[1] |
FAWZY S, OSMAN A I, YANG Haiping, et al. Industrial biochar systems for atmospheric carbon removal: a review [J]. Environmental Chemistry Letters, 2021, 19(4): 3023 − 3055. |
[2] |
FAWZY S, OSMAN A I, DORAN J, et al. Strategies for mitigation of climate change: a review [J]. Environmental Chemistry Letters, 2020, 18(6): 2069 − 2094. |
[3] |
HUANG Xiaobing, GAO Shiqi. Temporal characteristics and influencing factors of agricultural carbon emission in Jiangxi Province of China [J/OL]. Environmental Research Communications, 2022, 4(4): 045006[2022-07-15]. doi: 10.1088/2515-7620/ac6380. |
[4] |
GABHANE J W, BHANGE V P, PATIL P D, et al. Recent trends in biochar production methods and its application as a soil health conditioner: a review [J/OL]. Sn Applied Sciences, 2020, 2(7): 1307[2022-07-15]. doi: 10.1007/s42452-020-3121-5. |
[5] |
SHARMA S, RANA V S, RANA N, et al. Biochar from fruit crops waste and its potential impact on fruit crops [J/OL]. Scientia Horticulturae, 2022, 299: 111052[2022-07-15]. doi: org/10.1016/j. scienta. 2022.111052. |
[6] |
DING Yang, LIU Yunguo, LIU Shaobo, et al. Biochar to improve soil fertility: a review [J/OL]. Agronomy for Sustainable Development, 2016, 36(2): 36[2022-07-15]. doi: 10.1007/s13593-016-0372-z. |
[7] |
EL-NAGGAR A, LEE S S, RINKLEBE J, et al. Biochar application to low fertility soils: a review of current status, and future prospects [J]. Geoderma, 2019, 337: 536 − 554. |
[8] |
LEHMANN J, GAUNT J, RONDON M. Bio-char sequestration in terrestrial ecosystems: a review [J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2): 403 − 427. |
[9] |
WOOLF D, AMONETTE J E, STREET-PERROTT F A, et al. Sustainable biochar to mitigate global climate change [J/OL]. Nature Communications, 2010, 1(1): 56[2022-07-15]. doi: 10.1038/ncomms1053. |
[10] |
SAGAR N A, PAREEK S, SHARMA S, et al. Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization [J]. Comprehensive Reviews in Food Science and Food Safety, 2018, 17(3): 512 − 531. |
[11] |
MAGAMA P, CHIYANZU I, MULOPO J. A systematic review of sustainable fruit and vegetable waste recycling alternatives and possibilities for anaerobic biorefinery [J/OL]. Bioresource Technology Reports, 2022, 18: 101031[2022-07-15]. doi: 10.1016/j.biteb.2022.101031. |
[12] |
DU Chenyu, ABDULLAH J J, GREETHAM D, et al. Valorization of food waste into biofertiliser and its field application [J]. Journal of Cleaner Production, 2018, 187: 273 − 284. |
[13] |
GANESH K S, SRIDHAR A, VISHALI S. Utilization of fruit and vegetable waste to produce value-added products: conventional utilization and emerging opportunities-a review [J/OL]. Chemosphere, 2022, 287: 132221[2022-07-15]. doi: 10.1016/j.chemosphere.2021.132221. |
[14] |
LENG Lijian, HUANG Huajun. An overview of the effect of pyrolysis process parameters on biochar stability [J]. Bioresource Technology, 2018, 270: 627 − 642. |
[15] |
PATRA B R, MUKHERJEE A, NANDA S, et al. Biochar production, activation and adsorptive applications: a review [J]. Environmental Chemistry Letters, 2021, 19(3): 2237 − 2259. |
