-
森林是陆地生态系统的主体,在全球碳循环中起着十分重要的作用。森林蓄积量作为衡量森林数量的重要的指标之一,能够直观反映森林资源数量和质量,获取森林蓄积量是推算森林生物量和碳储量的必要环节[1-3]。《“十四五”林业草原保护发展规划纲要》明确指出:将增加中国森林蓄积量作为主要目标之一,并将森林蓄积量与森林覆盖率作为两大约束性指标。因此,实现森林资源动态检测、准确获取森林蓄积量等参数信息,已成为当前森林资源调查的迫切需求。激光雷达(light detection and ranging, LiDAR)作为一种新兴的主动式遥感技术,能够从不同空间尺度对生态系统进行高效精准的监测[4]。机载LiDAR发射的激光脉冲能穿透森林冠层并获取树冠上部枝叶的空间信息,通过林分内的空隙,测量冠层结构信息和林下地形信息[5]。而传统方法通过样木、样地等抽样调查进行林分森林参数的推算,调查周期长、成本高且调查范围有限[6-7]。激光雷达在获取森林空间结构因子和地形因子等信息方面具有精度高、范围广等优势。
近年来,基于机载激光雷达的林分蓄积量反演已有许多研究成果,集中在构建参数方法和非参数方法的蓄积量反演模型。PAWE等[8]基于机载LiDAR数据对波兰东南部林区建立多元线性回归蓄积量反演模型,其中均方根误差(root mean square error, RMSE)为15.2%;CHIRICI等[9]以Landsat 5TM、卫星LiDAR数据等预测变量联合气温、降水和地形等辅助变量进行意大利中部地区蓄积量的大尺度反演,其中随机森林回归模型最优,决定系数(R2)为0.69、RMSE为37.2%;陈松等[10]基于Sentinel-2与机载LiDAR数据采用不同回归方法对广西高峰林场界牌、东升分场进行蓄积量反演,构建MLR-Logistic联立模型精度优于随机森林等机器学习方法,R2为0.60、相对均方根误差(relative root mean-squared error, RRMSE)为29.29%;曾伟生等[11]基于机载LiDAR数据,采用线性和非线性参数回归方法对东北林区进行蓄积量反演,其中非线性回归模型R2为0.71~0.82,略优于线性回归。已有多位研究者基于机载LiDAR数据进行林分蓄积量反演模型研究,但对于建模方法中参数回归和非参数回归模型的比较国内研究较少。本研究以广西国有高峰林场桉Eucalyptus树人工林为研究对象,基于机载激光雷达数据及地面调查数据,采用逐步回归、偏最小二乘回归等参数回归和随机森林、支持向量回归等非参数回归进行蓄积量反演模型研建,并通过模型评价指标对以上4种方法进行模型评估,进而选择出拟合优度、泛化能力最优模型。
-
研究区位于广西壮族自治区南宁市兴宁区的国有高峰林场,22°51′~23°02′N,108°06′~108°31′E,该区地处亚热带地区,年平均气温约21 ℃,年平均降水量为1 200~1 500 mm,相对湿度为79%,属丘陵地貌,海拔为100~460 m,坡度为6°~35°,具有较厚的赤红壤,适宜亚热带和热带树种生长,森林覆盖率达87%,主要树种为杉木Cunninghamia lanceolata、巨尾桉Eucalyptus grandis × E. urophylla、马尾松Pinus massoniana等。
-
调查时间为2018年1—2月,研究区内共设置71块桉树样地(图1),其中激光雷达覆盖范围内共57块样地。样地大小为20 m×20 m、25 m×25 m和25 m×50 m。采用实时动态差分技术(real-time Kinematic,RTK)进行样地定位,记录样地中心点及样地角点。采用每木检尺的方法,使用胸径尺、激光测高仪和皮尺逐一测量样地内树木的胸径、树高等数据。统计样地调查数据得到样地算数平均树高、算数平均胸径、样地面积(表1)。通过广西地区桉树二元材积表对单木材积量进行计算[12],进而计算得到样地尺度的公顷蓄积量值(V样地):V样地=V公顷S样地/10 000。其中:V公顷为通过二元材积公式计算得的每公顷蓄积量,S样地为桉树样地面积。
项目 平均树高/m 平均胸径/cm 单位蓄积量/(m3·hm−2) 最大值 30.40 21.10 320.66 最小值 7.48 5.24 17.79 平均值 15.19 12.06 90.47 标准差 4.22 3.55 65.58 Table 1. Parameter statistics of sample plots
-
