-
AP2(APETALA2)/ERF(ethylene responsive factor,ERF)转录因子超家族是植物中重要的转录因子类型,其共同的结构特征是在DNA结合区包含1个或多个由约60~70个氨基酸组成的高度保守的AP2/ERF结构域。根据结构域数目及其所结合的顺式作用元件的差异,AP2/ERF转录因子超家族可分为:AP2,乙烯反应因子,干旱反应元件结合蛋白(dehydration responsive element binding protein,DREB)和RAV 4个转录因子家族。ERFs是植物中特有的转录因子家族,研究证实ERF转录因子参与调控包括植物生长、发育在内的多个生物学过程[1-3]。另外,通过AP2/ERF结构域和PR基因启动子顺式作用元件GCC-box(AGCCGCC)的结合,ERF基因参与植物对环境刺激,尤其是对病原菌胁迫的响应。为了发现AP2/ERF转录因子在林木抗非生物胁迫以及抗病性中的作用,近年来,一些研究者对多年生木本模式植物——杨树Populus spp.的ERF和DREB转录因子进行了深入研究。Nanjo等[4]在脱水、高盐、高温、冷冻、脱落酸以及过氧化氢处理后的意大利杨Populus nigra var. italica EST文库鉴定到13个ERF/AP2转录因子,其中一些仅在特定的环境胁迫下特异表达。Zhuang等[5]对杨树AP2/ERF转录因子超家族进行了全基因组分析,鉴别出了91个ERF转录因子以及77个DREB转录因子。Maki等[6]发现欧洲黑杨Populus nigra ERF基因——PncERF1基因在室温生长的杨树细胞内不表达,仅对低温处理后产生响应表达。Li等[7]报道转番茄Solanum lycopersicum ERF转录因子的杂交杨Populus alba × Populus berolinensis获得了对盐胁迫的抗性,并且在200.0 mmol·L-1氯化钠下,转基因杨的干物质总量、树高,叶片中脯氨酸含量、钠离子(Na+)含量均高于非转基因杨。最近,应用数字基因表达方法(digital gene expression,DGE),Chen等[8]发现了2个盐胁迫后下调表达的小黑杨Populus simonii × Populus nigra AP2/ERF转录因子。此外,研究发现ERF转录因子也在杨树顶芽的休眠诱导和维持过程中表达[9]。近来,作者在溃疡病菌胁迫的多种杨树杂交无性系中发现1个特定ERF转录因子基因(ERF-18基因)的上调表达,预期该基因可能与杨树的抗逆反应相关。为深入揭示该基因的功能,本研究对中国优良杨树乡土树种——山海关杨Populus deltoides ‘Shanghaiguan’ ERF-18基因(PdERF-18基因)进行生物信息学分析,实时定量PCR(real-time QPCR)技术检测其在不同环境胁迫下的表达模式,以期阐明该基因的功能和抗逆反应机制,并为杨树抗逆遗传育种提供实验基础。
HTML
[1] | FENG Jianxun, LIU Di, PAN Yi. An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family[J]. Plant Mol Biol, 2005, 59(6): 853-868. doi: 10.1007/s11103-005-1511-0 | |
[2] | GUTTERSON N, REUBER T L. Regulation of disease resistance pathways by AP2/ERF transcription factors[J]. Curr Opin Plant Biol, 2004, 7(4): 465-471. doi: 10.1016/j.pbi.2004.04.007 | |
[3] | NAKANO T, SUZUKI K, FUJIMURA T. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiol, 2006, 140(2): 411-432. doi: 10.1104/pp.105.073783 | |
[4] | NANJO T, FUTAMURA N, NISHIGUCHI M. Characterization of full-length enriched expressed sequence tags of stress-treated poplar leaves[J]. Plant Cell Physiol, 2004, 45(12): 1738-1748. doi: 10.1093/pcp/pci009 | |
[5] | ZHUNAG Jing, CAI Bin, PENG Rihe. Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa[J]. Biochem Biophys Res Commun, 2008, 371(3): 468-474. doi: 10.1016/j.bbrc.2008.04.087 | |
[6] | MAKI H, SATO M, OGAWA K. Cloning and expression profile of an ERF gene isolated from cold-stressed poplar cells (Populus nigra)[J]. Cytol Int J Cytol, 2011, 76(1): 11-18. | |
[7] | LI Yiliang, SU Xiaohua, ZHANG Bingyu. Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance[J]. Tree Physiol, 2009, 29(2): 273-279. | |
[8] | CHEN Su, JIANG Jing, LI Huiyu. The salt-responsive transcriptome of Populus simonii×Populus nigra via DGE[J]. Gene, 2012, 504(2): 203-212. doi: 10.1016/j.gene.2012.05.023 | |
[9] | ROHDE A, RUTTINK T, HOSTYN V. Gene expression during the induction, maintenance, and release of dormancy in apical buds of poplar[J]. J Exper Bot, 2007, 58(15/16): 4047-4060. | |
[10] | CHANG Shujun, PURYEAR J, CAIRNEY J. A simple and efficient method for isolating RNA from pine trees[J]. Plant Mol Biol Rep, 1993, 11(2): 113-116. doi: 10.1007/BF02670468 | |
[11] | TAMURA K, PETERSON D, PETERSON N. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Mol Biol Evol, 2011, 28(10): 2731-2739. doi: 10.1093/molbev/msr121 | |
[12] | SAKUMA Y, LIU Qiang, DUBOUZET J G. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold inducible gene expression[J]. Biochem Biophys Res Commun, 2002, 290(3): 998-1009. doi: 10.1006/bbrc.2001.6299 | |
[13] | EDGAR R C. MUSCLE:multiple sequence alignment with high accuracy and high throughput[J]. Nucl Acids Res, 2004, 32(5): 1792-1797. doi: 10.1093/nar/gkh340 | |