[16] |
HUANG He, REDDY N G, HUANG Xilong, et al. Effects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil [J]. Scientific Reports, 2021, 11(1): 1 − 19. |
[17] |
FOONG S Y, LIEW R K, YANG Yafeng, et al. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges, and future directions [J/OL]. Chemical Engineering Journal, 2020, 389: 124401[2022-07-15]. doi: 10.1016/j.cej.2020.124401. |
[18] |
NANDA S, MOHANTY P, PANT K K, et al. Characterization of north American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels [J]. BioEnergy Research, 2013, 6(2): 663 − 677. |
[19] |
CHEN Dengyu, CEN Kehui, ZHUANG Xiaozhuang, et al. Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio-oil [J/OL]. Combustion and Flame, 2022, 242: 112142[2022-07-15]. doi: 10.1016/j.combustflame.2022.112142. |
[20] |
WEBER K, QUICKER P. Properties of biochar [J]. Fuel, 2018, 217: 240 − 261. |
[21] |
YANG Haiping, YAN Rong, CHEN Hanping, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis [J]. Fuel, 2007, 86(12/13): 1781 − 1788. |
[22] |
SIAL T A, LAN Zhilong, KHAN M N, et al. Evaluation of orange peel waste and its biochar on greenhouse gas emissions and soil biochemical properties within a loess soil [J]. Waste Management, 2019, 87: 125 − 134. |
[23] |
STELLA MARY G, SUGUMARAN P, NIVEDITHA S, et al. Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes [J]. International Journal of Recycling of Organic Waste in Agriculture, 2016, 5(1): 43 − 53. |
[24] |
ADENIYI A G, IGHALO J O, ONIFADE D V. Biochar from the thermochemical conversion of orange (Citrus sinensis) peel and albedo: product quality and potential applications [J]. Chemistry Africa, 2020, 3(2): 439 − 448. |
[25] |
OGUNKUNLE C O, VARUN M, OGUNDELE I G, et al. Citrus epicarp-derived biochar reduced Cd uptake and ameliorates oxidative stress in young Abelmoschus esculentus (L. ) Moench (okra) under low Cd stress [J]. Bulletin of Environmental Contamination and Toxicology, 2018, 100(6): 827 − 833. |
[26] |
逄玉万, 唐拴虎, 林焕嘉, 等. 酸性硫酸盐土壤对柑桔枝生物炭改良的响应[J]. 中国农学通报, 2018, 34(23): 86 − 91. |
PANG Yuwan, TANG Shuanhu, LIN Huanjia, et al. Response of acid sulfate soil to amelioration by citrus branch biochar [J]. Chinese Agricultural Science Bulletin, 2018, 34(23): 86 − 91. |
[27] |
KARIM A A, KUMAR M K, MOHAPATRA S, et al. Banana peduncle biochar: characteristics and adsorption of hexavalent chromium from aqueous solution [J]. International Research Journal of Pure and Applied Chemistry, 2015, 7(1): 1 − 10. |
[28] |
SIAL T A, KHAN M N, LAN Zhilong, et al. Contrasting effects of banana peels waste and its biochar on greenhouse gas emissions and soil biochemical properties [J]. Process Safety and Environmental Protection, 2019, 122: 366 − 377. |
[29] |
徐广平, 滕秋梅, 沈育伊, 等. 香蕉茎叶生物炭对香蕉枯萎病防控效果及土壤性状的影响[J]. 生态环境学报, 2020, 29(12): 2373 − 2384. |
XU Guangping, TENG Qiumei, SHEN Yuyi, et al. Effects of banana stems-leaves biochar on soil properties and control of banana fusarium wilt [J]. Ecology and Environmental Sciences, 2020, 29(12): 2373 − 2384. |
