-
工业革命以后,经济社会发展与环境承载力之间的矛盾日益突出,控制和减少大气二氧化碳含量,避免气候变化带来的灾难性后果,已成为全球关注的焦点问题。国际社会对此高度重视并积极采取各种应对措施。联合国气候变化大会多哈会议正式确定启动《京都议定书》(1997)第二承诺期 8 年期计划,并在2015 年巴黎会议上达成了全球 2020 年后应对气候变化行动的协定,即《巴黎协定》[1],该协定是人类历史上应对气候变化的第3个里程碑式的国际法律文本。2020年后的全球气候治理格局由此形成[2]。森林作为陆地生态系统中最大的碳库,在稳定全球碳循环和缓解全球变暖方面发挥着十分重要的作用。《联合国气候变化框架公约》已将森林碳汇作为一种新型森林经营产品纳入到《京都议定书》的清洁发展机制框架中。中国也将森林碳汇作为应对气候变化的重要途径,早在各试点省(市)碳交易市场成立之初,国家发展和改革委员会就对各试点市场开展的森林碳汇项目抵消政策颁布了一系列激励措施,并认为森林碳汇项目抵消政策有助于实现不同地区之间的资源优势互补,扩大试点碳交易市场跨行业、跨地区的影响力[3]。截至2019年12月31日,8个碳市场配额现货累计成交量为3.95亿t,累计成交额为91.6亿元,国家核证自愿减排量(CCER)累计交易量为2.05亿t。整体来看,碳价格低廉,且由于理性经济人抉择等因素的干扰,中国当前碳汇需求不足,难以充分实现森林生态价值的市场补偿。国内外学者在碳汇需求空间方面也开展了不同角度的研究,VASS[4]表示:科学设计碳交易市场机制可提高交易活动的活跃度,实现森林碳汇生态价值资本化。PETHIG等[5]认为:碳排放权交易制度的优势非常显著,市场开展碳排放的调节机制除了可以拉动碳需求、实现减排目标,还能降低成本。赵红梅等[6]以环境政策理论为前提,对激励政策下各行业的减排行为进行了研究。沈洪涛等[7]认为:碳交易政策是促使重点排放单位开展碳减排的有效手段,有关部门可将碳价稳定在某一合理区间来引导企业通过碳交易进行减排,利于长期减排。张颖[8]认为:若将森林碳汇的比例提高到10%再分配给森林碳汇市场进行交易,森林碳汇的市场需求将会大幅上涨。杨虹等[9]认为:各行业对森林碳汇的需求价格,随政府允许碳汇抵消比例的提高和碳汇补贴额度的增加而上升,随碳税征收率的提高而下降。童慧琴等[10]认为:超排处罚率、技术减排补贴、产业提升政策及碳排放权配额发放强度等因素对减排行业森林碳汇需求空间均有影响。这些研究表明:目前碳交易市场的森林碳汇还存在较大的需求空间。工业行业是中国最大的碳汇需求者,研究其森林碳汇的内在需求并进行分类,对未来差异化开发森林碳汇需求空间,促进森林碳汇产业的可持续发展具有重要的理论及现实意义,但与之相关的研究比较薄弱。鉴于此,本研究将以全国28个省级行政区域和深圳市(以下称29个样本地区)工业行业的减排现状和碳边际减排成本为基础,对2008−2017年的森林碳汇需求空间数据进行科学测算,并对所求数据进行分类研究,以期为相关部门科学设计减排政策,更具差异化开发各类地区森林碳汇需求空间提供客观依据。
HTML
-
数据为2008−2017 年全国29个样本地区《统计年鉴》中规模以上工业行业的投入产出数据,部分地区的缺失数据由推算得来,最后根据《综合能耗计算通则》里的折算系数对不同能源进行折算。经过收集整理,运用方向性距离函数的环境生产函数求偏导,解得二氧化碳的影子价格,即边际减排成本(表1)。
年份 边际减排成本/(万元·t−1) 上海市 天津市 北京市 重庆市 深圳市 广东省 湖北省 山西省 海南省 青海省 2008 1.174 3 1.087 1 0.720 3 1.741 4 2.455 1 2.295 2 1.229 8 1.234 8 0.798 8 0.665 5 2009 1.090 2 1.070 4 0.600 3 1.631 8 2.384 0 2.094 5 1.172 9 1.095 0 0.794 6 0.553 4 2010 0.996 8 1.008 9 0.519 1 1.479 0 0.718 9 1.928 5 1.168 1 0.975 3 0.658 9 0.512 6 2011 0.852 6 0.872 0 0.425 1 1.317 0 0.752 8 1.744 5 1.029 2 0.806 1 0.551 1 0.362 3 2012 0.815 7 0.811 6 0.367 9 1.216 9 1.787 6 1.669 0 0.998 7 0.732 9 0.487 2 0.324 5 2013 0.725 6 0.742 1 0.305 8 1.130 2 1.340 7 1.551 1 0.980 6 0.633 1 0.425 7 0.267 1 2014 0.653 2 0.711 7 0.273 4 1.040 4 1.688 2 1.456 4 0.952 8 0.565 9 0.333 7 0.238 1 2015 0.563 4 0.666 2 0.178 0 0.956 1 1.551 5 1.359 0 0.879 5 0.520 8 0.243 2 0.241 8 2016 0.486 2 0.498 6 0.085 8 0.830 0 1.421 7 1.248 2 0.794 8 0.474 0 0.155 2 0.251 7 2017 0.422 9 0.407 0 0.030 3 0.644 0 1.237 7 1.156 1 0.852 9 0.411 3 0.132 9 0.265 8 平均 0.778 1 0.787 6 0.350 6 1.198 7 1.533 8 1.650 3 1.005 9 0.744 9 0.458 1 0.368 3 年份 边际减排成本/(万元·t−1) 山东省 浙江省 江苏省 安徽省 宁夏回族
