Volume 38 Issue 2
Apr.  2021
Turn off MathJax
Article Contents

ZHU Meiyu, LONG Fei, QI Huibo, ZHANG Zhe. Spatial measurement and classification of forest carbon sink demand based on industry emission reduction[J]. Journal of Zhejiang A&F University, 2021, 38(2): 377-386. doi: 10.11833/j.issn.2095-0756.20200386
Citation: ZHU Meiyu, LONG Fei, QI Huibo, ZHANG Zhe. Spatial measurement and classification of forest carbon sink demand based on industry emission reduction[J]. Journal of Zhejiang A&F University, 2021, 38(2): 377-386. doi: 10.11833/j.issn.2095-0756.20200386

Spatial measurement and classification of forest carbon sink demand based on industry emission reduction

doi: 10.11833/j.issn.2095-0756.20200386
  • Received Date: 2020-06-15
  • Rev Recd Date: 2020-12-28
  • Available Online: 2021-01-13
  • Publish Date: 2021-04-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(6)

Article views(1000) PDF downloads(33) Cited by()

Related
Proportional views

Spatial measurement and classification of forest carbon sink demand based on industry emission reduction

doi: 10.11833/j.issn.2095-0756.20200386

Abstract:    Objective   This paper classifies the forest carbon sink demand space of 28 provincial administrative regions and Shenzhen City in China, and puts forward some suggestions for improving the future forest carbon sink demand space of various regions, so as to provide an objective basis for scientific design of carbon sink policy and targeted development of forest carbon sink demand space.   Method   Taking the above 29 areas as sample units, the input and output data of the industrial industries in 2008−2017 statistical yearbook were collected. The directional distance function model was used to calculate the carbon marginal emission reduction cost of the industrial industries in each region, and the demand space model was used to measure the forest carbon sink demand space of 29 areas in the past 10 years. Then cluster analysis and discriminant analysis were carried out on the obtained demand space data.   Result   There were some regional fluctuations in the marginal carbon emission reduction cost and the spatial data of forest carbon sink demand in each sample area. The Pearson correlation coefficient between marginal carbon emission reduction cost and forest carbon sink demand space was 0.999, showing a significant positive correlation. The clustering results showed that the average marginal carbon emission reduction cost in regions of Category 1, 2 and 3 was 15.9, 11.8 and 5.1 thousand yuan·t−1 respectively. The average spatial value of forest carbon sink demand in Category 1, 2 and 3 was 5 719.1, 3 749.3 and 1 741.5 thousand t·a−1, respectively. Through the final discriminant equation, it was found that the demand spatial data of 2011 and 2014 had the most significant impact on regional classification.   Conclusion   On the whole, the classification results are roughly consistent with the economic development level of the eastern, central and western regions of China. The policy scenario simulation shows that the penalty rate of over emission should be taken as an important entry point for the regions of Category 1 and 2, and the quota distribution mode should be optimized. The 3rd category should be encouraged and guided. [Ch, 6 tab. 16 ref.]