[30] |
石钧元, 荀咪, 崔迎宾, 等. 炭化苹果枝皮和木材对水中硝态氮和铵态氮的差异吸附[J]. 水土保持学报, 2020, 34(2): 253 − 260. |
SHI Junyuan, XUN Mi, CUI Yingbin, et al. Differential sorption of nitrate and ammonium nitrogen in water by charred apple branch bark and wood [J]. Journal of Soil and Water Conservation, 2020, 34(2): 253 − 260. |
[31] |
曹辉, 李燕歌, 周春然, 等. 炭化苹果枝对苹果根区土壤细菌和真菌多样性的影响[J]. 中国农业科学, 2016, 49(17): 3413 − 3424. |
CAO Hui, LI Yan’ge, ZHOU Chunran, et al. Effect of carbonized apple branches on bacterial and fungal diversities in apple root-zone soil [J]. Scientia Agricultura Sinica, 2016, 49(17): 3413 − 3424. |
[32] |
ZHAO Shixiang, TA Na, WANG Xudong. Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material [J/OL]. Energies, 2017, 10(9): 1293[2022-07-15]. doi: 10.3390/en10091293. |
[33] |
SUMAN S, GAUTAM S. Pyrolysis of coconut husk biomass: analysis of its biochar properties [J]. Energy Sources,Part A:Recovery,Utilization,and Environmental Effects, 2017, 39(8): 761 − 767. |
[34] |
USMAN A R A, ABDULJABBAR A, VITHANAGE M, et al. Biochar production from date palm waste: charring temperature induced changes in composition and surface chemistry [J]. Journal of Analytical and Applied Pyrolysis, 2015, 115: 392 − 400. |
[35] |
YOGALAKSHMI K N, POORNIMA D T, SIVASHANMUGAM P, et al. Lignocellulosic biomass-based pyrolysis: a comprehensive review [J/OL]. Chemosphere, 2022, 286: 131824[2022-07-15]. doi: 10.1016/j.chemosphere.2021.131824. |
[36] |
SAIT H H, HUSSAIN A, SALEMA A A, et al. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis [J]. Bioresource Technology, 2012, 118: 382 − 389. |
[37] |
CHAIWONG K, KIATSIRIROAT T, VORAYOS N, et al. Study of bio-oil and bio-char production from algae by slow pyrolysis [J]. Biomass and Bioenergy, 2013, 56: 600 − 606. |
[38] |
FERNANDES E R K, MARANGONI C, SOUZA O, et al. Thermochemical characterization of banana leaves as a potential energy source [J]. Energy Conversion and Management, 2013, 75: 603 − 608. |
[39] |
MAIA B G D O, SOUZA O, MARANGONI C, et al. Production and characterization of fuel briquettes from banana leaves waste [J]. Chemical Engineering Transactions, 2014, 37: 439 − 444. |
[40] |
ABDULLAH N, SULAIMAN F, MISKAM M A, et al. Characterization of banana (Musa spp. ) pseudo-stem and fruit-bunch-stem as a potential renewable energy resource [J]. International Journal of Biological,Veterinary,Agricultural and Food Engineering, 2014, 8(8): 712 − 716. |
[41] |
BISWAS B, RAWEL S, KUMAR J, et al. Slow pyrolysis of prot, alkali and dealkaline lignins for production of chemicals [J]. Bioresource Technology, 2016, 213: 319 − 326. |
[42] |
KABENGE I, OMULO G, BANADDA N, et al. Characterization of banana peels wastes as potential slow pyrolysis feedstock [J/OL]. Journal of Sustainable Development, 2018, 11(2): 14[2022-07-15]. doi: 10.5539/jsd.v1n2p14. |
[43] |
WAN Jiang, LIU Lin, AYUB K S, et al. Characterization and adsorption performance of biochars derived from three key biomass constituents [J/OL]. Fuel, 2020, 269: 117142[2022-07-15]. doi: 10.1016/j.fuel.2020.117142. |