自治区新疆维吾尔
自治区吉林省 内蒙古
自治区广西壮族
自治区黑龙江省 2008 1.722 1 1.736 1 1.728 3 1.497 8 0.901 9 0.776 1 1.187 6 0.825 3 1.255 0 1.379 3 2009 1.562 2 1.564 4 1.519 6 1.406 3 0.739 3 0.678 4 1.1832 0.759 2 1.353 7 1.303 2 2010 1.400 1 1.475 1 1.425 3 1.280 4 0.629 2 0.548 5 1.053 0 0.689 5 1.369 2 1.050 9 2011 1.187 4 1.146 0 1.212 9 1.118 5 0.502 8 0.420 5 0.913 0 0.533 0 1.198 9 0.862 8 2012 1.114 6 1.131 6 1.154 6 1.071 6 0.420 3 0.361 2 0.854 8 0.453 5 1.148 1 0.829 0 2013 1.026 0 1.058 3 1.099 7 1.005 3 0.356 3 0.243 9 0.767 0 0.370 1 1.061 6 0.765 7 2014 0.904 8 1.015 8 1.078 1 0.955 1 0.252 1 0.215 5 0.717 2 0.284 4 1.005 1 0.688 3 2015 0.825 1 0.961 9 0.964 7 0.855 2 0.169 8 0.188 9 0.662 7 0.205 3 0.976 5 0.630 5 2016 0.755 6 0.909 8 0.886 0 0.801 9 0.082 7 0.145 3 0.609 8 0.159 3 0.912 4 0.555 2 2017 0.683 6 0.857 7 0.809 9 0.722 6 0.030 4 0.112 5 0.511 3 0.082 7 0.839 5 0.621 6 平均 1.118 2 1.185 6 1.187 9 1.071 5 0.408 5 0.369 1 0.846 0 0.436 2 1.112 0 0.868 7 年份 边际减排成本/(万元·t−1) 辽宁省 云南省 甘肃省 湖南省 河北省 河南省 陕西省 四川省 贵州省 2008 1.206 0 0.920 7 1.196 7 1.417 2 1.343 0 1.640 8 1.057 9 1.476 5 1.229 7 2009 1.185 6 0.875 3 1.054 7 1.424 6 1.212 3 1.573 7 0.891 3 1.376 0 1.148 7 2010 1.089 1 0.766 3 0.910 0 1.476 4 1.114 4 1.456 6 0.818 2 1.276 8 1.068 5 2011 0.940 2 0.646 8 0.638 9 1.361 9 1.067 9 1.383 1 0.724 9 1.202 6 1.026 0 2012 0.942 3 0.610 8 0.559 7 1.284 7 0.949 7 1.276 8 0.632 4 1.097 9 0.993 1 2013 0.847 6 0.494 6 0.454 6 1.234 9 0.918 5 1.1624 0.520 6 0.942 1 0.887 7 2014 0.775 7 0.417 6 0.434 5 1.193 0 0.884 3 1.100 6 0.458 3 0.873 5 0.847 4 2015 0.640 2 0.364 6 0.373 7 1.153 9 0.941 0 1.058 0 0.409 9 0.790 2 0.801 3 2016 0.422 3 0.306 5 0.330 4 1.081 6 0.966 6 1.015 6 0.346 1 0.730 1 0.816 2 2017 0.374 1 0.258 5 0.274 5 1.005 6 1.017 9 0.955 0 0.301 9 0.661 8 0.830 9 平均 0.842 3 0.566 2 0.622 8 1.263 4 1.041 6 1.262 3 0.616 1 1.042 8 0.965 0 Table 1. Marginal CO2 emission reduction cost of 29 sample areas in China from 2008 to 2017