于2018年1月采集机载LiDAR数据,使用有人机并搭载LMS-Q680i激光雷达扫描仪,实际飞行高度为1 000 m,最大扫描角度为30°,波长为1 550 nm,激光脉冲长度为3 ns,采样间隔为1 ns,最大扫描频率为400 KHz,垂直分辨率为0.15 m,点云密度为10 pt·m−2。
使用LiDAR 360软件对机载激光雷达点云进行点云拼接、去噪、地面点分类、基于地面点归一化等预处理,结果如图2所示。根据样地角点以中心点坐标对点云进行裁剪,提取出基于样地尺度特征变量共48个,包括37个点云高度参数、10个密度参数、郁闭度等点云特征变量,具体参数见表2。
变量类型 变量名 特征描述 高度变量 Hmax 归一化后所有点的Z值的
最大值Hmin 归一化后所有点的Z值的
最小值Hmedian_z 高度平均偏差 Hstddev 高度标准差 Hkurtosis 高度峰度 Hsqrt_m 高度二次幂均值 Hcurt_m 高度三次幂均值 HP1, HP5$, \cdots, $ HP99 归一化点云高度分布的百
分位数,共15个HA1, HA2$, \cdots, $ HA99 归一化点云累计高度的百
分位数,共15个密度变量 D1, D2$, \cdots, $ D9 将点云从低到高分成10个
相同高度的切片,该层
回波数点在所有返回点
的所占比例,共9个郁闭度 CC 首次回波中,植被点数与
所有点的比值Table 2. Extracting point cloud feature variables
-
使用MATLAB激光雷达覆盖范围内57个样本进行随机抽样,按照3∶1的比例选取42个作为训练样本,15个作为验证样本。以样地实测公顷蓄积量为因变量,筛选后点云特征为自变量,采用逐步回归、偏最小二乘回归、随机森林回归、支持向量回归模型进行拟合 。
-
在采用逐步筛选法进行偏F检验时,取偏F检验拒绝域的临界值为F进>F出,F进为选入变量时的临界值、F出为删除变量时的临界值。本研究设定F进为0.10,F出为0.11,筛选特征变量结果为D9、HP95、Hmax、Hkurtosis。
对筛选出的变量进行双变量相关性分析,根据相关系数(R)计算各变量间方差膨胀因子(FVI)。计算结果如表3,Hmax与HP95之间FVI为250.25,FVI大于5,认为两者之间存在共线性。因此分别以D9、Hmax、Hkurtosis和D9、HP95、Hkurtos为建模因子。
变量 D9 Hmax HP95 Hkurtosis D9 2.46 2.69 1.00 Hmax 2.46 250.25 1.01 HP95 2.69 250.25 1.01 Hkurtosis 1.00 1.01 1.01 Table 3. FVI calculation of each variable
-
对所有的48个特征变量进行重要性排序,调用随机森林中OOBPermutedVarDeltaError参数,得到所有特征变量的重要性。选择重要性大于0.2的变量作为建模因子,筛选结果如图3,包括8个高度变量、2个密度变量,其中Hcurt重要性最高,达0.52;D6重要性相对最低,为0.22。
-
根据特征变量优选结果,分别建立以D9、Hmax、Hkurtosis和D9、HP95、Hkurtos为建模因子的多元线性模型:
使用SPSS 26对Y1、Y2模型进行初步评估,计算2种模型的相关系数(R)、R2以及标准估算误差(SE),结果如表4。结果表明Y2中R2、SE均优于Y1,因此选定Y2作为逐步回归模型。
模型 R R2 调整后R2 SE Y1 0.950 0.902 0.894 18.460 Y2 0.953 0.908 0.900 17.904 Table 4. Preliminary evaluation of stepwise regression model
-
利用PLSR提取的主成分F1、F2与因变量Y关系分别为F1=5.840Y+b和F2=0.271Y+b,b为常数,得到最小二乘回归模型为:
-
调用meshgrid函数对C、gamma进行参数寻优并采用十折交叉验证,调用svmtrain函数,分别构建4种不同核函数的SVR模型并进行模型训练,训练结果如表5。得到拟合结果最优模型为RBF-SVR,其C为8,gamma为0.125。RBF-SVR模型R2为0.85,RMSE为29.24 m3·hm−2,MAE为94.98 m3·hm−2,选定该模型作为本研究的SVR模型。