[44] |
JANKOVIĆ B, MANIĆ N, DODEVSKI V, et al. Physico-chemical characterization of carbonized apricot kernel shell as precursor for activated carbon preparation in clean technology utilization [J/OL]. Journal of Cleaner Production, 2019, 236: 117614[2022-07-15]. doi: 10.1016/j.jclepro.2019.117614. |
[45] |
ZHANG Zhongqing, ZHOU Chenhui, YANG Jingmin, et al. Preparation and characterization of apricot kernel shell biochar and its adsorption mechanism for atrazine [J/OL]. Sustainability, 2022, 14(7): 4082[2022-07-15]. doi: 10.3390/su14074082. |
[46] |
KARIM A A, KUMAR M, SINGH S K, et al. Potassium enriched biochar production by thermal plasma processing of banana peduncle for soil application [J]. Journal of Analytical and Applied Pyrolysis, 2017, 123: 165 − 172. |
[47] |
PARK J H, OK Y S, KIM S H, et al. Characteristics of biochars derived from fruit tree pruning wastes and their effects on lead adsorption [J]. Journal of the Korean Society for Applied Biological Chemistry, 2015, 58(5): 751 − 760. |
[48] |
李金文, 顾凯, 唐朝生, 等. 生物炭对土体物理化学性质影响的研究进展[J]. 浙江大学学报(工学版), 2018, 52(1): 192 − 206. |
LI Jinwen, GU Kai, TANG Chaosheng, et al. Advances in effects of biochar on physical and chemical properties of soil [J]. Journal of Zhejiang University (Engineering Science), 2018, 52(1): 192 − 206. |
[49] |
郭茜, 陆扣萍, 胡国涛, 等. 死猪炭和竹炭对菜地土壤理化性质和蔬菜产量的影响[J]. 浙江农林大学学报, 2017, 34(2): 244 − 252. |
GUO Xi, LU Kouping, HU Guotao, et al. Greenhouse soil properties and vegetable yield with dead pig and bamboo biochars [J]. Journal of Zhejiang A&F University, 2017, 34(2): 244 − 252. |
[50] |
王瑞峰, 赵立欣, 沈玉君, 等. 生物炭制备及其对土壤理化性质影响的研究进展[J]. 中国农业科技导报, 2015, 17(2): 126 − 133. |
WANG Ruifeng, ZHAO Lixin, SHEN Yujun, et al. Research progress on preparing biochar and its effect on soil physio-chemical properties [J]. Journal of Agricultural Science and Technology, 2015, 17(2): 126 − 133. |
[51] |
何秀峰, 赵丰云, 于坤, 等. 生物炭对葡萄幼苗根际土壤养分、酶活性及微生物多样性的影响[J]. 中国土壤与肥料, 2020(6): 19 − 26. |
HE Xiufeng, ZHAO Fengyun, YU Kun, et al. Effect of biochar on nutrient, enzyme activities and microbial diversity of rhizosphere soil of grape seedlings [J]. Soil and Fertilizer Sciences in China, 2020(6): 19 − 26. |
[52] |
颜永毫, 郑纪勇, 张兴昌, 等. 生物炭添加对黄土高原典型土壤田间持水量的影响[J]. 水土保持学报, 2013, 27(4): 120 − 124, 190. |
YAN Yonghao, ZHENG Jiyong, ZHANG Xingchang, et al. Impact of biochar addition into typical soil on field capacity in loess plateau [J]. Journal of Soil and Water Conservation, 2013, 27(4): 120 − 124, 190. |
[53] |
ZHANG Yafu, WANG Jinman, FENG Yu. The effects of biochar addition on soil physicochemical properties: a review [J/OL]. Catena, 2021, 202: 105284[2022-07-15]. doi: 10.1016/j.catena.2021.105284. |
[54] |
ATKINSON C J, FITZGERALD J D, HIPPS N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review [J]. Plant and Soil, 2010, 337(1/2): 1 − 18. |
[55] |
GASKIN J W, STEINER C, HARRIS K, et al. Effect of low-temperature pyrolysis conditions on biochar for agricultural use [J]. Transactions of the ASABE, 2008, 51(6): 2061 − 2069. |
