RAN Yucen, HE Fang, LIU Julian, et al. Microsporogenesis, megasporogensis and development of male and female gametophytes of Torreya jiulongshanensis, a critically endangered plant[J]. Journal of Zhejiang A&F University, 2022, 39(5): 940-949. DOI: 10.11833/j.issn.2095-0756.20220181
Citation: ZHAO Yinggou, ZHANG Shaoyong, ZHANG Shuang, et al. Acaricidal activity and stability of milbemycins used in turpentine[J]. Journal of Zhejiang A&F University, 2014, 31(6): 905-910. DOI: 10.11833/j.issn.2095-0756.2014.06.012

Acaricidal activity and stability of milbemycins used in turpentine

DOI: 10.11833/j.issn.2095-0756.2014.06.012
  • Received Date: 2013-11-06
  • Rev Recd Date: 2014-01-06
  • Publish Date: 2014-12-20
  • To verify synergistic activity and stability of milbemycin in turpentine, turpentine oil and ethanol with a solvent mixture of milbemycin were measured. Virulence was tested on the carmine spider mite (Tetranychus cinnabarinus) using a leaf disc spray. A photolysis experiment was conducted to determine the stability of milbemycin, and a Gas Chromatography-Mass Spectrography (GC-MS) analysis was performed. Results showed that toxicities of different milbemycin oil in lethal concentration 50 (LC50) values on female adult mites were 0.031 4 and 0.139 0 mg·L-1 with a poison coefficient of 442.68 reflecting a strong synergistic activity. The photolysis experiment showed that turpentine oil as a solvent could improve the stability of milbemycins. The GC-MS analysis revealed that the content of alpha-pinene, camphene, R-limonene and 3-carene was over 60%. Since the main reason for synergistic activity was favorable osmosis of terpene chemicals entering the insect cuticle, turpentine could be used as a solvent and synergistic agent for processing milbemycin green oil preparations.
  • [1] SONG Wenlu, ZHANG Hua, FU Jie, ZHANG Jun, DU Weixin, YUAN Zhiyan, ZHAO Haihan.  Evaluation of forest community stability in Xianrendong National Nature Reserve, Liaoning . Journal of Zhejiang A&F University, 2022, 39(3): 505-515. doi: 10.11833/j.issn.2095-0756.20210330
    [2] HAN Mixue, YU Hongyan, LIU Panyang, RAO De’an, TENG Yue, ZOU Luyi.  Effects of the mole fraction of elevated atmospheric CO2 on soil organic carbon stability . Journal of Zhejiang A&F University, 2021, 38(5): 963-972. doi: 10.11833/j.issn.2095-0756.20200502
    [3] LIU Yueping, ZHOU Yangli, GAO Yanhui.  Effects of physical and chemical factors on anthocyanin stability in Lycoris sprengeri . Journal of Zhejiang A&F University, 2021, 38(3): 587-596. doi: 10.11833/j.issn.2095-0756.20200291
    [4] PENG Junjie, WU Jiangchong, PENG Xingmin, LI Kun, WANG Youqiong, ZHENG Yixing, ZHANG Yanping.  Stability of azadirachtin contents in neem cultivars based on SAS PROC MIXED . Journal of Zhejiang A&F University, 2019, 36(4): 713-722. doi: 10.11833/j.issn.2095-0756.2019.04.011
    [5] ZHAO Lihua, HUANG Chengpeng, WANG Yueyue, HUANG Zhangting.  Stability of Phyllostachys edulis phytolith by scanning electron microscopy . Journal of Zhejiang A&F University, 2018, 35(6): 1177-1181. doi: 10.11833/j.issn.2095-0756.2018.06.023
    [6] WEI Wei, LI Junmin, SUN Liying, RONG Junkang, ZHOU Wei.  Selection of wheat having resistance to yellow mosaic virus and screen out SSR molecular markers having polymorphism between resistant and sensitive parents . Journal of Zhejiang A&F University, 2016, 33(1): 71-79. doi: 10.11833/j.issn.2095-0756.2016.01.010
    [7] HE Shanqiong, MENG Cifu, HUANG Zhangting, JIANG Peikun, WU Qifeng, SHEN Jing.  Research progress and forecast of phytolith-occluded organic carbon stability in soil . Journal of Zhejiang A&F University, 2016, 33(3): 506-515. doi: 10.11833/j.issn.2095-0756.2016.03.020