横观表1数据发现:29个样本地区工业行业二氧化碳的边际减排成本平均值存在一定的波动,整体没有明显规律。青海省、新疆维吾尔自治区、内蒙古自治区等西部欠发达地区减排成本较低,广东省、深圳市等工业较发达地区的减排成本偏高,其中:新疆维吾尔族自治区工业行业10 a间二氧化碳边际减排成本平均值为0.369 1万元·t−1,这说明新疆维吾尔自治区减少1 t二氧化碳排放需支付的减排成本为0.369 1万元;广东省工业行业的碳边际减排成本较高,10 a的平均值为1.650 3万元·t−1,说明10 a间广东省平均减少1 t二氧化碳需要支付的减排成本是1.650 3万元,是新疆维吾尔自治区的4.47倍之多。这也从侧面证明经济实力与工业行业二氧化碳减排成本之间存在一定的联系。
纵观表1数据发现:2008−2017年,29个样本地区的二氧化碳边际减排成本整体呈稳步下降趋势,这种情形充分体现了低碳减排、技术创新及环保意识增强等因素带来的积极影响。深圳市、湖北省等少数地区仍有个别年份出现轻微增长,由于此种波动幅度处于正常范围且对整体结果无显著影响,故此处不再赘述。
-
本研究采取近年碳交易价格的平均数表示当前碳价格的一般水平。根据整理和计算得出[式(3)]P值为26.44元·t−1。各年度工业行业的碳边际减排成本数据Mi见表1,不同行业年度碳排放总量Ti和不同行业年度产值Gi均为为各地区《统计年鉴》中收集的原始数据,N为行业年度总数。鉴于当前各地相关政策均未出台,这里假设政策值s、m、p与g皆为 0,以具体讨论其他相关非政策性市场因素对森林碳汇需求空间的影响。根据森林碳汇需求空间测算模型[式(3)],求得2008−2017年全国29个样本地区的森林碳汇需求空间数据(表2)。
年份 森林碳汇需求空间/万t 上海市 天津市 北京市 重庆市 深圳市 广东省 湖北省 山西省 海南省 青海省 2008 425.530 7 395.142 1 261.231 0 645.974 1 880.597 1 832.525 9 457.635 1 463.993 3 295.125 0 250.854 9 2009 395.190 2 389.350 0 217.424 3 604.192 7 853.360 7 759.917 6 435.460 4 412.016 7 294.630 8 208.741 5 2010 360.497 9 366.513 3 187.543 5 540.441 4 257.265 7 697.876 1 431.230 0 365.914 4 243.005 1 192.837 9 2011 307.965 9 316.245 6 153.225 0 479.784 2 268.866 0 630.513 5 377.599 0 301.413 1 203.721 9 136.295 4 2012 294.599 7 294.125 4 132.439 5 442.521 5 637.229 3 603.287 7 365.503 7 274.105 8 179.870 9 122.023 6 2013 262.158 4 268.685 2 109.910 4 409.955 7 477.651 4 559.596 4 358.373 1 237.950 1 157.319 9 100.332 7 2014 235.778 9 257.541 2 97.986 5 376.492 9 601.341 9 524.559 7 347.685 7 212.396 4 123.276 2 89.466 7 2015 203.509 7 240.992 8 63.785 9 345.374 8 552.412 5 489.240 3 320.607 5 195.108 7 90.051 2 90.964 1 2016 175.615 2 180.356 6 30.754 7 299.338 8 506.162 7 448.900 7 289.405 9 177.294 9 57.396 8 94.494 6 2017 152.477 8 147.282 4 10.820 4 233.758 9 441.080 6 415.863 8 311.105 5 153.688 7 49.138 0 99.950 0 平均 281.332 4 285.623 5 126.512 1 437.783 5 547.596 8 596.228 2 369.460 6 279.388 2 169.353 6 138.596 1 年份 森林碳汇需求空间/万t 山东省 浙江省 江苏省 安徽省 宁夏回族
自治区新疆维吾尔
自治区吉林省 内蒙古
自治区广西壮族