[56] |
van ZWIETEN L, KIMBER S, MORRIS S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility [J]. Plant and Soil, 2010, 327(1/2): 235 − 246. |
[57] |
包骏瑶, 赵颖志, 严淑娴, 等. 不同农林废弃物生物质炭对雷竹林酸化土壤的改良效果[J]. 浙江农林大学学报, 2018, 35(1): 43 − 50. |
BAO Junyao, ZHAO Yingzhi, YAN Shuxian, et al. Soil amelioration with biochars pyrolyzed from different feedstocks of an acidic bamboo (Phyllostachys violascens) plantation [J]. Journal of Zhejiang A&F University, 2018, 35(1): 43 − 50. |
[58] |
宿贤超, 胡杨勇, 赵薇, 等. 添加竹炭对土壤化学性质和重金属有效性及水稻生长的影响[J]. 浙江农业学报, 2014, 26(2): 439 − 443. |
SU Xianchao, HU Yangyong, ZHAO Wei, et al. Effects of addition of bamboo charcoal on soil chemical properties, heavy metal availability, and rice growth [J]. Acta Agriculturae Zhejiangensis, 2014, 26(2): 439 − 443. |
[59] |
TAGHIZADEH-TOOSI A, CLOUGH T J, SHERLOCK R R, et al. Biochar adsorbed ammonia is bioavailable [J]. Plant and Soil, 2012, 350(1/2): 57 − 69. |
[60] |
VENTURA M, SORRENTI G, PANZACCHI P, et al. Biochar reduces short-term nitrate leaching from a horizon in an apple orchard [J]. Journal of Environmental Quality, 2013, 42(1): 76 − 82. |
[61] |
KNICKER H. How does fire affect the nature and stability of soil organic nitrogen and carbon? a review [J]. Biogeochemistry, 2007, 85(1): 91 − 118. |
[62] |
SUN Wei, GU Jie, WANG Xiaojuan, et al. Impacts of biochar on the environmental risk of antibiotic resistance genes and mobile genetic elements during anaerobic digestion of cattle farm wastewater [J]. Bioresource Technology, 2018, 256: 342 − 349. |
[63] |
LI Shuailin, LIANG Chutao, SHANGGUAN Zhouping. Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N [J]. Science of the Total Environment, 2017, 607/608: 109 − 119. |
[64] |
SRIDHAR A, KAPOOR A, KUMAR P S, et al. Conversion of food waste to energy: a focus on sustainability and life cycle assessment[J/OL]. Fuel, 2021, 302: 121069[2022-07-15]. doi: 10.1016/j.fuel.2021.121069. |
[65] |
GARCÍA A J, ESTEBAN M B, MÁRQUEZ M C, et al. Biodegradable municipal solid waste: characterization pand potential use as animal feedstuffs [J]. Waste Management, 2005, 25(8): 780 − 787. |
[66] |
DENG Guifang, SHEN Chen, XU Xiangrong, et al. Potential of fruit wastes as natural resources of bioactive compounds [J]. International Journal of Molecular Sciences, 2012, 13(7): 8308 − 8323. |
[67] |
SAYARA T, BASHEER-SALIMIA R, HAWAMDE F, et al. Recycling of organic wastes through composting: process performance and compost application in agriculture [J/OL]. Agronomy, 2020, 10(11): 1838[2022-07-15]. doi: 10.3390/agronomy10111838. |
[68] |
CHATTERJEE B, MAZUMDER D. New approach of characterizing fruit and vegetable waste (FVW) to ascertain its biological stabilization via two-stage anaerobic digestion (AD) [J/OL]. Biomass and Bioenergy, 2020, 139: 105594[2022-07-15]. doi: 10.1016/j.biombioe.2020.105594. |
[69] |
KAUR S, KAUR H P, PRASAD B, et al. Production and optimization of pectinase by Bacillus sp. isolated from vegetable waste soil [J]. Indo American Journal of Pharmaceutical Research, 2016, 6(1): 4185 − 4190. |