    [8] SHU Xiaohan, LIU Yahui, MIAO Yutong, WU Chao, SHEN Weilie, SUN Jiabin.  Host preference of Phaedon brassicae for different vegetables . Journal of Zhejiang A&F University, 2015, 32(1): 123-126. doi: 10.11833/j.issn.2095-0756.2015.01.018
    [9] REN Junjun, FANG Luming, TANG Lihua.  Design and stability of a forestry field information collection system . Journal of Zhejiang A&F University, 2013, 30(2): 234-239. doi: 10.11833/j.issn.2095-0756.2013.02.012
    [10] ZHANG Lei, ZHANG Han-guo, DENG Ji-feng, GUAN Chun-yu.  Stability of hybrid larches (Larix) with seedling height growth . Journal of Zhejiang A&F University, 2010, 27(5): 706-712. doi: 10.11833/j.issn.2095-0756.2010.05.011
    [11] LI Sheng, PAN Rui-yan, LI Rong-hua, YUAN Yin-xiang.  Discussion on design methods of garden revetments construction . Journal of Zhejiang A&F University, 2009, 26(4): 581-586.
    [12] LIU Hong-bo, SHI Dong-hui, CHEN An-liang, YING Meng-meng, ZHANG Li-qin.  Antifungal activity of extracts from leaves of Myrica rubra . Journal of Zhejiang A&F University, 2009, 26(1): 95-99.
    [13] LI Pei-xian, CHEN Min, XIE Ji-min, ZHU Jian-jun.  Making glyphosate microcapsules by in-situ polymerization . Journal of Zhejiang A&F University, 2008, 25(3): 350-354.
    [14] ZHANG Li-qin, SUN Yi-zhao, WANG Pin-wei, TONG Sen-miao, MA Liang-jin.  Antifungal activity of camptothecin on Rhizoctonia solaniSphaerotheca fuliginea and Pseudoperonospora cubensis . Journal of Zhejiang A&F University, 2008, 25(6): 681-684.
    [15] ZHOUBing, AN Chuan-fu, DONG Yun-fa, QIANG Sheng.  solation of Alternaria alternata toxin using macroporous resins . Journal of Zhejiang A&F University, 2007, 24(2): 198-202.
    [16] YIN Shu, MAO Sheng-feng, YANG Qiong-xia, HUANG Pei-long, ZHU Dong-kui, HU Jun-xiang.  Bacteriostasis and fungistasis with extracts from Carya cathayensis leaves . Journal of Zhejiang A&F University, 2007, 24(5): 604-607.
    [17] XIAO He-zhong, YANG Xiu-qin, LIUWei-dong, JI Zhi-xin, WANG Xiao-juan.  Disease prevention and healing with fertilizer agent 1125 on Rhizoctonia solani in cabbage . Journal of Zhejiang A&F University, 2007, 24(4): 468-472.
    [18] SHI Chun-hua.  Filter experiment on weeding activity with eleven glyphosate adjuvants . Journal of Zhejiang A&F University, 2007, 24(1): 86-90.
    [19] LIN Hai-ping, HAN Zheng-min, ZHANG Xin, MAO Sheng-feng.  Current research situation on Beauveria bassiana and prospects of how to improve its pesticidal effects . Journal of Zhejiang A&F University, 2006, 23(5): 575-580.
    [20] Wu Yanxiong, Guo Renjian, Zhou Guomo.  Early-warning analysis of the stability of regional forest resources system . Journal of Zhejiang A&F University, 1999, 16(1): 66-69.
  • [1]
    WANG Ze, WANG Xiangjing, XIANG Wensheng. The review of insecticidal activity on biological pesticide milbemycin[J]. World Pesticides, 2009, 31(4):13-14.
    [2]
    LIU Cuicui, LIU Chongxi, WANG Xiangjing, et al. The characteristics of biological pesticide milbemycin[J]. World Pesticides, 2012, 34(1):35-38.
    [3]
    CHEN Xiaolong, ZHENG Yuguo, SHEN Yinchu. Advances on biological pesticide——Milbemycins[J]. Pesticides, 2003, 42(4):5-9.
    [4]
    HUA Naizhen, HUA Chun. Progress and application of biological insecticide[J]. Pesticides, 2011, 50(7):469-473.
    [5]
    HOROWITZ A R, MENDELSON Z, ISHAAYA I. Effect of abamectin mixed with mineral oil on the sweetpotato whitefly (Homoptera:Aleyrodiae)[J]. J Econ Entomol, 1997, 90(2):349-353.