自治区黑龙江省 2008 630.253 7 636.862 3 631.536 0 561.117 8 341.099 8 293.080 8 447.657 5 309.865 1 468.059 6 520.871 7 2009 570.442 4 574.530 3 554.929 5 526.258 2 279.604 9 256.392 3 444.933 7 284.253 1 504.069 6 484.984 5 2010 510.358 5 539.758 6 519.268 4 476.582 3 237.946 2 207.244 6 393.885 4 256.297 4 504.212 0 396.492 9 2011 432.256 1 419.122 5 441.849 0 414.075 9 190.128 3 158.851 7 340.667 0 198.503 5 439.809 6 324.935 1 2012 404.694 2 413.084 4 419.890 3 395.802 3 158.935 7 136.430 4 317.902 5 168.827 3 419.973 2 311.821 8 2013 371.902 1 386.086 0 398.849 8 370.895 3 134.723 5 92.130 3 284.560 5 137.679 0 387.779 7 287.227 6 2014 327.233 1 369.979 5 390.672 2 351.813 7 95.322 7 81.418 9 265.078 1 105.345 3 366.252 4 257.924 5 2015 298.444 0 350.371 1 349.241 5 314.428 1 64.194 4 71.117 1 244.464 9 76.513 6 354.816 7 236.649 9 2016 273.220 7 331.187 5 320.749 2 294.116 2 31.289 2 54.715 4 223.876 2 59.277 9 331.148 8 208.483 8 2017 247.480 8 312.980 6 293.207 2 264.811 9 11.487 0 42.332 1 187.970 0 31.045 5 304.477 8 233.843 9 平均 406.628 6 433.396 3 432.019 3 396.990 2 154.473 2 139.371 4 315.099 6 162.760 8 408.059 9 326.323 6 年份 森林碳汇需求空间/万t 辽宁省 云南省 甘肃省 湖南省 河北省 河南省 四川省 陕西省 贵州省 2008 451.759 9 347.007 0 448.955 2 533.319 9 499.975 0 608.348 2 547.278 8 396.237 4 463.326 2 2009 442.426 5 330.176 7 395.524 2 535.025 8 450.870 4 583.354 9 508.845 9 333.362 8 432.676 5 2010 405.310 0 288.590 5 340.103 9 552.182 9 412.466 7 540.003 1 470.701 8 305.461 3 401.732 5 2011 349.301 5 243.184 7 238.099 2 506.962 0 393.870 8 512.764 5 442.425 4 271.917 3 384.434 1 2012 348.947 4 229.295 7 208.365 4 476.968 6 349.810 0 472.053 4 403.810 3 237.160 7 371.192 8 2013 313.450 8 185.657 9 168.930 0 458.259 6 337.873 3 429.481 1 345.111 0 195.399 9 329.724 7 2014 286.771 9 156.370 6 161.298 1 439.817 0 324.878 9 405.864 4 319.321 6 172.046 4 313.636 7 2015 238.740 6 136.265 3 139.103 3 424.683 0 345.130 2 388.950 6 288.475 0 154.146 9 295.465 8 2016 158.807 9 114.412 9 122.971 5 397.644 4 354.087 2 372.605 3 265.916 5 130.088 5 300.254 0 2017 140.602 9 96.409 8 102.433 1 369.643 6 373.191 9 349.506 3 241.167 4 113.420 1 305.912 7 平均 313.612 0 212.737 1 232.578 4 469.450 7 384.215 4 466.293 2 383.305 4 230.924 1 359.835 6 Table 2. Forest carbon sink demand space of industrial industries in 29 sample areas in the sample period