ZHU Meiyu, LONG Fei, QI Huibo, ZHANG Zhe. Spatial measurement and classification of forest carbon sink demand based on industry emission reduction[J]. Journal of Zhejiang A&F University, 2021, 38(2): 377-386. doi: 10.11833/j.issn.2095-0756.20200386
Citation: ZHU Meiyu, LONG Fei, QI Huibo, ZHANG Zhe. Spatial measurement and classification of forest carbon sink demand based on industry emission reduction[J]. Journal of Zhejiang A&F University, 2021, 38(2): 377-386. doi: 10.11833/j.issn.2095-0756.20200386
  • 工业革命以后,经济社会发展与环境承载力之间的矛盾日益突出,控制和减少大气二氧化碳含量,避免气候变化带来的灾难性后果,已成为全球关注的焦点问题。国际社会对此高度重视并积极采取各种应对措施。联合国气候变化大会多哈会议正式确定启动《京都议定书》(1997)第二承诺期 8 年期计划,并在2015 年巴黎会议上达成了全球 2020 年后应对气候变化行动的协定,即《巴黎协定》[1],该协定是人类历史上应对气候变化的第3个里程碑式的国际法律文本。2020年后的全球气候治理格局由此形成[2]。森林作为陆地生态系统中最大的碳库,在稳定全球碳循环和缓解全球变暖方面发挥着十分重要的作用。《联合国气候变化框架公约》已将森林碳汇作为一种新型森林经营产品纳入到《京都议定书》的清洁发展机制框架中。中国也将森林碳汇作为应对气候变化的重要途径,早在各试点省(市)碳交易市场成立之初,国家发展和改革委员会就对各试点市场开展的森林碳汇项目抵消政策颁布了一系列激励措施,并认为森林碳汇项目抵消政策有助于实现不同地区之间的资源优势互补,扩大试点碳交易市场跨行业、跨地区的影响力[3]。截至2019年12月31日,8个碳市场配额现货累计成交量为3.95亿t,累计成交额为91.6亿元,国家核证自愿减排量(CCER)累计交易量为2.05亿t。整体来看,碳价格低廉,且由于理性经济人抉择等因素的干扰,中国当前碳汇需求不足,难以充分实现森林生态价值的市场补偿。国内外学者在碳汇需求空间方面也开展了不同角度的研究,VASS[4]表示:科学设计碳交易市场机制可提高交易活动的活跃度,实现森林碳汇生态价值资本化。PETHIG等[5]认为:碳排放权交易制度的优势非常显著,市场开展碳排放的调节机制除了可以拉动碳需求、实现减排目标,还能降低成本。赵红梅等[6]以环境政策理论为前提,对激励政策下各行业的减排行为进行了研究。沈洪涛等[7]认为:碳交易政策是促使重点排放单位开展碳减排的有效手段,有关部门可将碳价稳定在某一合理区间来引导企业通过碳交易进行减排,利于长期减排。张颖[8]认为:若将森林碳汇的比例提高到10%再分配给森林碳汇市场进行交易,森林碳汇的市场需求将会大幅上涨。杨虹等[9]认为:各行业对森林碳汇的需求价格,随政府允许碳汇抵消比例的提高和碳汇补贴额度的增加而上升,随碳税征收率的提高而下降。童慧琴等[10]认为:超排处罚率、技术减排补贴、产业提升政策及碳排放权配额发放强度等因素对减排行业森林碳汇需求空间均有影响。这些研究表明:目前碳交易市场的森林碳汇还存在较大的需求空间。工业行业是中国最大的碳汇需求者,研究其森林碳汇的内在需求并进行分类,对未来差异化开发森林碳汇需求空间,促进森林碳汇产业的可持续发展具有重要的理论及现实意义,但与之相关的研究比较薄弱。鉴于此,本研究将以全国28个省级行政区域和深圳市(以下称29个样本地区)工业行业的减排现状和碳边际减排成本为基础,对2008−2017年的森林碳汇需求空间数据进行科学测算,并对所求数据进行分类研究,以期为相关部门科学设计减排政策,更具差异化开发各类地区森林碳汇需求空间提供客观依据。

  • 方向性距离函数对处理含非合意性产出的问题具有明显优势。普通距离函数只考虑合意性产出的增加,而方向性距离函数在考虑了合意性产出增加的同时,还兼顾了非合意性产出的减少。具体处理过程如下:假设y为生产的合意性产出(好产出),且$y \in R_ + ^D$表示合意性产出向量;c为非合意性产出(坏产出),且$c \in R_ + ^U$表示非合意性产出向量;x表示工业行业的投入,且$x \in R_ + ^N$表示投入向量;则生产集为$P\left( x \right) = \left\{ {\left( {y,c} \right): x \to \left( {y,c} \right)} \right\}$P(x)是描述所有可行的投入产出向量。当投入x=0时,产出(合意性产出、非合意性产出)也为0。本研究把生产合意性产出定义为工业行业的产值,非合意性产出定义为工业行业二氧化碳的排放量[11]。投入指标包括:工业行业固定资产、工业行业从业人员和工业行业能源消耗。现假定P(x)满足下面的性质:①投入x是具有强可处置性的,当投入x增加了,产出P(x)不会减少,即是说,当具体投入数x′∈x,那么$P\left( {x'} \right) \supseteq P\left( x \right)$。②合意性产出y和非合意性产出c具有联合性,即坏产出是创造好产出过程中不可规避的副产品,也就是说如果(y, c)∈P(x),且c=0,则y=0。③合意性产出y和非合意性产出c具有联合弱可处置性,即工业行业同等比例同时缩减yc的产出是可能的,即在既定投入水平x下,若要减少坏产出c,则好产出y也必须随之减少。也就是说,如果(y, c)∈P(x),θ表示变化因子,且0≤θ≤1,那么(θy,θc)∈P(x),这表示要减少非合意性产出就必须减少合意性产出。④合意性产出y具有强可处置性,对好产出产量的减少没有限制,即可以在其他条件都不变的条件下降低好产出y的产量。如果(y, c)∈P(x),且(y0, c)≤(y, c),那么(y0, c)≤P(x)。