    [6]
    SONG Zhanqian. New trend of forest chemical industry in China[J]. Eng Sci, 2001, 3(2):1-6.
    [7]
    KNIGHT A L, BEERS E H, HOYT S C, et al. Acaricide bioassay with spider mites (Acari:Tetranychidae) on pome fruits:evaluation of methods and selection of discrimination concentrations for resistance monitoring[J]. J Econ Entomol, 1990, 83(5):1752-1760.
    [9]
    DUREJA P, JOHNSON S. Photodegradation of azadirachtin(A) a neem based pesticide[J]. Curr Sci, 2000, 79:1700-1703.
    [12]
    SONG Zhanqian, WANG Zongde, JIANG Zhikuan, et al. Prospects and status of the green insecticide chemicals developed from turpentine[J]. Sci Silv Sin, 2006, 42(10):117-122.
    [13]
    ZHAO Zhendong, LIU Xianzhang. The fine chemical use of turpentine(Ⅴ)[J]. J Chem Ind Fort Prod, 2001, 35(5):35-40.
    [15]
    FENG Juntao, LI Zhongyu, MA Zhiqing, et al. Synthesis and insecticidal activity of 6 terpinen-4-olhalogenated and change analogues[J]. J Northwest A & F Univ Nat Sci Ed, 2009, 37(11):156-160.
    [16]
    JOHNSON S, DUREJA P. Effect of surfactants on persistence of azadirachtin-A(neem based pesticide)[J]. J Environ Sci Health B Pestic Food Contam Agric Wastes, 2002, 37(1):75-80.
    [17]
    ISMAIL F, WRIGHT D J. Cross resistance between acylurea insect growth regulators in a strain of Plutella xylostella L. (Lepidoptera:Yponomeutidae) from Malaysia[J]. Pestic Sci, 1991, 33(3):359-370.
    [18]
    ISMAIL F, WRIGHT D J. Synergism of teflubenzuron and chlorfluazuron in an acylurea-resistant field strain of Plutella xylostella L. (Lepidoptera:Yponomeutidae)[J]. Pestic Sci, 1992, 34(3):221-226.
    [19]
    CROUCH L S, FEELY W F, ARISON B H, et al. Photodegradation of avermectin Bla thin films on glass[J]. J Agric Food Chem, 1971, 39(7):1310-1319.
    [20]
    HAN Zhaojiu, WANG Zongde, JIANG Zhikuan, et al. Antifeedant activity of terpene compounds against larvae of the diamondback moth, Plutella xylostella[J]. Chin Bull Entomol, 2007, 44(6):863-867.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.1 %FULLTEXT: 19.1 %META: 77.7 %META: 77.7 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDFHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.3 %其他: 5.3 %其他: 0.3 %其他: 0.3 %China: 1.1 %China: 1.1 %Seattle: 0.3 %Seattle: 0.3 %United States: 1.6 %United States: 1.6 %[]: 0.2 %[]: 0.2 %上海: 1.6 %上海: 1.6 %东莞: 0.1 %东莞: 0.1 %临汾: 0.1 %临汾: 0.1 %内蒙古呼和浩特: 0.1 %内蒙古呼和浩特: 0.1 %北京: 6.5 %北京: 6.5 %北屯: 0.5 %北屯: 0.5 %十堰: 0.3 %十堰: 0.3 %南京: 0.3 %南京: 0.3 %南昌: 0.3 %南昌: 0.3 %南通: 0.1 %南通: 0.1 %南阳: 0.2 %南阳: 0.2 %博阿努瓦: 0.1 %博阿努瓦: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.3 %合肥: 0.3 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %圣克拉拉: 0.1 %圣克拉拉: 0.1 %天津: 0.3 %天津: 0.3 %娄底: 0.2 %娄底: 0.2 %宁波: 0.1 %宁波: 0.1 %宜昌: 0.2 %宜昌: 0.2 %常州: 0.1 %常州: 0.1 %广州: 0.5 %广州: 0.5 %张家口: 1.5 %张家口: 1.5 %成都: 0.1 %成都: 0.1 %扬州: 0.4 %扬州: 0.4 %抚州: 0.2 %抚州: 0.2 %晋城: 0.1 %晋城: 0.1 %杭州: 1.9 %杭州: 1.9 %枣庄: 0.2 %枣庄: 0.2 %武汉: 0.8 %武汉: 0.8 %泰安: 0.1 %泰安: 0.1 %深圳: 0.3 %深圳: 0.3 %温州: 0.2 %温州: 0.2 %湖州: 0.1 %湖州: 0.1 %漯河: 0.8 %漯河: 0.8 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.1 %福州: 0.1 %芒廷维尤: 17.7 %芒廷维尤: 17.7 %芝加哥: 0.4 %芝加哥: 0.4 %西宁: 47.8 %西宁: 47.8 %西安: 0.1 %西安: 0.1 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.3 %贵阳: 0.3 %运城: 2.3 %运城: 2.3 %郑州: 0.6 %郑州: 0.6 %重庆: 0.3 %重庆: 0.3 %金华: 0.1 %金华: 0.1 %镇江: 0.2 %镇江: 0.2 %长沙: 0.5 %长沙: 0.5 %青岛: 0.2 %青岛: 0.2 %其他其他ChinaSeattleUnited States[]上海东莞临汾内蒙古呼和浩特北京北屯十堰南京南昌南通南阳博阿努瓦台州合肥哥伦布嘉兴圣克拉拉天津娄底宁波宜昌常州广州张家口成都扬州抚州晋城杭州枣庄武汉泰安深圳温州湖州漯河潍坊烟台石家庄福州芒廷维尤芝加哥西宁西安诺沃克贵阳运城郑州重庆金华镇江长沙青岛Highcharts.com
  • Cited by