横观表2数据可见:29个样本地区森林碳汇需求空间的平均值差距明显,波动较大,无明显规律。其中:广东省、深圳市等二氧化碳边际减排成本较高的地区对森林碳汇的需求空间依然较大,而青海省、新疆维吾尔自治区、内蒙古自治区等减排成本较低的西部地区对森林碳汇的需求空间较小。皮尔逊相关性分析表明:样本地区10 a间工业行业的碳边际减排成本与森林碳汇需求空间两者的相关系数为0.999,显著性水平为0.000<0.05,存在显著的正相关关系。
-
为进一步探寻样本期内各地区森林碳汇需求空间的变动规律,对表2的数据进行K-means算法聚类发现:10 a间29个样本地区的森林碳汇需求空间分为3类较为合适,即k=3。此时,Kaiser-Meyer-Olkin值为0.841>0. 5,巴特利特球体检验值为0.000<0.05,说明该分类合适,适合进行聚类分析和判别分析。聚类结果见表3。
样本地区碳汇
需求空间(bi)需求空间
分类(Ck)样本地区碳汇
需求空间(bi)需求空间
分类(Ck)样本地区碳汇
需求空间(bi)需求空间
分类(Ck)样本地区碳汇
需求空间(bi)需求空间
分类(Ck)样本地区碳汇
需求空间(bi)需求空间
分类(Ck)b1 1 b7 2 b13 2 b19 2 b25 3 b2 1 b8 2 b14 2 b20 2 b26 3 b3 2 b9 2 b15 2 b21 3 b27 3 b4 2 b10 2 b16 2 b22 3 b28 3 b5 2 b11 2 b17 2 b23 3 b29 3 b6 2 b12 2 b18 2 b24 3 说明:在聚类分析中,假设全国29个样本地区过去10 a的森林碳汇需求空间分别为 bi, i= 1, 2, ···, 29,即bi=b1, b2, ···, b29 (1~29分别 代表:深圳市、广东省、上海市、天津市、重庆市、湖北省、山东省、浙江省、江苏省、安徽省、吉林省、辽宁省、湖南 省、河北省、河南省、贵州省、四川省、山西省、广西壮族自治区、黑龙江省、北京市、云南省、甘肃省、海南省、青海 省、陕西省、宁夏回族自治区、新疆维吾尔自治区、内蒙古自治区),需求空间分类为Ck(k为需求空间的分类数) Table 3. Spatial clustering results of forest carbon sink demand of industrial industry in 29 sample areas in the sample period
聚类分析的方差分析(ANOVA)结果表明(表4):各变量均通过显著性水平检验,说明聚类分析结果合理,真实反映了各地区森林碳汇需求空间的变化情况。
变量 聚类 误差 F值 显著性 均方差 自由度 均方差 自由度 P2008 262 367.420 2 5 624.667 26 46.646 0.000 P2009 259 582.928 2 4 342.022 26 59.784 0.000 P2010 132 329.933 2 7 692.015 26 17.204 0.000 P2011 132 612.742 2 6 034.394 26 21.976 0.000 P2012 212 062.424 2 3 028.819 26 70.015 0.000 P2013 178 662.663 2 3 036.332 26 58.842 0.000 P2014 212 975.584 2 3 037.580 26 70.114 0.000 P2015 200 772.893 2 3 184.382 26 63.049 0.000 P2016 184 581.889 2 3 989.725 26 46.264 0.000 P2017 166 137.990 2 4 388.282 26 37.859 0.000 Table 4. ANOVA of cluster analysis
-
目前本研究只收集整理了信息比较完备的29个样本地区的投入产出数据,其他地区由于客观因素未能一同研究,因此判别方程能够在数据完整之后,较准确地判别某一新样本地区(不仅限于国内)属于何类,为差异化开发其森林碳汇需求空间打下基础。根据上述结果,进一步采用判别分析的方法定量给出3类地区森林碳汇需求空间的判别方程[ 式(5)]。首先,通过强入法进行判别分析,检验结果见表5。从表5可以看出:方程1和方程2 的Wilks’ Lambda值为 0.068,接近于0,其显著性检验值为0.000<0.05,说明判别方程1和方程2均有统计学意义。方程 3 的 Wilks’Lambda值为 0.536,接近于 1,其显著性检验值为0.145>0.05,说明该判别方程的统计学意义不大,需要使用逐步判别进一步分析。
