃楸Juglans mandshurica、黄檗Phellodendron amurense、五味子Schisandra chinensi、疣枝卫矛Euonymus pauciforus、胡枝子Lespedeza bicolor[12]

      长白山位于吉林省东南部(41°41′~42°25′N,127°42′~128°16′E),山脉呈东北—西南走向,海拔高度多为1000 m以上。属于温带大陆性山地气候,具有明显的垂直气候变化带谱特征,年平均气温为3.0~7.0 ℃,最低气温为−44.0 ℃,年日照时数不足2300.0 h,无霜期为100 d,年平均积雪深度为50 cm,年降水量为700.0~1400.0 mm[13],多集中在6—9月,冰雪覆盖期长达9个月。土壤主要为腐殖质暗棕壤,土壤肥沃,pH为5.5~6.5。长白山地区地形复杂,地貌组合差异大,长白山植被从低海拔到高海拔依次形成阔叶林、针阔混交林、针叶林、岳桦矮曲林、高山苔原5个分布带,与刺五加种群伴生的主要乔灌木树种有胡桃楸、色木槭、蒙古栎、紫椴Tilia amurensis、东北山梅花、五味子、金银忍冬Lonicera maackii、白花碎米荠Cardamine leucantha、白屈菜Chelidonium majus等。

    • 在3个区域按地形设置样地。小兴安岭区域设置了14个样地,张广才岭区域设置了30个样地,长白山区域设置了77个样地。每个样地内布设1个10 m×10 m的乔木样方,在每个乔木样方内设置1个5 m×5 m的灌木样方,再于灌木样方的4个角分别设置1个1 m×1 m的草本样方[14]。对样地内刺五加进行逐木调查,测量其基径、株高、郁闭度等,并对样地内的其他乔木、灌木和草本植物进行全面调查。同时记录各样地地理位置、经纬度、海拔、坡位、坡度、坡向等环境因子,并对各样地种群龄级与环境因子进行相关性分析,其中坡度(上限排除法):0°~0.5°为平原,0.5°~2.0°为微斜坡,2.0°~5.0°为缓斜坡,5.0°~15.0°为斜坡,15.0°~35.0°为陡坡,35.0°~55.0°为峭坡,55.0°~90.0°为垂直壁;坡向:北坡、东北坡、东坡、东南坡、南坡、西南坡、西坡、西北坡分别赋值为1、2、3、4、5、6、7、8;坡位:上坡位赋值为1、下坡位赋值为2。各样地信息见表1

      表 1  不同区域野生刺五加种群分布信息表

      Table 1.  Information on the distribution of wild A. senticosus populations in different regions

      样地株数/株北纬(N)东经(E)平均海拔/m平均郁闭度/%平均坡度/(°)平均株高/m平均基径/cm
      小兴安岭53346°58′48″128°39′36″376.0876.8112.201.12±2.12 a1.48±0.09 a
      张广才岭17145°33′00″128°19′12″253.5657.0014.710.78±0.30 a0.63±0.02 b
      长白山 43642°28′12″127°50′24″825.8172.0017.810.94±0.76 a0.74±0.04 b
        说明:平均株高和平均基径为平均值±标准差。同列不同小写字母代表不同种群间差异显著(P<0.05)。
    • 本研究采用种群的高度级代替龄级进行分析。将野生刺五加茎干高度以20 cm为1个龄级进行分株统计,第1龄级为0~20 cm (上限排除法),第2龄级为20~40 cm,第3龄级为40~60 cm,以此类推。小兴安岭区域共划分11个龄级,张广才岭区域共划分9个龄级,长白山区域共划分10个龄级,并以龄级为横坐标,株数为纵坐标,绘制不同地区野生刺五加种群年龄结构图。