    Periodical cited type(1)

    1. 马长乐,杨建欣,桂晴,龚买玉,周龙飞,刘佳. 榧树属植物资源研究进展. 经济林研究. 2024(04): 1-13 .

    Other cited types(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)  / Tables(3)

Article views(3305) PDF downloads(557) Cited by(2)

Related
Proportional views

Acaricidal activity and stability of milbemycins used in turpentine

doi: 10.11833/j.issn.2095-0756.2014.06.012

Abstract: To verify synergistic activity and stability of milbemycin in turpentine, turpentine oil and ethanol with a solvent mixture of milbemycin were measured. Virulence was tested on the carmine spider mite (Tetranychus cinnabarinus) using a leaf disc spray. A photolysis experiment was conducted to determine the stability of milbemycin, and a Gas Chromatography-Mass Spectrography (GC-MS) analysis was performed. Results showed that toxicities of different milbemycin oil in lethal concentration 50 (LC50) values on female adult mites were 0.031 4 and 0.139 0 mg·L-1 with a poison coefficient of 442.68 reflecting a strong synergistic activity. The photolysis experiment showed that turpentine oil as a solvent could improve the stability of milbemycins. The GC-MS analysis revealed that the content of alpha-pinene, camphene, R-limonene and 3-carene was over 60%. Since the main reason for synergistic activity was favorable osmosis of terpene chemicals entering the insect cuticle, turpentine could be used as a solvent and synergistic agent for processing milbemycin green oil preparations.

RAN Yucen, HE Fang, LIU Julian, et al. Microsporogenesis, megasporogensis and development of male and female gametophytes of Torreya jiulongshanensis, a critically endangered plant[J]. Journal of Zhejiang A&F University, 2022, 39(5): 940-949. DOI: 10.11833/j.issn.2095-0756.20220181
Citation: ZHAO Yinggou, ZHANG Shaoyong, ZHANG Shuang, et al. Acaricidal activity and stability of milbemycins used in turpentine[J]. Journal of Zhejiang A&F University, 2014, 31(6): 905-910. DOI: 10.11833/j.issn.2095-0756.2014.06.012
  • 米尔贝霉素(milbemycins)是1967年日本Sankyo公司以二斑叶螨Tetranychus urticae为试虫筛选出的微生物代谢产物。1983年开发出了米尔贝霉素A3和A4组分的混合物[m(A3):m(A4)=3:7]为有效成分的杀螨剂[1]。米尔贝霉素具有活性高,毒性低,对环境污染小,对人畜安全等优点[2]。它和阿维菌素一起被誉为当今活性最高的杀虫剂,是目前最有应用前景的生物农药之一[3]。作为微生物源农药,米尔贝霉素和阿维菌素特性相同,米尔贝霉素在阳光、紫外光下易分解[4]。这一特性也限制了米尔贝霉素的开发和利用。阿维菌素和矿物油一起使用时,可延长阿维菌素的防治效果和药效期[5],这也是米尔贝霉素开发需要解决的问题。松节油是松树上采集的松脂经加工得到的化工产品,它是世界上产量最大、价格最为便宜的植物精油[6]。松节油绿色环保、安全无毒,对米尔贝霉素有良好的溶解性。本研究拟在此基础上,探讨松节油对米尔贝霉素的增效和稳定性作用,为开发以松节油为溶剂的米尔贝霉素绿色乳油制剂提供依据。