    设定方向向量g=(gy, gc),g≠0。基于以上假设,我们可以得出产出方向性距离函数为:

    产出方向性距离函数的值可以反映出工业行业的生产效率。如果$\overrightarrow {{D_0}} \left( {x,y,c,{g_y}, - {g_c}} \right) = 0$,可以说明该行业在$\left( {{g_y}, - {g_c}} \right)$方向上是有效率的;如果$\overrightarrow {{D_0}} $>0,则说明该行业在该方向上存在一定程度的无效性。据此,我们可以计算出非合意性产出也就是坏产出(二氧化碳)的边际减排成本:

    式(2)中:Pc表示二氧化碳影子价格,即工业行业二氧化碳边际减排成本(MAC),Py表示工业行业好产出的市场价格,x表示工业行业的投入,y表示工业行业好产出的产量,c表示工业行业坏产出的产量,D0表示工业部门投入产出向量,g表示产出变量。

  • 森林碳汇的需求空间受多种因素影响,而减排成本尤为关键,它将直接对各减排行业的后续经济选择起决定性作用。根据相关文献及其对影响森林碳汇需求空间的各因素关系分析[1213],本研究拟将采用logistic算法来自动实现包括碳减排行业减排成本在内的不同影响因素与森林碳汇需求空间之间的关系模型。转换形式如下:

    式(3)中:Dst表示森林碳汇需求空间,Mi代表工业行业样本期的碳边际减排成本;Pst代表当前碳汇价格一般水平(以国内相关试点成交价为例),d为自动系数,取2.7;Ti为不同行业年度碳排放总量,Gi为不同行业年度产值,i为年数。s代表超排处罚率,m代表技术减排补贴率,p代表产业激励政策,g代表碳配额发放强度。以需求空间模型测度求得的森林碳汇需求空间数据,为29个样本地区森林碳汇需求空间的分类研究的铺垫。

  • 本研究将根据2008−2017 年全国29个样本地区的森林碳汇需求空间数据,采用经典数据挖掘算法之一的K-Means算法,对各地区的森林碳汇需求空间进行聚类分析,以寻求森林碳汇需求空间的变化规律。

    判别分析(discriminant analysis)是由分类变量作因变量,多个连续判别变量作为自变量的多变量分析方法[14]。基本原理是按照一定的判别准则,建立一个或多个判别函数,用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标。据此即可确定某样本属于何类[15]。判别分析的基本模型为:

    式(4)中:y 表示判别函数值;xi表示判别变量;bi表示相对应的判别系数;i = 1,2,3,$\cdots $kk表示判别变量的个数。

  • 数据为2008−2017 年全国29个样本地区《统计年鉴》中规模以上工业行业的投入产出数据,部分地区的缺失数据由推算得来,最后根据《综合能耗计算通则》里的折算系数对不同能源进行折算。经过收集整理,运用方向性距离函数的环境生产函数求偏导,解得二氧化碳的影子价格,即边际减排成本(表1)。