    • 为了定量描述不同区域环境下野生刺五加的种群动态,参考陈晓德[15]种群与群落结构动态量化分析法[1617],计算种群从nn+1龄级的种群个体数量(Vn)、整个种群结构的数量变化动态指数($ {V}_{\mathrm{p}n} $)、考虑未来外部干扰时的种群年龄结构指数(${V'_{{\rm{p}}n}})$、种群对完全随机干扰所承担的最大风险概率(Pmax) ,定量描述野生刺五加种群动态特征。VnVpn、$ {V'_{{\rm{p}}n}} $取正、负、0值时分别反映种群个体数量的增长、衰退和稳定的结构动态关系。

      本研究中静态生命表的编制参考韩忠明[18]的方法,龄级划分与1.3节中的方法相同。在编制静态生命表的过程中,当出现种群的死亡率为负值的情况时采用分段匀滑技术[19]对种群个体的存活数据进行处理[20],再据此编制野生刺五加种群的静态生命表。静态生命表中,n代表龄级,ann龄级内存活的个体数,an*为匀滑后n龄级内存活的个体数,ln为标准化存活个体数,$ {\mathrm{l}\mathrm{n}l}_{n} $为ln的自然对数,dnn~n+1龄级间的标准化死亡数量,$ {q}_{n} $为n~n+1龄级间的死亡率,$ {L}_{n} $为n~n+1龄级间存活的个体数,$ {T}_{n} $为从n龄级到超过n龄级的总个体数,$ {e}_{n} $为进入n龄级个体的生命期望寿命,$ {k}_{n} $为各龄级间的消失率。

    • 以龄级为横坐标,标准化存活数的自然对数(lnln)为纵坐标,绘制野生刺五加种群的存活曲线,参照HETT等[21]的方法,分别采用指数函数y=aebn和幂函数y=anb模型检验野生刺五加种群的存活曲线类型,得到检验方程。其中:ya分别代表n龄级内存活数和种群形成初期的个体数,b为死亡率。再以龄级为横坐标,以死亡率为纵坐标,绘制刺五加种群的死亡率曲线。

    • 为了更好地分析3个区域野生刺五加种群的动态变化规律,引入4个生存函数,即生存率函数(Sn)、累计死亡率函数(Fn)、死亡率密度函数(ftn)、危险率函数(λtn)[22],并参考毕晓丽等[23]的计算方法,计算这些生存函数估计值,其中:t 为时间,n 为时间段龄级。

    • 由于生境条件及人类干扰活动的空间异质性,东北地区不同区域环境下野生刺五加种群分布特征的差异明显(表1)。本研究调查野生刺五加共计1140株,小兴安岭区域有533株,平均株高为1.12 m,平均基径为1.48 cm;张广才岭区域有171株,平均株高为0.78 m,平均基径为0.63 cm;长白山区域有436株,平均株高为0.94 m,平均基径为0.74 cm。3个区域中刺五加最大基径为14.80 cm,最大株高为2.20 m,均出现在小兴安岭区域,且小兴安岭地区的刺五加基径显著粗于其他两地。

      相关性分析(表2)显示:小兴安岭地区对刺五加种群龄级影响较大的环境因子是经度、海拔、坡度和坡向,小兴安岭刺五加种群龄级与坡度、坡向和海拔的正相关性较大,与经度的负相关性较大。张广才岭地区对刺五加种群龄级影响较大的环境因子是经纬度,种群龄级与经纬度的负相关性较大。长白山地区对刺五加种群龄级影响较大的环境因子是经纬度和坡度,种群龄级与经纬度的正相关性较大,与坡度的负相关性较大。

      表 2  不同区域野生刺五加种群龄级与环境因子间的相关系数

      Table 2.  Correlation coefficients of age class and environmental factors of wild A. senticosus populations in different regions

