-
菌根是植物根系与菌根真菌形成的共生体,广泛分布于陆地生态系统中,90%以上的维管植物根系能够形成菌根[1]。菌根真菌能帮助植物吸收水分及氮、磷等营养物质,促进植物生长,同时从宿主植物获取碳水化合物以满足自身的生长需求[2]。由于菌根真菌和植物之间存在碳源和养分的交换[2],能显著影响土壤有机碳的积累与转化[3],因此,了解菌根在土壤碳循环中的作用具有重要意义。根据宿主植物以及菌根真菌种类不同,菌根具有7种不同的类型,其中丛枝菌根(arbuscular mycorrhiza,AM)和外生菌根(ectomycorrhiza,ECM)是分布最为广泛、物种最为多样的菌根类型[1, 4]。据估算,AM和ECM植被在地上生物量中的碳储量分别为(241.0±15.0)和(100.0±17.0) Gt,而非菌根植被的碳储量仅有(29.0±5.5) Gt[5]。因此,菌根真菌在陆地生态系统碳氮循环过程中发挥着重要作用[6],其中对土壤碳循环的影响主要有3种方式:①将植物光合作用固定的产物运输到土壤,从而增加碳输入[7-8];②菌根共生体本身的碳汇功能及对土壤中有机碳的固定作用[9-10];③通过激发效应或控制土壤养分有效性调控有机碳矿化过程[11-13]。由于AM和ECM在形态和生理功能(如营养获取方式、菌丝周转速率等)上有很大的不同[2],所以菌根介导的碳循环过程和方向在很大程度上取决于菌根类型和群落组成[14-15],以及与菌根存在相互作用的微生物群落[16-17]。为了深入理解不同类型菌根对土壤碳循环的影响,本研究综述了外生菌根和丛枝菌根对宿主光合产物分配、有机碳固定、有机碳矿化等土壤碳循环过程的差异并分析其作用机制,最后总结该方向今后研究的重点。
HTML
[1] | BRUNDRETT M C. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis [J]. Plant Soil, 2009, 320(1/2): 37 − 77. | |
[2] | SMITH S E, READ D J. Mycorrhizal symbiosis [J]. Quart Rev Biol, 2008, 3(3): 273 − 281. | |
[3] | LIANG C, AMELUNG W, LEHMANN J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter [J]. Glob Change Biol, 2019, 25(11): 3578 − 3590. | |
[4] | SOUDZILOVSKAIA N A, HEIJDEN M G A, CORNELISSEN J H C, et al. Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling [J]. New Phytol, 2015, 208(1): 280 − 293. | |
[5] | SOUDZILOVSKAIA N A, van BODEGOM P M, TERRER C, et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks[J]. Nat Commun, 2019, 10(1). doi: 10.1038/s41467-019-13019-2. | |
[6] | 郭良栋, 田春杰. 菌根真菌的碳氮循环功能研究进展[J]. 微生物学通报, 2013, 40(1): 158 − 171. | GUO Liangdong, TIAN Chunjie. Progress of the function of mycorrhizal fungi in the cycle of carbon and nitrogen [J]. Microbiol China, 2013, 40(1): 158 − 171. |
[7] | FERNANDEZ C W, LANGLEY J A, CHAPMAN S, et al. The decomposition of ectomycorrhizal fungal necromass [J]. Soil Biol Biochem, 2016, 93: 38 − 49. | |
[8] | NOTTINGHAM A T, TURNER B L, WINTER K, et al. Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest [J]. FEMS Microbiol Ecol, 2013, 85(1): 37 − 50. | |
[9] | RILLIG M C. Arbuscular mycorrhizae and terrestrial ecosystem processes [J]. Ecol Lett, 2004, 7(8): 740 − 754. | |
[10] | TRESEDER K K, TURNER K M. Glomalin in ecosystems [J]. Soil Sci Soc Am J, 2007, 71(4): 1257 − 1266. | |
[11] | CHENG L, BOOKER F L, TU C, et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2 [J]. Science, 2012, 337(6098): 1084 − 1087. | |
[12] | GADGIL R L, GADGIL P D. Mycorrhiza and litter decomposition [J]. Nature, 1971, 233(5315): 133. | |
[13] | LINDAHL B D, TUNLID A. Ectomycorrhizal fungi-potential organic matter decomposers, yet not saprotrophs [J]. New Phytol, 2015, 205(4): 1443 − 1447. | |
[14] | AVERILL C, TURNER B L, FINZI A C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage [J]. Nature, 2014, 505(7484): 543 − 545. | |
[15] | BRZOSTEK E R, DRAGONI D, BROWN Z A, et al. Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest [J]. New Phytol, 2015, 206(4): 1274 − 1282. | |
[16] | JANSA J, BUKOVSKÁ P, GRYNDLER M. Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts-or just soil free-riders?[J]. Front Plant Sci, 2013, 4. doi: 10.3389/fpls.2013.00134. | |
[17] | DRIGO B, PIJL A S, DUYTS H, et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2[J]. Proc Nat Acad Sci USA, 2010, 107(24). doi: 10.1073/pnas.0912421107. | |