    年份边际减排成本/(万元·t−1)
    上海市天津市北京市重庆市深圳市广东省湖北省山西省海南省青海省
    20081.174 31.087 10.720 31.741 42.455 12.295 21.229 81.234 80.798 80.665 5
    20091.090 21.070 40.600 31.631 82.384 02.094 51.172 91.095 00.794 60.553 4
    20100.996 81.008 90.519 11.479 00.718 91.928 51.168 10.975 30.658 90.512 6
    20110.852 60.872 00.425 11.317 00.752 81.744 51.029 20.806 10.551 10.362 3
    20120.815 70.811 60.367 91.216 91.787 61.669 00.998 70.732 90.487 20.324 5
    20130.725 60.742 10.305 81.130 21.340 71.551 10.980 60.633 10.425 70.267 1
    20140.653 20.711 70.273 41.040 41.688 21.456 40.952 80.565 90.333 70.238 1
    20150.563 40.666 20.178 00.956 11.551 51.359 00.879 50.520 80.243 20.241 8
    20160.486 20.498 60.085 80.830 01.421 71.248 20.794 80.474 00.155 20.251 7
    20170.422 90.407 00.030 30.644 01.237 71.156 10.852 90.411 30.132 90.265 8
    平均0.778 10.787 60.350 61.198 71.533 81.650 31.005 90.744 90.458 10.368 3
    年份边际减排成本/(万元·t−1)
    山东省浙江省江苏省安徽省宁夏回族
    自治区
    新疆维吾尔
    自治区
    吉林省内蒙古
    自治区
    广西壮族
    自治区
    黑龙江省
    2008 1.722 11.736 11.728 31.497 80.901 90.776 11.187 60.825 31.255 01.379 3
    2009 1.562 21.564 41.519 61.406 30.739 30.678 41.18320.759 21.353 71.303 2
    2010 1.400 11.475 11.425 31.280 40.629 20.548 51.053 00.689 51.369 21.050 9
    2011 1.187 41.146 01.212 91.118 50.502 80.420 50.913 00.533 01.198 90.862 8
    2012 1.114 61.131 61.154 61.071 60.420 30.361 20.854 80.453 51.148 10.829 0
    2013 1.026 01.058 31.099 71.005 30.356 30.243 90.767 00.370 11.061 60.765 7
    2014 0.904 81.015 81.078 10.955 10.252 10.215 50.717 20.284 41.005 10.688 3
    2015 0.825 10.961 90.964 70.855 20.169 80.188 90.662 70.205 30.976 50.630 5
    2016 0.755 60.909 80.886 00.801 90.082 70.145 30.609 80.159 30.912 40.555 2
    2017 0.683 60.857 70.809 90.722 60.030 40.112 50.511 30.082 70.839 50.621 6
    平均1.118 21.185 61.187 91.071 50.408 50.369 10.846 00.436 21.112 00.868 7
    年份边际减排成本/(万元·t−1)
    辽宁省云南省甘肃省湖南省河北省河南省陕西省四川省贵州省
    2008 1.206 00.920 71.196 71.417 21.343 01.640 81.057 91.476 51.229 7
    2009 1.185 60.875 31.054 71.424 61.212 31.573 70.891 31.376 01.148 7
    2010 1.089 10.766 30.910 01.476 41.114 41.456 60.818 21.276 81.068 5
    2011 0.940 20.646 80.638 91.361 91.067 91.383 10.724 91.202 61.026 0
    2012 0.942 30.610 80.559 71.284 70.949 71.276 80.632 41.097 90.993 1
    2013 0.847 60.494 60.454 61.234 90.918 51.16240.520 60.942 10.887 7
    2014 0.775 70.417 60.434 51.193 00.884 31.100 60.458 30.873 50.847 4
    2015 0.640 20.364 60.373 71.153 90.941 01.058 00.409 90.790 20.801 3
    2016 0.422 30.306 50.330 41.081 60.966 61.015 60.346 10.730 10.816 2
    2017 0.374 10.258 50.274 51.005 61.017 90.955 00.301 90.661 80.830 9
    平均0.842 30.566 20.622 81.263 41.041 61.262 30.616 11.042 80.965 0

    Table 1.  Marginal CO2 emission reduction cost of 29 sample areas in China from 2008 to 2017

    横观表1数据发现:29个样本地区工业行业二氧化碳的边际减排成本平均值存在一定的波动,整体没有明显规律。青海省、新疆维吾尔自治区、内蒙古自治区等西部欠发达地区减排成本较低,广东省、深圳市等工业较发达地区的减排成本偏高,其中:新疆维吾尔族自治区工业行业10 a间二氧化碳边际减排成本平均值为0.369 1万元·t−1,这说明新疆维吾尔自治区减少1 t二氧化碳排放需支付的减排成本为0.369 1万元;广东省工业行业的碳边际减排成本较高,10 a的平均值为1.650 3万元·t−1,说明10 a间广东省平均减少1 t二氧化碳需要支付的减排成本是1.650 3万元,是新疆维吾尔自治区的4.47倍之多。这也从侧面证明经济实力与工业行业二氧化碳减排成本之间存在一定的联系。

    纵观表1数据发现:2008−2017年,29个样本地区的二氧化碳边际减排成本整体呈稳步下降趋势,这种情形充分体现了低碳减排、技术创新及环保意识增强等因素带来的积极影响。深圳市、湖北省等少数地区仍有个别年份出现轻微增长,由于此种波动幅度处于正常范围且对整体结果无显著影响,故此处不再赘述。

  • 本研究采取近年碳交易价格的平均数表示当前碳价格的一般水平。根据整理和计算得出[式(3)]P值为26.44元·t−1。各年度工业行业的碳边际减排成本数据Mi表1,不同行业年度碳排放总量Ti和不同行业年度产值Gi均为为各地区《统计年鉴》中收集的原始数据,N为行业年度总数。鉴于当前各地相关政策均未出台,这里假设政策值smpg皆为 0,以具体讨论其他相关非政策性市场因素对森林碳汇需求空间的影响。根据森林碳汇需求空间测算模型[式(3)],求得2008−2017年全国29个样本地区的森林碳汇需求空间数据(表2)。