  • 朱砂叶螨Tetranychus cinnabarinus:由浙江省化工研究院提供,在人工气候室条件下[(26±1)℃,相对湿度为(70±5)%,光周期为14 h/10 h],接种于蚕豆苗上培养。

  • 松节油(150~270 ℃的馏分,江西吉安市国光香料厂);质量分数为95%米尔贝霉素原药[Milbemycin,m(A3):m(A4)=3:7],由浙江海正药业有限公司提供;试剂均为分析纯,市购。

  • Waters 600高效液相色谱仪;ZF-20D暗箱式紫外分析仪;Potter喷雾塔(英国Burkard仪器公司);奥林巴斯解剖镜SZ2-LGB(中国上海赖氏科技有限公司);Agilent technologies气质联用色谱仪(7890A GS system,7693Autosampler,5875C insert MSD),HP-INNOWAX毛细管柱(30 m × 0.32 mm × 0.50 μm),Agilent化学工作站。

  • 制剂配制:准确称取一定质量的米尔贝霉素原药,分别用松节油和乙醇为溶剂、OP10为乳化剂配成乳油:质量分数为2%米尔贝霉素乳油(米尔贝霉素1.0 g,乙醇45.0 g,OP10 4.0 g);质量分数2%米尔贝霉素松节油乳油(米尔贝霉素1.0 g,松节油45.0 g,OP10 4.0 g);质量分数为90%松节油乳油(松节油45.0 g,OP10 5.0 g)。用蒸馏水将各制剂稀释成系列质量浓度药液。米尔贝霉素制剂稀释质量浓度梯度为0.025,0.050,0.100,0.200,0.400,0.800 mg· L-1,松节油稀释100,250,500,1 000,2 000,4 000,6 000倍。采用叶碟喷雾法[7]测定各制剂对朱砂叶螨的活性。使用POLO软件处理数据,用几率值分析法计算各化合物的毒力回归方程、半致死浓度(CL50值)、95%置信限和相关系数。用共毒系数(CTC)[8]来判断松节油对米尔贝霉素的增效作用。

  • 紫外光光解稳定性测定。采用玻璃膜状光解稳定性试验方法[9]。分别取质量分数2%米尔贝霉素乳油和质量分数2%米尔贝霉素松节油乳油(高效液相色谱法HPLC测定其含量)1.0 mL置于Φ2 cm的培养皿中(按照光照时间标记培养皿,每时间段设3个重复),立即放入暗室中,室温下待溶剂在自然状态下完全挥发后,形成面积为培养皿底面的药剂薄膜,放入ZF-20D暗箱式紫外分析仪下(培养皿距离紫外灯管20 cm,对照用锡纸遮盖),用波长为254 nm的紫外光照射,紫外光光照强度为420 lx,经0.5,1.0,2.0,4.0,8.0,16.0,24.0,36.0,48.0,72.0 h取样,将药膜用5.0 mL甲醇分3次振荡溶解后转移到棕色样品瓶,HPLC测定其质量分数,用式(1)计算米尔贝霉素各制剂的紫外光分解率。

    太阳光光解稳定性测定。同样采用玻璃膜状光解稳定性试验方法。将涂有米尔贝霉素制剂的培养皿置于室外阳光下照射,对照用锡纸遮盖,光照强度1 200~1 500 lx(光照时间累积计算,8 h·d-1),夜间或阴天将培养皿密封置于冰箱存放。经0.5,1.0,2.0,4.0,8.0,16.0,24.0,36.0,48.0,72.0 h照射时间后分别取样检测质量分数变化,按(1)式求出光解率。