方程检验 Wilks’ Lambda 卡方 自由度 显著性 方程1 0.068 57.923 20 0.000 方程 2 0.068 57.923 20 0.000 方程 3 0.536 13.404 9 0.145 Table 5. Wilks’ Lambda test for discriminant analysis
采用逐步回归法求得样本单位的森林碳汇需求空间的最终判别方程如公式(6),其检验结果如表6。
Wilks’ Lambda 自由度1 自由度2 自由度3 精确F值 统计 自由度1 自由度2 显著性 0.156 1 2 26 70.114 2 26.000 0.000 0.116 2 2 26 24.221 4 50.000 0.000 Table 6. Test of Wilks’ Lambda for stepwise regression
从判别方程检验结果可以看出:中国的森林碳汇需求空间可以明显分为 3类:深圳市、广东省为第1类,需求空间较大;上海市、天津市、重庆市、湖北省、浙江省、山东省、江苏省、安徽省、吉林省、辽宁省、湖南省、河北省、河南省、广西壮族自治区、贵州省、黑龙江省、四川省、山西省为第2类,需求空间为中等水平;北京市、宁夏回族自治区、新疆维吾尔自治区、云南省、甘肃省、海南省、青海省、陕西省、内蒙古自治区为第3类,需求空间较小。由最终判别方程可见:2011和2014年的数据对该分类的影响最显著。另外,从判别方程的后验结果来看,3 个方程的全部样点回代检验的准确度均为100%,说明该判别方程具有一定的可信度。同时,也一定程度上反映了中国各类地区森林碳汇需求空间的规律性。通过原始数据整理、方向性距离函数模型以及需求空间模型测度可知:第1类地区工业行业平均国内生产总值为62 899.24亿元·a−1,工业二氧化碳平均排放量为18 436.36万t·a−1,碳边际减排成本平均值为1.59万元·t−1,森林碳汇需求空间的平均值为571.91万t·a−1。整体规律为:工业行业平均产值高、二氧化碳平均排放量处于中等水平、碳边际减排成本高、森林碳汇需求空间较大。第2类地区工业行业平均国内生产总值为38 102.57亿元·a−1,工业二氧化碳平均排放量为29 706.46万t·a−1,碳边际减排成本平均值为1.18万元·t−1,森林碳汇需求空间的平均值为374.93万t·a−1。整体规律为:工业二氧化碳平均排放量高,碳边际减排成本、工业行业平均产值及森林碳汇需求空间处于中等水平。第3类地区工业行业平均国内生产总值为8 612.94亿元·a−1,工业二氧化碳平均排放量为15 930.34万t·a−1,碳边际减排成本平均值为0.51万元·t−1,森林碳汇需求空间的平均值为174.15万t·a−1。整体规律为:工业行业平均产值、二氧化碳平均排放量、碳边际减排成本及森林碳汇需求空间均处于较低水平。
以上述分类结果为对照,通过公式(3)测算s、m、p、g等4个政策变量各自对3类地区森林碳汇需求空间的影响:①假设政策值超排处罚率s=1, m、p、g均为0时,1、2、3类地区的森林碳汇需求空间的平均值分别为1143.83、789.86、348.3万t·a−1。由此可知,当其他参数均为0,超排处罚率每提高1单位,森林碳汇需求空间将会扩大至原来的2倍,这表明超排处罚率与森林碳汇需求空间呈正相关关系。②假设政策值技术减排补贴率m=1,s、p、g均为0时,1、2、3类地区的森林碳汇需求空间的平均值为285.96、187.47、87.08万t·a−1。由此可知,当其他参数均为0,技术减排补贴率每提高1单位,工业行业技术减排倾向更明显,对森林碳汇的需求因而降低,这说明技术减排补贴率与森林碳汇需求空间呈负相关关系。③假设政策值产业激励政策p=1,s、m、g均为0时,1、2、3类地区的森林碳汇需求空间的平均值为577.73、379.98、175.49万t·a−1。由此可知,当其他参数均为0,产业激励政策每提高1单位,1、2类地区的森林碳汇需求空间会有小幅提高,而第3类地区则出现轻微降低,这说明产业激励政策与对1、2类地区的需求空间呈正相关,对第3类地区的影响不显著。④假设政策值碳配额发放强度g=1,p、s、m均为0时,1、2、3类地区的森林碳汇需求空间的平均值为568.33、369.87、171.97万t·a−1。由此可知,当其他参数均为0,碳配额发放强度每提高1单位,3类地区的需求空间均出现小幅降低,这说明碳配额发放强度与森林碳汇需求空间呈负相关关系。
从上述测算分析结果不难发现:超排处罚率对开发需求空间有极大的积极影响,激励政策积极影响较小,碳配额发放强度与技术减排补贴的消极影响较为显著。因此,应将超排处罚标准和激励政策作为开发森林碳汇需求空间的重要切入点,同时,相关部门也要对配额发放模式进行优化。事实上,资源禀赋、技术条件、地理位置及产业结构的差异,也在一定程度上造成了3类地区森林碳汇需求空间的不同。随着中国林业战略目标的实施和重点工程的推进,人工林面积将进一步扩大,这就意味着持续增加的森林碳汇将会对未来经济发展带来前所未有的机遇,也对二氧化碳减排做出重大贡献,而各类地区内在的森林碳汇需求空间能否更充分地实现森林生态补偿也是需要持续关注的重要问题。