    年份森林碳汇需求空间/万t
    上海市天津市北京市重庆市深圳市广东省湖北省山西省海南省青海省
    2008425.530 7395.142 1261.231 0645.974 1880.597 1832.525 9457.635 1463.993 3295.125 0250.854 9
    2009395.190 2389.350 0217.424 3604.192 7853.360 7759.917 6435.460 4412.016 7294.630 8208.741 5
    2010360.497 9366.513 3187.543 5540.441 4257.265 7697.876 1431.230 0365.914 4243.005 1192.837 9
    2011307.965 9316.245 6153.225 0479.784 2268.866 0630.513 5377.599 0301.413 1203.721 9136.295 4
    2012294.599 7294.125 4132.439 5442.521 5637.229 3603.287 7365.503 7274.105 8179.870 9122.023 6
    2013262.158 4268.685 2109.910 4409.955 7477.651 4559.596 4358.373 1237.950 1157.319 9100.332 7
    2014235.778 9257.541 297.986 5376.492 9601.341 9524.559 7347.685 7212.396 4123.276 289.466 7
    2015203.509 7240.992 863.785 9345.374 8552.412 5489.240 3320.607 5195.108 790.051 290.964 1
    2016175.615 2180.356 630.754 7299.338 8506.162 7448.900 7289.405 9177.294 957.396 894.494 6
    2017152.477 8147.282 410.820 4233.758 9441.080 6415.863 8311.105 5153.688 749.138 099.950 0
    平均281.332 4285.623 5126.512 1437.783 5547.596 8596.228 2369.460 6279.388 2169.353 6138.596 1
    年份森林碳汇需求空间/万t
    山东省浙江省江苏省安徽省宁夏回族
    自治区
    新疆维吾尔
    自治区
    吉林省内蒙古
    自治区
    广西壮族
    自治区
    黑龙江省
    2008 630.253 7636.862 3631.536 0561.117 8341.099 8293.080 8447.657 5309.865 1468.059 6520.871 7
    2009 570.442 4574.530 3554.929 5526.258 2279.604 9256.392 3444.933 7284.253 1504.069 6484.984 5
    2010 510.358 5539.758 6519.268 4476.582 3237.946 2207.244 6393.885 4256.297 4504.212 0396.492 9
    2011 432.256 1419.122 5441.849 0414.075 9190.128 3158.851 7340.667 0198.503 5439.809 6324.935 1
    2012 404.694 2413.084 4419.890 3395.802 3158.935 7136.430 4317.902 5168.827 3419.973 2311.821 8
    2013 371.902 1386.086 0398.849 8370.895 3134.723 592.130 3284.560 5137.679 0387.779 7287.227 6
    2014 327.233 1369.979 5390.672 2351.813 795.322 781.418 9265.078 1105.345 3366.252 4257.924 5
    2015 298.444 0350.371 1349.241 5314.428 164.194 471.117 1244.464 976.513 6354.816 7236.649 9
    2016 273.220 7331.187 5320.749 2294.116 231.289 254.715 4223.876 259.277 9331.148 8208.483 8
    2017 247.480 8312.980 6293.207 2264.811 911.487 042.332 1187.970 031.045 5304.477 8233.843 9
    平均406.628 6433.396 3432.019 3396.990 2154.473 2139.371 4315.099 6162.760 8408.059 9326.323 6
    年份森林碳汇需求空间/万t
    辽宁省云南省甘肃省湖南省河北省河南省四川省陕西省贵州省
    2008 451.759 9347.007 0448.955 2533.319 9499.975 0608.348 2547.278 8396.237 4463.326 2
    2009 442.426 5330.176 7395.524 2535.025 8450.870 4583.354 9508.845 9333.362 8432.676 5
    2010 405.310 0288.590 5340.103 9552.182 9412.466 7540.003 1470.701 8305.461 3401.732 5
    2011 349.301 5243.184 7238.099 2506.962 0393.870 8512.764 5442.425 4271.917 3384.434 1
    2012 348.947 4229.295 7208.365 4476.968 6349.810 0472.053 4403.810 3237.160 7371.192 8
    2013 313.450 8185.657 9168.930 0458.259 6337.873 3429.481 1345.111 0195.399 9329.724 7
    2014 286.771 9156.370 6161.298 1439.817 0324.878 9405.864 4319.321 6172.046 4313.636 7
    2015 238.740 6136.265 3139.103 3424.683 0345.130 2388.950 6288.475 0154.146 9295.465 8
    2016 158.807 9114.412 9122.971 5397.644 4354.087 2372.605 3265.916 5130.088 5300.254 0
    2017 140.602 996.409 8102.433 1369.643 6373.191 9349.506 3241.167 4113.420 1305.912 7
    平均313.612 0212.737 1232.578 4469.450 7384.215 4466.293 2383.305 4230.924 1359.835 6