[18] | ORWIN K H, KIRSCHBAUM M U F, ST JOHN M G, et al. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment [J]. Ecol Lett, 2011, 14(5): 493 − 502. | |
[19] | YIN H, WHEELER E, PHILLIPS R P. Root-induced changes in nutrient cycling in forests depend on exudation rates [J]. Soil Biol Biochem, 2014, 78: 213 − 221. | |
[20] | PARIHAR M, RAKSHIT A, MEENA V S, et al. The potential of arbuscular mycorrhizal fungi in C cycling: a review [J]. Arch Microbiol, 2020, 202(7): 1581 − 1596. | |
[21] | JIANG Yina, WANG Wanxiao, XIE Qiujing, et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi [J]. Science, 2017, 356(6343): 1172 − 1175. | |
[22] | WIPF D, KRAJINSKI F, van TUINEN D, et al. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks [J]. New Phytol, 2019, 223(3): 1127 − 1142. | |
[23] | BAGO B, ZIPFEL W, WILLIAMS R M, et al. Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis [J]. Plant Physiol, 2002, 128(1): 108 − 124. | |
[24] | LUGINBUEHL L H, MENARD G N, KURUP S, et al. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant [J]. Science, 2017, 356(6343): 1175 − 1178. | |
[25] | READ D J. Mycorrhizas in ecosystems [J]. Experientia, 1991, 47(4): 376 − 391. | |
[26] | READ D J, PEREZ-MORENO J. Mycorrhizas and nutrient cycling in ecosystemsa journey towards relevance? [J]. New Phytol, 2003, 157: 475 − 492. | |
[27] | VARGAS R, BALDOCCHI D D, QUEREJETA J I, et al. Ecosystem CO2 fluxes of arbuscular and ectomycorrhizal dominated vegetation types are differentially influenced by precipitation and temperature [J]. New Phytol, 2010, 185(1): 226 − 236. | |
[28] | 石兆勇, 刘德鸿, 王发园, 等. 菌根类型对森林树木净初级生产力的影响[J]. 生态环境学报, 2012, 21(3): 404 − 408. | SHI Zhaoyong, LIU Dehong, WANG Fayuan, et al. Effect of mycorrhizal strategy on net primary productivity of trees in global forest ecosystem [J]. Ecol Environ Sci, 2012, 21(3): 404 − 408. |
[29] | LIN Guigang, MCCORMACK M L, MA Chengen, et al. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests [J]. New Phytol, 2017, 213(3): 1440 − 1451. | |
[30] | VESTERDAL L, ELBERLING B, CHRISTIANSEN J R, et al. Soil respiration and rates of soil carbon turnover differ among six common European tree species [J]. For Ecol Manage, 2012, 264: 185 − 196. | |
[31] | 刘润进. 菌根学[M]. 北京: 科学出版社, 2007. | |
[32] | WITHINGTON J M, REICH P B, OLEKSYN J, et al. Comparisons of structure and life span in roots and leaves among temperate trees [J]. Ecol Monogr, 2006, 3(76): 381 − 397. | |
[33] | HOBBIE S E, OGDAHL M, CHOROVER J, et al. Tree species effects on soil organic matter dynamics: the role of soil cation composition [J]. Ecosystems, 2007, 10(6): 999 − 1018. | |
[34] | MUELLER K E, EISSENSTAT D M, HOBBIE S E, et al. Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment [J]. Biogeochemistry, 2012, 111(1/3): 601 − 614. | |
[35] | TAYLOR M K, LANKAU R A, WURZBURGER N, et al. Mycorrhizal associations of trees have different indirect effects on organic matter decomposition [J]. J Ecol, 2016, 104(6): 1576 − 1584. | |
[36] | OOSTRA S, MAJDI H, OLSSON M. Impact of tree species on soil carbon stocks and soil acidity in southern Sweden [J]. Scand J For Res, 2007, 21(5): 364 − 371. | |
[37] | CLEMMENSEN K E, BAHR A, OVASKAINEN O, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest [J]. Science, 2013, 339: 1615 − 1618. | |