      样地经度纬度海拔坡度坡向坡位郁闭度
      小兴安岭−0.224**0.098*0.134**0.154**0.159**−0.0530.016
      张广才岭−0.191*−0.190*0.1030.1080.052−0.129−0.093
      长白山 0.359**0.298**−0.006−0.325**−0.115*0.033−0.117*
        说明: **表示在P<0.01水平(双侧)上极显著相关; *表示在P<0.05水平(双侧)上显著相关。
    • 图1显示:3个区域的野生刺五加种群数量均随着龄级的增加呈先升后减的趋势,主要集中在第3~6龄级,说明3个区域的野生刺五加种群均以成龄期植株占优势,种群的稳定性都较好。但各区域1龄级的幼苗数量极少,分别占总数的2.25%、2.34%和2.52%。动态数量化分析结果显示(表3):V1V2均小于0,也说明了3个区域幼龄级植株数量少,呈负增长的趋势,这极大地限制了成龄期植株的发展潜力和种群延续。3个区域野生刺五加种群的总体数量变化动态指数$ {V'_{{\rm{p}}n}} $均小于$ {V}_{{\rm{p}}n} $,但都大于0,其中$ {V'_{{\rm{p}}n}} $更加趋于0,表明忽略外部干扰时均为增长型种群;3个区域受随机干扰所承担的风险概率极大值 (Pmax) 分别为0.01、0.03和0.01,趋近于0,说明对外界随机干扰均具有较高的敏感性。

      图  1  不同区域野生刺五加种群的龄级结构

      Figure 1.  Age-class structure of wild A. senticosus populations in different regions

      表 3  不同区域野生刺五加种群动态变化指数

      Table 3.  Dynamic change index of wild A. senticosus populations in different regions

      样地年龄结构动态变化指数/%$ {{P}_{\max}}$
      V1V2V3V4V5V6V7V8V9V10V11Vpn$ {V'_{ {\rm{p} }n} }$
      小兴安岭−85.37−32.7953.283.51−38.8956.670.0043.5950.0063.6432.330.240.01
      张广才岭−78.95−64.1518.8769.77−7.1435.71−35.7185.7140.680.990.03
      长白山 −59.26−74.2936.197.4638.7142.11−66.6748.4888.2440.870.340.01
        说明:Vn是种群n~n+1龄级的种群个体数量,${V_{{\rm{p}}n} }$是整个种群结构的数量变化动态指数,${V'_{ {\rm{p} }n} }$是考虑未来外部干扰时的种群年龄结构指数,Pmax是种群对完全随机干扰所承担的最大风险概率。−表示无此项。
    • 随种群龄级的增加,3个区域野生刺五加种群的个体标准化存活数(ln)逐渐减少(表4)。小兴安岭和长白山区域种群的期望寿命值(en)也随龄级的增加逐渐降低,而张广才岭区域种群的期望寿命值随龄级增加呈先增后减的变化,在第5龄级达到最大值,表明该阶段的种群生存质量最高,生理代谢旺盛,且具有较高的生存环境质量。

      表 4  不同区域野生刺五加种群的静态生命表

      Table 4.  Static life tables of wild A. senticosus populations in different regions