[14] | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and and the 2-⊿⊿CT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262 | |
[15] | AGARWAL M, HAO Yujin, KAPOOR A. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. J Biol Chem, 2006, 281(49): 37636-37645. doi: 10.1074/jbc.M605895200 | |
[16] | McGRATH K C, DOMBRECHT B, MANNERS J M. Repressor and activator type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression[J]. Plant Physiol, 2005, 139(2): 949-959. doi: 10.1104/pp.105.068544 | |
[17] | 郭琦, 王保垒, 王博文. 毛白杨PtDREB2A基因的克隆、表达及单核苷酸多态性分析[J]. 林业科学, 2011, 47(4): 49-56. | GUO Qi, WANG Baolei, WANG Bowen. Isolation, expression and single nucleotide polymorphisms analysis of PtDREB2A in Populus tomentosa[J]. Sci Silv Sin, 2011, 47(4): 49-56. |
[18] | 刘士旺, 吴学龙, 郭泽建. 拟南芥的抗病信号传导途径[J]. 植物病理学报, 2003, 33(2): 104-111. | LIU Shiwang, WU Xuelong, GUO Zejian. The signaling pathways of disease resistance in Arabidopsis[J]. Acta Phytopathol Sin, 2003, 33(2): 104-111. |
[19] | LIU Sixin, ANDERSON J A. Marker assisted evaluation of Fusarium head blight resistant wheat germplasm[J]. Crop Sci, 2003, 43(3): 760-766. doi: 10.2135/cropsci2003.7600 | |
[20] | THOMMA B P H J, EGGERMONT K, BROEKAERT W F. Disease development of several fungi on Arabidopsis can be reduced by treatment with methyl jasmonate[J]. Plant Physiol Biochem, 2000, 38(5): 421-427. doi: 10.1016/S0981-9428(00)00756-7 | |
[21] | BERROCAL-LOBO M, MOLINA A. Ethylene response factor 1 mediates Arabidopsis resistance to soilborne fungus Fusarium oxysporum[J]. Mol Plant-Micr Int, 2004, 17(7): 763-770. doi: 10.1094/MPMI.2004.17.7.763 | |
[22] | 高海波, 沈应柏. 水杨酸甲酯、苯骈噻唑及茉莉酸甲酯对合作杨防御物质的影响[J]. 西北林学院学报, 2007, 22(6): 32-35. | GAO Haibo, SHEN Yingbai. Effects of BTH, MeSA and MeJA on defensive components of Populus simonii×P. pyramidalis[J]. J Northwest For Univ, 2007, 22(6): 32-35. |
[23] | 张可文, 安钰, 胡增辉. 脂氧合酶、脱落酸与茉莉酸在合作杨损伤信号传递中的相互关系[J]. 林业科学研究, 2005, 18(3): 300-304. | ZHANG Kewen, AN Yu, HU Zenghui. Relationship between lipoxygenase and ABA and JA in wounded signal transduction of heathy populus seedlings[J]. For Res, 2005, 18(3): 300-304. |
[24] | CHENG Qiang, ZHANG Bo, ZHUGE Qiang. Expression profiles of two novel lipoxygenase genes in Populus deltoides[J]. Plant Sci, 2006, 170(6): 1027-1035. doi: 10.1016/j.plantsci.2005.12.012 | |
[25] | HOOYKAAS P J J, BEIJERSBERGEN. A G M. The virulence system of Agrobacterium tumefaciens[J]. Annu Rev Phytopathol, 1994, 32(1): 157-179. doi: 10.1146/annurev.py.32.090194.001105 | |
[26] | PRADEL K S, ULLRICH C I, CRUZ S S. Symplastic continuity in Agrobacterium tumefaciens-induced tumors[J]. J Exp Bot, 1999, 50(331): 183-192. doi: 10.1093/jxb/50.331.183 | |
[27] | DITT R F, NESTER E W, COMAI L. Plant gene expression response to Agrobacterium tumefaciens[J]. Proc Nat Acad Sci USA, 2001, 98(19): 10954-10959. doi: 10.1073/pnas.191383498 | |
[28] | VEENA , JIANG Hongmei, DOERGE R W. Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression[J]. Plant J, 2003, 35(2): 219-236. doi: 10.1046/j.1365-313X.2003.01796.x | |
[29] | LORENZO O, PIQUERAS R, SáNCHEZ-SERRANO J J. Ethylene-response-factor 1 integrates signals from ethylene and jasmonate pathways in plant defense[J]. Plant Cell, 2003, 15(1): 165-178. doi: 10.1105/tpc.007468 | |
[30] | GU Yongqiang, WILDERMUTH M C, CHAKRAVARTHY S. Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis[J]. Plant Cell, 2002, 14(4): 817-831. doi: 10.1105/tpc.000794 |