[70] |
杜国栋, 刘志琨, 赵玲, 等. 生物炭减缓干旱胁迫对秋子梨根系呼吸生理功能的影响[J]. 果树学报, 2016, 33(增刊1): 90 − 97. |
DU Guodong, LIU Zhikun, ZHAO Ling, et al. Biochar alleviates effects of drought stress on root respiration in Pyrus ussuriensis [J]. Journal of Fruit Science, 2016, 33(suppl 1): 90 − 97. |
[71] |
OO A Z, SUDO S, WIN K T, et al. Influence of pruning waste biochar and oyster shell on N2O and CO2 emissions from Japanese pear orchard soil [J/OL]. Heliyon, 2018, 4(3): e00568[2022-07-15]. doi: 10.1016/j.heliyon.2018.e00568. |
[72] |
LIU Yinghao, MA Zhiting, CHEN Ran, et al. Biochar promotes the growth of apple seedlings by adsorbing phloridzin [J/OL]. Scientia Horticulturae, 2022, 303: 111187[2022-07-15]. doi: 10.1016/j.scienta.2022.111187. |
[73] |
CAO Hui, JIA Mingfang, XUN Mi, et al. Nitrogen transformation and microbial community structure varied in apple rhizosphere and rhizoplane soils under biochar amendment [J]. Journal of Soils and Sediments, 2021, 21(2): 853 − 868. |
[74] |
秦亚旭. 生物质炭基专用肥对苹果产量品质及土壤肥力的影响[D]. 杨凌: 西北农林科技大学, 2020. |
QIN Yaxu. Effects of Biochar-based Special Compound Fertilizer on Yield and Quality of Apple and Soil Fertility [D]. Yangling: Northwest A&F University, 2020. |
[75] |
FRENE J P, FRAZIER M, RUTTO E, et al. Early response of organic matter dynamics to pine-biochar in sandy soil under peach trees [J/OL]. Agrosystems, Geosciences & Environment, 2020, 3(1): e20094[2022-07-15]. doi: 10.1002/agg2.20094. |
[76] |
王健宁, 文晓鹏, 洪怡, 等. 生物炭对玛瑙红樱桃苗期生理生化特征的影响[J]. 华中农业大学学报, 2019, 38(3): 19 − 24. |
WANG Jianning, WEN Xiaopeng, HONG Yi, et al. Effects of biochar on physiological and biochemical characteristics of Prunus pseudocerasus ‘Manaohong’ seedling [J]. Journal of Huazhong Agricultural University, 2019, 38(3): 19 − 24. |
[77] |
ZHANG Yuchan, WANG Xiao, LIU Bingjie, et al. Comparative study of individual and co-application of biochar and wood vinegar on blueberry fruit yield and nutritional quality [J/OL]. Chemosphere, 2020, 246: 125699[2022-07-15]. doi: 10.1016/j.chemosphere.2019.125699. |
[78] |
HARHASH M M, AHAMED M M M, MOSA W F A. Mango performance as affected by the soil application of zeolite and biochar under water salinity stresses [J/OL]. Environmental Science and Pollution Research, 2022[2022-07-15]. doi: 10.1007/s11356-022-21503-4. |
[79] |
BARONTI S, VACCARI F P, MIGLIETTA F, et al. Impact of biochar application on plant water relations in Vitis vinifera (L. ) [J]. European Journal of Agronomy, 2014, 53: 38 − 44. |
[80] |
CHANG Yuru, ROSSI L, ZOTARELLI L, et al. Greenhouse evaluation of pinewood biochar effects on nutrient status and physiological performance in muscadine grape (Vitis rotundifolia L. ) [J]. HortScience, 2021, 56(2): 277 − 285. |
[81] |
GENESIO L, MIGLIETTA F, BARONTI S, et al. Biochar increases vineyard productivity without affecting grape quality: Results from a four years field experiment in Tuscany [J]. Agriculture,Ecosystems &Environment, 2015, 201: 20 − 25. |
[82] |