    Table 2.  Forest carbon sink demand space of industrial industries in 29 sample areas in the sample period

    横观表2数据可见:29个样本地区森林碳汇需求空间的平均值差距明显,波动较大,无明显规律。其中:广东省、深圳市等二氧化碳边际减排成本较高的地区对森林碳汇的需求空间依然较大,而青海省、新疆维吾尔自治区、内蒙古自治区等减排成本较低的西部地区对森林碳汇的需求空间较小。皮尔逊相关性分析表明:样本地区10 a间工业行业的碳边际减排成本与森林碳汇需求空间两者的相关系数为0.999,显著性水平为0.000<0.05,存在显著的正相关关系。

  • 为进一步探寻样本期内各地区森林碳汇需求空间的变动规律,对表2的数据进行K-means算法聚类发现:10 a间29个样本地区的森林碳汇需求空间分为3类较为合适,即k=3。此时,Kaiser-Meyer-Olkin值为0.841>0. 5,巴特利特球体检验值为0.000<0.05,说明该分类合适,适合进行聚类分析和判别分析。聚类结果见表3

    样本地区碳汇
    需求空间(bi)
    需求空间
    分类(Ck)
    样本地区碳汇
    需求空间(bi)
    需求空间
    分类(Ck)
    样本地区碳汇
    需求空间(bi)
    需求空间
    分类(Ck)
    样本地区碳汇
    需求空间(bi)
    需求空间
    分类(Ck)
    样本地区碳汇
    需求空间(bi)
    需求空间
    分类(Ck)
    b11b72b132b192b253
    b21b82b142b202b263
    b32b92b152b213b273
    b42b102b162b223b283
    b52b112b172b233b293
    b62b122b182b243
      说明:在聚类分析中,假设全国29个样本地区过去10 a的森林碳汇需求空间分别为 bi, i= 1, 2, ···, 29,即bi=b1, b2, ···, b29 (1~29分别     代表:深圳市、广东省、上海市、天津市、重庆市、湖北省、山东省、浙江省、江苏省、安徽省、吉林省、辽宁省、湖南     省、河北省、河南省、贵州省、四川省、山西省、广西壮族自治区、黑龙江省、北京市、云南省、甘肃省、海南省、青海     省、陕西省、宁夏回族自治区、新疆维吾尔自治区、内蒙古自治区),需求空间分类为Ck(k为需求空间的分类数)

    Table 3.  Spatial clustering results of forest carbon sink demand of industrial industry in 29 sample areas in the sample period

    聚类分析的方差分析(ANOVA)结果表明(表4):各变量均通过显著性水平检验,说明聚类分析结果合理,真实反映了各地区森林碳汇需求空间的变化情况。

    变量聚类误差F显著性
    均方差自由度均方差自由度
    P2008262 367.42025 624.6672646.6460.000
    P2009259 582.92824 342.0222659.7840.000
    P2010132 329.93327 692.0152617.2040.000
    P2011132 612.74226 034.3942621.9760.000
    P2012212 062.42423 028.8192670.0150.000
    P2013178 662.66323 036.3322658.8420.000
    P2014212 975.58423 037.5802670.1140.000
    P2015200 772.89323 184.3822663.0490.000
    P2016184 581.88923 989.7252646.2640.000
    P2017166 137.99024 388.2822637.8590.000

    Table 4.  ANOVA of cluster analysis

  • 目前本研究只收集整理了信息比较完备的29个样本地区的投入产出数据,其他地区由于客观因素未能一同研究,因此判别方程能够在数据完整之后,较准确地判别某一新样本地区(不仅限于国内)属于何类,为差异化开发其森林碳汇需求空间打下基础。根据上述结果,进一步采用判别分析的方法定量给出3类地区森林碳汇需求空间的判别方程[ 式(5)]。首先,通过强入法进行判别分析,检验结果见表5。从表5可以看出:方程1和方程2 的Wilks’ Lambda值为 0.068,接近于0,其显著性检验值为0.000<0.05,说明判别方程1和方程2均有统计学意义。方程 3 的 Wilks’Lambda值为 0.536,接近于 1,其显著性检验值为0.145>0.05,说明该判别方程的统计学意义不大,需要使用逐步判别进一步分析。