  • 质量分数2%米尔贝霉素乳油和质量分数2%米尔贝霉素松节油乳油各取25.0 mL,密封于安瓿瓶内,分别进行冷储和热储试验,重复3次·试验-1。于0 ℃冰水浴冷储7 d,(54±2)℃热水浴热储14 d,测定储存前后质量,按式(2)计算冷储和热储降解率。

  • 采用高效液相色谱分析米尔贝霉素含量。Waters symmetry C18色谱柱(250 mm × 4.6 mm × 5.0 μm),分析米尔贝霉素以V(甲醇):V(水)=95:5为流动相,V(乙腈):V(甲醇):V(体积分数为0.1%的三乙胺)=56:28:16,检测波长243 nm,进样量20 μL,流速1.0 mL·min-1,米尔贝霉素A3和A4保留时间分别为15.48 min和21.15 min。

  • 气相色谱条件:HP-INNOWAX毛细管柱,起始温度60 ℃,保持2 min,以30 ℃·min-1升至190 ℃,再以10 ℃·min-1升至230 ℃,保持10 min。氦气为载气,流速1.0 mL·min-1,进样量1.0 μL,分流比10:1;进样口温度250 ℃,检测器温度250 ℃。质谱条件:EI离子源能量为70 eV,扫描范围为30~250。

  • 各供试制剂对朱砂叶螨雌成螨的毒力测定结果见表 1。松节油单独使用时对朱砂叶螨的半致死质量浓度(CL50)为227.050 3 mg· L-1,活性较低。松节油为溶剂配制的米尔贝霉素乳油对朱砂叶螨半致死质量浓度为0.031 4 mg· L-1,乙醇为溶剂的米尔贝霉素乳油对朱砂叶螨半致死质量浓度为0.139 0 mg· L-1,松节油对米尔贝霉素的共毒系数为442.68,表现出显著的增效作用。

    药剂 毒力回归方程 半致死质量浓度/(mg·L-1 相关系数 95 %置信限/(mg·L-1 共毒系数
    松节油 y=2.516 6+1.054 04x 227.050 3 0.988 0 221.280 5~232.973 1
    米尔贝霉素/乙醇 y=6.644 7+1.919 4x 0.139 0 0.966 8 0.131 5~0.258 0
    米尔贝霉素/松节油 y=9.564 2+3.036 0x 0.031 4 0.965 4 0.037 7~0.054 9 442.68

    Table 1.  Toxicity of turpentine and milbemycin to female adult of Tetranychus cinnabarinus

  • 图 1可见:在波长254 nm光照条件下,质量分数为2%米尔贝霉素乳油紫外光照射下的降解率要显著高于质量分数为2%米尔贝霉素松节油乳油在紫外光下的降解率。在紫外光光照72 h后,2%米尔贝霉素乳油降解率接近100%,而2%米尔贝霉素松节油乳油降解率则为17.76%。

    Figure 1.  Ultraviolet Photodagration of milbemycin

    图 2可见:在1 200~1 500 lx光照条件下,2%米尔贝霉素乳油的降解率要显著高于质量分数为2%米尔贝霉素松节油乳油的光照降解率。在光照12 h后,2%米尔贝霉素乳油降解率达到98.37%,而质量分数为2%米尔贝霉素松节油乳油降解率则为28.72%;在光照72 h后,质量分数为2%米尔贝霉素乳油已基本分解,2%米尔贝霉素松节油乳油降解率为48.61%。

    Figure 2.  Photodagration of milbemycin

  • 表 2中可知:2种米尔贝霉素乳油经冷、热储后的有效成分的降解率均小于5%,外观无沉淀和分层现象符合制剂冷、热储要求。

    储存方式 药剂 冷/热储前质量/mg 冷/热储后质量/mg 降解率/% 外观
    冷储 2%米尔贝霉素乳油 509.25 495.38 2.72 透明均一
    2%米尔贝霉素松节油乳油 516.00 509.70 1.22 油状透明均一
    热储 2%米尔贝霉素乳油 509.25 493.73 3.05 透明均一
    2%米尔贝霉素松节油乳油 516.00 491.93 4.67 油状透明均一