王明元, 侯式贞, 董涛, 等. 香蕉假茎生物炭对根际土壤细菌丰度和群落结构的影响[J]. 微生物学报, 2019, 59(7): 1363 − 1372. |
WANG Mingyuan, HOU Shizhen, DONG Tao, et al. Effects of banana pseudostem biochar on bacterial abundance and community structure in rhizosphere soil [J]. Acta Microbiologica Sinica, 2019, 59(7): 1363 − 1372. |
[83] |
李航, 董涛, 王明元. 生物炭对香蕉苗根际土壤微生物群落与代谢活性的影响[J]. 微生物学杂志, 2016, 36(1): 42 − 48. |
LI Hang, DONG Tao, WANG Mingyuan. Effects of biochar on microbial communities and metabolic activity in rhizospheric soil of banana seedlings [J]. Journal of Microbiology, 2016, 36(1): 42 − 48. |
[84] |
ABO-OGIALA A. Impact of biochar on vegetative parameters, leaf mineral content, yield and fruit quality of grande naine banana in saline-sodic soil [J]. Egyptian Journal of Horticulture, 2018, 45(2): 315 − 330. |
[85] |
SATTAR A, SHER A, IJAZ M, et al. Interactive effect of biochar and silicon on improving morpho-physiological and biochemical attributes of maize by reducing drought hazards [J]. Journal of Soil Science and Plant Nutrition, 2020, 20(4): 1819 − 1826. |
[86] |
MÖLLER K, SCHULTHEIΒ U. Chemical characterization of commercial organic fertilizers [J]. Archives of Agronomy and Soil Science, 2015, 61(7/9): 989 − 1012. |
[87] |
PLAZA C, GIANNETTA B, FERNÁNDEZ J M, et al. Response of different soil organic matter pools to biochar and organic fertilizers [J]. Agriculture,Ecosystems &Environment, 2016, 225: 150 − 159. |
[88] |
BOLAN N, HOANG S A, BEIYUAN J, et al. Multifunctional applications of biochar beyond carbon storage [J]. International Materials Reviews, 2022, 67(2): 150 − 200. |
[89] |
王璐, 朱占玲, 刘照霞, 等. 多种有机物料混施对苹果幼苗生长、氮素利用及土壤特性的影响[J]. 水土保持学报, 2021, 35(5): 362 − 368. |
WANG Lu, ZHU Zhanling, LIU Zhaoxia, et al. Effects of mixtures of diffierent organic materials on apples seeding growth, nitrogen utilization and soil properties [J]. Journal of Soil and Water Conservation, 2021, 35(5): 362 − 368. |
[90] |
SÁNCHEZ-GARCÍA M, SÁNCHEZ-MONEDERO M A, ROIG A, et al. Compost vs biochar amendment: a two-year field study evaluating soil C build-up and N dynamics in an organically managed olive crop [J]. Plant and Soil, 2016, 408(1/2): 1 − 14. |
[91] |
AL-SAYED H M, ALI A M, MOHAMED M A, et al. Combined effect of prickly pear waste biochar and azolla on soil fertility, growth, and yield of roselle (Hibiscus sabdariffa L. ) plants [J]. Journal of Soil Science and Plant Nutrition, 2022, 22: 3541 − 3552. |
[92] |
EYLES A, BOUND S A, OLIVER G, et al. Impact of biochar amendment on the growth, physiology and fruit of a young commercial apple orchard [J]. Trees, 2015, 29(6): 1817 − 1826. |
[93] |
HAN Jiale, ZHANG Afeng, KANG Yanhong, et al. Biochar promotes soil organic carbon sequestration and reduces net global warming potential in apple orchard: a two-year study in the Loess Plateau of China [J/OL]. Science of the Total Environment, 2022, 803: 150035[2022-07-15]. doi: 10.1016/j.scitotenv.2021.150035. |
[94] |
LEHMANN J, COWIE A, MASIELLO C A, et al. Biochar in climate change mitigation [J]. Nature Geoscience, 2021, 14(12): 883 − 895. |