[38] | GODBOLD D L, HOOSBEEK M R, LUKAC M, et al. Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter [J]. Plant Soil, 2006, 281(1/2): 15 − 24. | |
[39] | ZHANG Jing, EKBLAD A, SIGURDSSON B D, et al. The influence of soil warming on organic carbon sequestration of arbuscular mycorrhizal fungi in a sub-arctic grassland[J]. Soil Biol Biochem, 2020, 147: 107826. doi: 10.1016/j.soilbio.2020.107826. | |
[40] | ÖPIK M, DAVISON J, MOORA M, et al. DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences [J]. Botany, 2014, 92(2): 135 − 147. | |
[41] | MILLER R M, KLING M. The importance of integration and scale in the arbuscular mycorrhizal symbiosis [J]. Plant Soil, 2000, 226(2): 295 − 309. | |
[42] | MILLER R M, JASTROW J D, REINHARDT D R. External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities [J]. Oecologia, 1995, 103(1): 17 − 23. | |
[43] | RILLIG M C. Arbuscular mycorrhizae, glomalin, and soil aggregation [J]. Can J Soil Sci, 2004, 84(4): 355 − 363. | |
[44] | RILLIG M C, WRIGHT S F, NICHOLS K A, et al. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils [J]. Plant Soil, 2001, 233(2): 167 − 177. | |
[45] | 刘满强, 胡锋, 陈小云. 土壤有机碳稳定机制研究进展[J]. 生态学报, 2007, 27(6): 2642 − 2650. | LIU Manqiang, HU Feng, CHEN Xiaoyun. A review on mechanisms of soil organic carbon stabilization [J]. Acta Ecol Sin, 2007, 27(6): 2642 − 2650. |
[46] | SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics [J]. Soil Tillage Res, 2004, 79(1): 7 − 31. | |
[47] | RILLIG M C, MUMMEY D L. Mycorrhizas and soil structure [J]. New Phytolt, 2006, 171(1): 41 − 53. | |
[48] | LEIFHEIT E F, VERESOGLOU S D, LEHMANN A, et al. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation: a meta-analysis [J]. Plant Soil, 2013, 374(1/2): 523 − 537. | |
[49] | WILSON G W T, RICE C W, RILLIG M C, et al. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments [J]. Ecol Lett, 2009, 12(5): 452 − 461. | |
[50] | GILLESPIE A W, FARRELL R E, WALLEY F L, et al. Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials [J]. Soil Biol Biochem, 2011, 43(4): 766 − 777. | |
[51] | SEYFRIED G S, DALLING J W, YANG W H. Mycorrhizal type effects on leaf litter decomposition depend on litter quality and environmental context [J]. Biogeochemistry, 2021, 155: 1 − 18. | |
[52] | DICKIE I A, KOELE N, BLUM J D, et al. Mycorrhizas in changing ecosystems [J]. Botany, 2014, 92(2): 149 − 160. | |
[53] | MCGUIRE K L, TRESEDER K K. Microbial communities and their relevance for ecosystem models: decomposition as a case study [J]. Soil Biol Biochem, 2010, 42(4): 529 − 535. | |
[54] | CRAIG M E, TURNER B L, LIANG C, et al. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter [J]. Global Change Biol, 2018, 24(8): 3317 − 3330. | |
[55] | PHILLIPS R P, BRZOSTEK E, MIDGLEY M G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests [J]. New Phytol, 2013, 199(1): 41 − 51. | |
[56] | FERNANDEZ C W, KENNEDY P G. Revisiting the “Gadgil effect”: do interguild fungal interactions control carbon cycling in forest soils? [J]. New Phytol, 2016, 209(4): 1382 − 1394. | |
[57] | STERKENBURG E, BAHR A, BRANDSTROM DURLING M, et al. Changes in fungal communities along a boreal forest soil fertility gradient [J]. New Phytol, 2015, 207(4): 1145 − 1158. | |
[58] | FIERER N, CRAINE J M, SCHIMEL M. Litter quality and the temperature sensitivity of decomposition [J]. Ecology, 2005, 86(2): 320 − 326. | |