      样地龄级高度级/cmanan*lnlnlndnqnLnTnenkn
      小兴安岭10~201230810006.911880.1990634543.450.21
      220~40822508126.701690.2172825483.140.23
      340~601221986436.471460.2357018202.830.26
      460~80571534976.211300.2643212502.520.30
      580~100551133675.911070.293148182.230.34
      6100~12090802605.56880.342165051.940.41
      7120~14039531725.15680.401382891.680.50
      8140~16039321044.64460.44811511.450.58
      9160~1802218584.06290.5044701.210.69
      10180~200119293.3760.2126260.990.23
      11200~22047233.14
      张广才岭10~20414310006.913580.3682126782.680.44
      220~4019926426.472480.3951816782.610.49
      340~6053563945.981600.4031410362.630.52
      460~8043332355.46920.391896412.730.50
      580~10013201424.96460.321204072.860.39
      6100~1201414974.57200.21872642.720.23
      7120~140911774.34160.20691672.170.23
      8140~160149614.12320.5245911.480.74
      9160~18024293.38
      长白山 10~201116210006.911980.2090132423.240.22
      220~40271308026.691760.2271423412.920.25
      340~601051016276.441540.2555016272.600.28
      460~8067774736.161320.2840710772.280.33
      580~10062553415.831090.322876701.960.39
      6100~12038382325.45870.381883831.650.47
      7120~14022231454.97650.451121951.350.60
      8140~1606613794.37430.5558831.050.79
      9160~180346363.58210.5925250.690.89
      10180~20042152.70
        说明:n. 龄级;an. 第n龄级内存活的个体数;an*. 匀滑后n龄级内存活的个体数;ln. 标准化存活个体数(一般以1 000为基数);$ {\mathrm{l}\mathrm{n}l}_{n} $. ln的自然对数;dn. n~n+1龄级的标准化死亡数量;$ {q}_{n} $. n~n+1龄级间的死亡率;$ {L}_{n} $. n~n+1龄级之间存活的个体数;$ {T}_{n} $. 从n龄级到超过n龄级的总个体数;$ {e}_{n} $. 进入n龄级个体的生命期望寿命;$ {k}_{n} $. 各龄级间的消失率。−表示无此项。
    • 图2可知:小兴安岭和长白山种群在1~8龄级间的存活曲线变化一致,下降幅度均较张广才岭区域更大,第8龄级之后张广才岭和长白山区域种群存活曲线下降趋势加快,而小兴安岭种群存活曲线趋于平稳(图2A)。幂函数和指数函数2种模型的拟合结果显示:3个区域野生刺五加种群的拟合结果均达到了显著水平(P<0.05),且3个区域下指数模型的决定系数(R2)均大于幂函数模型(表5),P值均小于幂函数模型,因此,认为3个区域野生刺五加种群的存活曲线为Deevey-Ⅱ型。小兴安岭和长白山种群只存在1个死亡高峰,在第9龄级,而张广才岭种群存在2个死亡高峰,分别在3龄级和8龄级,最高峰出现在8龄级(图2B)。

      图  2  不同区域野生刺五加种群存活(A)及死亡曲线(B)

      Figure 2.  Survival (A) and killing curves (B) of wild A. senticosus populations in different regions

      表 5  不同区域野生刺五加种群存活曲线的检验

      Table 5.  Examination of the survival curves of wild A. senticosus populations in different regions

      种群检验方程FR2显著性
      小兴安岭$ {y={8.405n}^{-0.312}}$22.2950.7120.001
      $ {y={8.272\mathrm{e} }^{-0.08n}}$119.0180.9300.000
      张广才岭$ {y={7.700n}^{-0.302}}$49.6980.8770.000
      $ {y={7.626\mathrm{e} }^{-0.084n}}$390.9440.9820.000
      长白山 $ {y={8.467n}^{-0.334}}$14.6760.6470.005
      $ {y={8.569\mathrm{e} }^{-0.094n}}$54.8980.8730.000
    • 图3所示:以龄级为横坐标,4个生存函数估计值为纵坐标,绘制不同区域野生刺五加种群生存函数曲线。3个区域种群的死亡密度均在第1龄级出现最高峰,危险率曲线总体上保持逐渐上升的趋势(图3A~B)。3个区域种群均在第3龄级左右生存率和累积死亡率达到平衡,这反映出第3龄级以后野生刺五加种群将进入衰退期(图3C~D)。

      图  3  不同地区野生刺五加种群生存函数曲线

      Figure 3.  Survival function curves of wild A. senticosus population in different regions