    方程检验Wilks’ Lambda卡方自由度显著性
    方程10.06857.923200.000
    方程 20.06857.923200.000
    方程 30.53613.404 90.145

    Table 5.  Wilks’ Lambda test for discriminant analysis

    采用逐步回归法求得样本单位的森林碳汇需求空间的最终判别方程如公式(6),其检验结果如表6

    Wilks’ Lambda自由度1自由度2自由度3精确F
    统计自由度1自由度2显著性
    0.156122670.114226.0000.000
    0.116222624.221450.0000.000

    Table 6.  Test of Wilks’ Lambda for stepwise regression

    从判别方程检验结果可以看出:中国的森林碳汇需求空间可以明显分为 3类:深圳市、广东省为第1类,需求空间较大;上海市、天津市、重庆市、湖北省、浙江省、山东省、江苏省、安徽省、吉林省、辽宁省、湖南省、河北省、河南省、广西壮族自治区、贵州省、黑龙江省、四川省、山西省为第2类,需求空间为中等水平;北京市、宁夏回族自治区、新疆维吾尔自治区、云南省、甘肃省、海南省、青海省、陕西省、内蒙古自治区为第3类,需求空间较小。由最终判别方程可见:2011和2014年的数据对该分类的影响最显著。另外,从判别方程的后验结果来看,3 个方程的全部样点回代检验的准确度均为100%,说明该判别方程具有一定的可信度。同时,也一定程度上反映了中国各类地区森林碳汇需求空间的规律性。通过原始数据整理、方向性距离函数模型以及需求空间模型测度可知:第1类地区工业行业平均国内生产总值为62 899.24亿元·a−1,工业二氧化碳平均排放量为18 436.36万t·a−1,碳边际减排成本平均值为1.59万元·t−1,森林碳汇需求空间的平均值为571.91万t·a−1。整体规律为:工业行业平均产值高、二氧化碳平均排放量处于中等水平、碳边际减排成本高、森林碳汇需求空间较大。第2类地区工业行业平均国内生产总值为38 102.57亿元·a−1,工业二氧化碳平均排放量为29 706.46万t·a−1,碳边际减排成本平均值为1.18万元·t−1,森林碳汇需求空间的平均值为374.93万t·a−1。整体规律为:工业二氧化碳平均排放量高,碳边际减排成本、工业行业平均产值及森林碳汇需求空间处于中等水平。第3类地区工业行业平均国内生产总值为8 612.94亿元·a−1,工业二氧化碳平均排放量为15 930.34万t·a−1,碳边际减排成本平均值为0.51万元·t−1,森林碳汇需求空间的平均值为174.15万t·a−1。整体规律为:工业行业平均产值、二氧化碳平均排放量、碳边际减排成本及森林碳汇需求空间均处于较低水平。

    以上述分类结果为对照,通过公式(3)测算smpg等4个政策变量各自对3类地区森林碳汇需求空间的影响:①假设政策值超排处罚率s=1, mpg均为0时,1、2、3类地区的森林碳汇需求空间的平均值分别为1143.83、789.86、348.3万t·a−1。由此可知,当其他参数均为0,超排处罚率每提高1单位,森林碳汇需求空间将会扩大至原来的2倍,这表明超排处罚率与森林碳汇需求空间呈正相关关系。②假设政策值技术减排补贴率m=1,spg均为0时,1、2、3类地区的森林碳汇需求空间的平均值为285.96、187.47、87.08万t·a−1。由此可知,当其他参数均为0,技术减排补贴率每提高1单位,工业行业技术减排倾向更明显,对森林碳汇的需求因而降低,这说明技术减排补贴率与森林碳汇需求空间呈负相关关系。③假设政策值产业激励政策p=1,smg均为0时,1、2、3类地区的森林碳汇需求空间的平均值为577.73、379.98、175.49万t·a−1。由此可知,当其他参数均为0,产业激励政策每提高1单位,1、2类地区的森林碳汇需求空间会有小幅提高,而第3类地区则出现轻微降低,这说明产业激励政策与对1、2类地区的需求空间呈正相关,对第3类地区的影响不显著。④假设政策值碳配额发放强度g=1,psm均为0时,1、2、3类地区的森林碳汇需求空间的平均值为568.33、369.87、171.97万t·a−1。由此可知,当其他参数均为0,碳配额发放强度每提高1单位,3类地区的需求空间均出现小幅降低,这说明碳配额发放强度与森林碳汇需求空间呈负相关关系。