    Table 2.  Cold storage, heated storage to stability influence of milbemycin

  • 采用毛细管柱,在所设定的条件下对松节油进行检测,松节油总离子流图见图 3。从图 3中可以看出:在4.0~7.5 min为松节油的特征峰范围,保留时间为4.203 min时的色谱峰,丰度明显高于其他峰,经数据库比对确定该物质为松节油主要成分α-蒎烯。松节油中相对含量大于1%的成分及其分子结构见表 3。供试松节油中,含量超过1%的成分多为单萜类同分异构体,相对含量最高为α-蒎烯(19.84%),其次为(R)-苧烯(11.70%),莰烯(10.33%)和3-蒈烯(7.29%)。

    Figure 3.  Total ion chromatogram of turpentine

    名称 相对含量/% 保留时/min 分子式
    2-莰烯 1.63 3.95 C10H16
    1, 3, 5, 5-四甲基-1, 3-环己二烯 1.84 4.04 C10H16
    (1S)-3, 7, 7-三甲基双环[4.1.0]庚-3-烯 2.10 4.11 C10H16
    α-蒎烯 19.84 4.20 C10H16
    莰烯 10.33 4.33 C10H16
    葑酮 1.05 4.55 C10H16O
    1, 3, 5, 5-四甲基-1, 3-环己二烯 1.77 4.57 C10H16
    γ-松油烯 1.25 4.73 C10H16
    3-蒈烯 7.22 4.72 C10H16
    萜品油烯 3.36 4.81 C10H16
    1-甲基-2-异丙基苯 8.49 4.87 C10H16
    (R)-苧烯 11.70 4.91 C10H16
    萜品油烯 3.31 5.30 C10H16
    2-甲氧基-4-甲基苯酚 1.82 5.91 C8H10O2

    Table 3.  GC-MS analysis results of turpentine

  • 松节油是松树Pinus上采集的松脂经加工得到的化工产品,它是世界上产量最大、价格最为便宜的植物精油。中国松树资源丰富,松树面积约1 600 × 104 km2,年产松节油约8 × 104 t,仅次于美国,位居世界第2位[6]。松节油具有一定的生物活性,可直接用于治疗肌肉痛、关节痛、神经痛和软组织损伤,还可作为药物助剂,如溶剂、杀菌消毒剂和透皮促进剂等[10-11]。目前松节油多用于合成龙脑、薄荷脑、维生素类、药用樟脑等[12],农药制备方面多用于开发杀虫增效剂、萜类驱避剂、拒食剂和保幼激素类似物等[13]。研究表明:松节油对米尔贝霉素有显著的增效作用,光解、冷热储试验表明:松节油对提高米尔贝霉素稳定性也具有很好的效果,气相色谱-质谱联用仪(GC-MS)分析其主要成分为α-蒎烯,(R)-苧烯、莰烯和3-蒈烯[14]等萜烯类化合物。萜烯类化合物具有良好的脂溶性,对昆虫表皮有较强的渗透作用[15],是松节油对米尔贝霉素增效的主要原因。

    松节油对米尔贝霉素还具有较强的稳定作用,是其增效的另一原因。米尔贝霉素在环境中的稳定性相对较差,在强阳光下容易分解,这也是生物源农药的共同特点。例如紫外线能使印楝素快速分解[9],印楝素-A涂敷成薄膜在紫外灯照射下的半衰期只有48 min[16]。阿维菌素在阳光照射下,半衰期<10 h[17-19]。生物源农药的不稳定性严重限制了它们的田间使用,从而使其商品化进程缓慢。而以松节油为溶剂在抗紫外、抗强阳光、制剂的冷、热储方面,对米尔贝霉素都能够起到很好的稳定作用。以松节油为溶剂配制的其他药剂对小菜蛾Plutella xyllostella,蚜虫Aphis craccivora,菜青虫Pieris rapae,东方黏虫Mythimna separata的室内毒力结果表明:药剂均表现出良好的增效作用,昆虫也表现出良好的拒食作用[20]

    农药乳油制剂加工成本低、使用方便,田间效果优于相同成分的其他类型制剂,但使用大量的有机溶剂会对环境造成极大的压力。松节油来源丰富,价格适中,对米尔贝霉素有良好的溶解性,并具有显著的增效和稳定作用,是米尔贝霉素绿色乳油制剂加工的良好溶剂选择。

Reference (20)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return