核函数 R2 RMSE/(m3·hm−2) MAE/(m3·hm−2) 线性 训练样本 0.89 18.62 14.49 验证样本 0.83 30.43 24.73 多项式 训练样本 0.74 34.34 23.06 验证样本 0.78 52.33 33.54 RBF 训练样本 0.95 13.09 11.65 验证样本 0.85 29.24 23.96 sigmoid 训练样本 0.80 24.91 17.79 验证样本 0.77 35.91 25.71 Table 5. Fitting results of different kernel functions of SVR
-
本研究采用穷举法对决策树数量和最小叶子点数进行参数寻优。分别设置决策树数量和最小叶子点数最小值为50和2,每次递增10和1,对寻优过程循环,通过观察OOB误差的MSE变化,直到寻找到本模型最优参数,寻优结果如图4。最终确定决策树数量为90,叶子节点数量为2,将寻优结果作为建模参数,输入训练样本,完成RFR模型构建。
-
使用验证样本对各模型的预测性能进行评估,结果如表6、图5。可以看出不同的回归模型均表现出较好的拟合结果,其中拟合结果最优模型为RFR模型,模型评价结果R2为0.95,RMSE为12.64 m3·hm−2,MAE为8.00 m3·hm−2,RBF-SVR模型其次,R2为0.94,RMSE为13.09 m3·hm−2,MAE为11.65 m3·hm−2。将验证样本带入模型,检验模型的预测能力,结果显示各模型预测能力与模型的拟合效果一致。通过传统方法的划分训练样本与验证样本,存在一定的偶然性与不确定性,为了进一步确保各模型的稳定性与泛化能力,采用留一法交叉验证(leave-one-out cross validation,LOOCV)对本研究中各模型进行再次评估[19],如图6所示:RBF-SVR模型表现最优,R2为0.88,RMSE为21.35 m3·hm−2,MAE为16.62 m3·hm−2,与其他模型相比,R2高出0.03~0.07,RMSE减少2.58~5.17 m3·hm−2,MAE减少0.79~3.32 m3·hm−2。
模型 样本 R2 RMSE/(m3·hm−2) MAE/(m3·hm−2) SR 训练样本 0.91 17.03 13.27 验证样本 0.82 33.33 24.03 PLSR 训练样本 0.90 17.63 13.49 验证样本 0.80 34.53 27.76 RBF-SVR 训练样本 0.94 13.09 11.65 验证样本 0.85 29.24 23.96 RFR 训练样本 0.95 12.64 8.00 验证样本 0.88 28.11 19.48 Table 6. Evaluation of growing stock volume inversion model
Estimation model of Eucalyptus stand volume based on airborne LiDAR Point Cloud
doi: 10.11833/j.issn.2095-0756.20220108
- Received Date: 2022-01-10
- Accepted Date: 2022-07-04
- Rev Recd Date: 2022-06-13
- Available Online: 2022-11-21
- Publish Date: 2022-12-20
-
Key words:
- airborne LiDAR Point Cloud /
- stand volume /
- parametric regression /
- non-parametric regression /
- variables screening
Abstract:
Citation: | DENG Zhuo, LI Bin, FAN Guangpeng, ZHAO Tianzhong, YU Yonghui. Estimation model of Eucalyptus stand volume based on airborne LiDAR Point Cloud[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1330-1339. doi: 10.11833/j.issn.2095-0756.20220108 |