[59] | CHEEKE T E, PHILLIPS R P, BRZOSTEK E R, et al. Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function [J]. New Phytol, 2017, 214(1): 432 − 442. | |
[60] | TISSERANT E, KOHLER A, DOZOLME-SEDDAS P, et al. The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont [J]. New Phytol, 2012, 193(3): 755 − 769. | |
[61] | HERMAN D J, FIRESTONE M K, NUCCIO E, et al. Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition [J]. FEMS Microbiol Ecol, 2012, 80(1): 236 − 247. | |
[62] | PATERSON E, SIM A, DAVIDSON J, et al. Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralisation [J]. Plant Soil, 2016, 408(1/2): 243 − 254. | |
[63] | TALBOT J M, ALLISON S D, TRESEDER K K. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change [J]. Funct Ecol, 2008, 22(6): 955 − 963. | |
[64] | KUZYAKOV Y. Sources of CO2 efflux from soil and review of partitioning methods [J]. Soil Biol Biochem, 2006, 38(3): 425 − 448. | |
[65] | AVERILL C, DIETZE M C, BHATNAGAR J M. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks [J]. Global Change Biol, 2018, 24(10): 4544 − 4553. | |
[66] | SMITH G, PEAY K. Stepping forward from relevance in mycorrhizal ecology [J]. New Phytol, 2020, 226(2): 292 − 294. | |
[67] | JIANG Shaotao, HU Xiaoxuan, KANG Yalong, et al. Arbuscular mycorrhizal fungal communities in the rhizospheric soil of litchi and mango orchards as affected by geographic distance, soil properties and manure input[J]. Appl Soil Ecol, 2020, 152: 103593. doi: 10.1016/j.apsoil.2020.103593. | |
[68] | JIANG Shaotao, LIU Yongjun, LUO Jiajia, et al. Dynamics of arbuscular mycorrhizal fungal community structure and functioning along a nitrogen enrichment gradient in an alpine meadow ecosystem [J]. New Phytol, 2018, 220(4): 1222 − 1235. | |
[69] | CHENG Weixin, PARTON W, GONZALEZ-MELER M A, et al. Synthesis and modeling perspectives of rhizosphere priming [J]. New Phytol, 2014, 201(1): 31 − 44. | |
[70] | ZHU Weixing, EHRENFELD J G. The effects of mycorrhizal roots on litter decomposition, soil biota, and nutrients in a spodosolic soil [J]. Plant Soil, 1996, 179(1): 109 − 118. | |
[71] | SULMAN B N, BRZOSTEK E R, MEDICI C, et al. Feedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal association [J]. Ecol Lett, 2017, 20(8): 1043 − 1053. | |
[72] | SUBKE J A, VOKE N R, LERONNI V, et al. Dynamics and pathways of autotrophic and heterotrophic soil CO2 efflux revealed by forest girdling [J]. J Ecol, 2011, 99(1): 186 − 193. | |
[73] | PHILLIPS R P, FAHEY T J. Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects [J]. Ecology, 2006, 87(5): 1302 − 1313. | |
[74] | PHILLIPS C L, KLUBER L A, MARTIN J P, et al. Contributions of ectomycorrhizal fungal mats to forest soil respiration [J]. Biogeosciences, 2012, 9(6): 2099 − 2110. | |
[75] | HODGE A, CAMPBELL C D, FITTER A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material [J]. Nature, 2001, 413(6853): 297 − 299. | |
[76] | SHAHZAD T, CHENU C, GENET P, et al. Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species [J]. Soil Biol Biochem, 2015, 80: 146 − 155. | |
[77] | COTRUFO M F, RANALLI M G, HADDIX M L, et al. Soil carbon storage informed by particulate and mineral-associated organic matter [J]. Nat Geosci, 2019, 12(12): 989 − 994. | |