    从上述测算分析结果不难发现:超排处罚率对开发需求空间有极大的积极影响,激励政策积极影响较小,碳配额发放强度与技术减排补贴的消极影响较为显著。因此,应将超排处罚标准和激励政策作为开发森林碳汇需求空间的重要切入点,同时,相关部门也要对配额发放模式进行优化。事实上,资源禀赋、技术条件、地理位置及产业结构的差异,也在一定程度上造成了3类地区森林碳汇需求空间的不同。随着中国林业战略目标的实施和重点工程的推进,人工林面积将进一步扩大,这就意味着持续增加的森林碳汇将会对未来经济发展带来前所未有的机遇,也对二氧化碳减排做出重大贡献,而各类地区内在的森林碳汇需求空间能否更充分地实现森林生态补偿也是需要持续关注的重要问题。

  • 本研究以基于方向性距离函数求得的全国29个样本地区工业行业的碳边际减排成本数据为基础,通过森林碳汇需求空间测算模型求得各省区市10 a的森林碳汇需求空间数据,并对该数据的变动路径进行聚类和判别分析。研究表明:29个样本地区的碳边际减排成本数据与森林碳汇需求空间数据均存在明显的地区性波动,且波动幅度较大。聚类分析将29个样本地区的森林碳汇需求空间大致分为3类,第1类地区需求空间较大,第2类地区的需求空间为中等水平,第3类地区需求空间较小。整理数据可知,1、2、3类地区的碳边际减排成本平均值分别为1.59、1.18、0.51万元·t−1;1、2、3类地区森林碳汇需求空间平均值分别为571.91、374.93、174.15万吨·a−1,两者的皮尔逊相关系数为0.999。由此可见,3类地区的碳边际减排成本变动路径与森林碳汇需求空间的变动路径基本一致,两者呈显著正相关。最终判别方程显示2011、2014年的森林碳汇需求空间数据对地区分类的影响最为显著。总体来看,地区分类情况与中国东中西部地区的经济发展水平基本一致,另外,超排处罚率、激励政策对开发需求空间均有积极影响,碳配额发放强度与技术减排补贴对开发需求空间存在消极影响。该特性也为科学设计碳汇政策以及有针对性的开发森林碳汇需求空间提供了新的思路和有价值的参考。

  • 基于研究分析结论,提出以下差异化开发各类地区森林碳汇需求空间的建议:①第1类东部地区要严格超排处罚标准,同时注重社会宣传。减排行业二氧化碳排放量如果超过配额,必须接受相应处罚,而减排行业为了规避处罚,势必通过购买森林碳汇取得相应的排放权,来继续进行排放行为,从而进一步提高森林碳汇的需求空间;社会宣传能够加强减排行业的社会责任感,树立良好的社会形象,增强其主动参与和自愿购买森林碳汇的行为。②第2类中东部地区应制定相应的激励政策,优化碳配额发放模式,合理规定超排处罚标准以及加强相关知识的普及。对关系国家战略的控排单位实施激励政策,在激励减排的同时尽可能降低其减排压力。碳配额的发放强度直接决定了配额的稀缺程度和市场供需,进而影响交易活跃度。通过对超过二氧化碳排放限额的行业进行规定,要求其购买的减排产品须包含一定比例的森林碳汇,用以提高森林碳汇的持续需求。加强碳汇知识普及和碳汇政策的宣传力度,提高减排行业对森林碳汇的接受度,充分发挥行业选择偏好对认购森林碳汇的正向影响,制定灵活的森林碳汇自愿交易机制,大力宣传森林碳汇多重效益,扩大森林碳汇自愿交易规模[16]。③第3类西部地区要以购买森林碳汇的补贴政策为主,适度的激励政策为辅。受资源禀赋的限制,西部地区经济发展较落后,工业欠发达,因此开发该类地区碳汇需求空间应以经济利益诱导为主,并对在减排工作中表现突出的企业进行奖励,尽量减小减排对经济发展的阻力;设立碳汇基金专项措施,为节能减排构建平台,推动碳交易自愿市场的发展。政府的补贴和激励政策能够提高减排行业参与森林碳汇相关实践活动的积极性,进而增强工业行业对森林碳汇的购买意愿,提高森林碳汇需求空间。

Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return