    • 刺五加喜温暖湿润气候,适宜生长在土壤较为湿润、腐殖质层深厚的混交林、山地阔叶林下及林缘[18, 24]。本研究通过对小兴安岭、张广才岭和长白山3个区域内野生刺五加种群的调查发现:小兴安岭和长白山区域刺五加植株数量多,茎干粗壮,龄级分布范围广,张广才岭区域植株数量少,茎干细矮,龄级分布范围窄,说明小兴安岭和长白山区域气候环境更适宜野生刺五加生长。王书越等[25]基于MaxEnt模型对野生刺五加在东北地区的空间分布进行评估,也证实了野生刺五加的生态适宜区主要在长白山山脉及小兴安岭地区,与本研究结果相符。相关性分析结果显示:影响3个区域野生刺五加种群龄级的环境因子主要有海拔、经纬度、坡向和坡度,王书越等[25]的研究也表明刺五加群落的存活同坡度、坡向、光照条件以及所处林型都有一定联系。小兴安岭和张广才岭区域种群龄级随经度的升高而减小,而长白山区域种群龄级随经度的升高而增加。植物形态特征反映植物对异质环境的响应。在不同生境下,植物采取不同形态特征,调整生存策略,以增加种群的生存适合度和竞争能力[26]。说明刺五加种群对异质性生境采取了不同的适应政策,也表明野生刺五加种群分布是其与环境长期相互作用、相互适应的结果。

    • 植物种群结构反映植物对自然环境的适应性[2728],比较不同区域环境下的野生刺五加种群结构特征有助于了解该物种与其生存环境之间的适合度[29]。本研究发现:3个区域野生刺五加种群的年龄结构均呈非典型金字塔型,种群呈现增长型,但1~3龄级呈衰退趋势,如果没有幼龄植株补充,野生刺五加种群整体的长期稳定性将难以维持,这与其他一些濒危植物情况相似[30]。野生刺五加种子萌发的实生苗很少,现在生存的刺五加种群多为无性植株产生,主要通过根茎上的潜伏芽转化植株[31],这样基因多样性减少,导致出现绝种的风险,在一定程度上也限制了野生刺五加种群的自然更新。3个区域种群出现死亡高峰的频率不同,小兴安岭和长白山区域种群都只有1次死亡高峰,均在第9龄级,这是因为当植物进入老龄级后,生理机能衰退,种群更容易受到外界干扰。张广才岭区域种群出现2次死亡高峰,第1次在第3龄级,是从幼龄期向成龄期过渡阶段。韩忠明[18]研究表明:刺五加幼苗在第3龄级开始脱离母株,并且由营养生长转向生殖生长,此时植株对营养空间的需求增大,种群自疏和他疏作用增强,导致了较高的死亡率。第2次死亡高峰在第8龄级,其原因与其他2个地区相同,即植株的生长发育到达了生理衰退期。

    • 植物种群的发展是复杂且漫长的过程,不仅有物种内和物种间的竞争,同时还伴有物种和环境的适应过程[32]。长期野外定位观测发现:造成野生刺五加种群急速减少的主要外在因素是人们过度采伐[33]。野生刺五加的活性成分在落叶后至萌发前后最高[34]。对于张广才岭区域野生刺五加种群来说,首先要保护好现有的成年植株,并提高成年植株的种子生产能力,然后建立一定规模的刺五加苗圃,规模化生产优质种苗,并将达到出圃标准的幼苗经野外驯化后进行回归种植[35]。其次,要保证野生刺五加无性繁殖个体的成活率,加大就地保护力度。可以利用规定采收期和采收方式,防止人类对野生刺五加资源的破坏,应在秋季落叶后至春季萌发前采收, 其他时期不允许采收。根茎是野生刺五加种群扩增的主要繁殖方式,应禁止采挖。

    • 3个区域野生刺五加种群第1龄级和第2龄级的植株数量均少于第3龄级,说明幼龄级植株数量少。虽然种群总体呈现增长型,但1~3龄级呈衰退趋势。如果没有幼龄个体的补充,野生刺五加种群整体的长期稳定性将难以维持。4个生存函数分析显示:3个区域野生刺五加种群的生存率曲线和累计死亡率曲线总体表现为逐渐下降或逐渐上升的趋势,且各生存函数曲线斜率均表现为前期、中期高于后期,表明3个区域野生刺五加种群数量均具有幼龄期和成龄期种群结构波动较大,而老龄期稳定的特点。

参考文献 (35)

目录

/

返回文章
返回