[78] | FONTAINE S, HENAULT C, AAMOR A, et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect [J]. Soil Biol Biochem, 2011, 43(1): 86 − 96. | |
[79] | YIN Liming, DIJKSTRA F A, PHILLIPS R P, et al. Arbuscular mycorrhizal trees cause a higher carbon to nitrogen ratio of soil organic matter decomposition via rhizosphere priming than ectomycorrhizal trees[J]. Soil Biol Biochem, 2021, 157: 108246. doi: 10.1016/j.soilbio.2021.108246. | |
[80] | NEUMANN J, MATZNER E. Contribution of newly grown extramatrical ectomycorrhizal mycelium and fine roots to soil respiration in a young Norway spruce site [J]. Plant Soil, 2014, 378(1/2): 73 − 82. | |
[81] | HODGE A, FITTER A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling [J]. Proc Nat Acad Sci, 2010, 107(31): 13754 − 13759. | |
[82] | VERESOGLOU S D, SEN R, MAMOLOS A P, et al. Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils [J]. J Ecol, 2011, 99(6): 1339 − 1349. | |
[83] | NOTTINGHAM A T, TURNER B L, WINTER K, et al. Arbuscular mycorrhizal mycelial respiration in a moist tropical forest [J]. New Phytolt, 2010, 186(4): 957 − 967. | |
[84] | METCALFE D B, ROCHA W, BALCH J K, et al. Impacts of fire on sources of soil CO2 efflux in a dry Amazon rain forest [J]. Global Change Biol, 2018, 24(8): 3629 − 3641. | |
[85] | GUI Weiyang, REN Haiyan, LIU Nan, et al. Plant functional group influences arbuscular mycorrhizal fungal abundance and hyphal contribution to soil CO2 efflux in temperate grasslands [J]. Plant Soil, 2018, 432(1/2): 1 − 14. | |
[86] | FENN K M, MALHI Y, MORECROFT M D. Soil CO2 efflux in a temperate deciduous forest: environmental drivers and component contributions [J]. Soil Biol Biochem, 2010, 42(10): 1685 − 1693. | |
[87] | HEINEMEYER A, WILKINSON M, VARGAS R, et al. Exploring the overflow tap theory: linking forest soil CO2 fluxes and individual mycorrhizosphere components to photosynthesis [J]. Biogeosciences, 2012, 9(1): 79 − 95. | |
[88] | MOYANO F E, KUTSCH W L, REBMANN C. Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands [J]. Agric For Meteorol, 2008, 148(1): 135 − 143. | |
[89] | BRADFORD M A, KEISER A D, DAVIES C A, et al. Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth [J]. Biogeochemistry, 2013, 113(1/3): 271 − 281. | |
[90] | NORTHUP R, DAHLGREN R, VOGT K, et al. Polyphenol control of nitrogen release from pine litter [J]. Nature, 1995, 377(6546): 227 − 229. | |
[91] | 王薪琪, 王传宽, 张泰东. 森林土壤碳氮循环过程的新视角: 丛枝与外生菌根树种的作用[J]. 植物生态学报, 2017, 41(10): 1113 − 1125. | WANG Xinqi, WANG Chuankuan, ZHANG Taidong. New perspectives on forest soil carbon and nitrogen cycling processes: roles of arbuscular mycorrhizal versus ectomycorrhizal tree species [J]. Chin J Plant Ecol, 2017, 41(10): 1113 − 1125. |
[92] | OUIMETTE A P, OLLINGER S V, LEPINE L C, et al. Accounting for carbon flux to mycorrhizal fungi may resolve discrepancies in forest carbon budgets [J]. Ecosystems, 2019, 23(4): 715 − 729. | |
[93] | FERNANDEZ C W, SEE C R, KENNEDY P G. Decelerated carbon cycling by ectomycorrhizal fungi is controlled by substrate quality and community composition [J]. New Phytol, 2020, 226(2): 569 − 582. | |
[94] | VEN A, VERLINDEN M S, VERBRUGGEN E, et al. Experimental evidence that phosphorus fertilization and arbuscular mycorrhizal symbiosis can reduce the carbon cost of phosphorus uptake [J]. Funct Ecol, 2019, 33(11): 2215 − 2225. |