Volume 40 Issue 6
Nov.  2023
Turn off MathJax
Article Contents

CHEN Yong. Research progress on influencing factors of growing characteristics of Taxus spp.[J]. Journal of Zhejiang A&F University, 2023, 40(6): 1366-1375. doi: 10.11833/j.issn.2095-0756.20230495
Citation: CHEN Yong. Research progress on influencing factors of growing characteristics of Taxus spp.[J]. Journal of Zhejiang A&F University, 2023, 40(6): 1366-1375. doi: 10.11833/j.issn.2095-0756.20230495

Research progress on influencing factors of growing characteristics of Taxus spp.

doi: 10.11833/j.issn.2095-0756.20230495
  • Received Date: 2023-06-08
  • Accepted Date: 2023-10-24
  • Rev Recd Date: 2023-10-21
  • Available Online: 2023-11-23
  • Publish Date: 2023-11-23
  • As one of the precious afforestation trees in China and the source of raw materials for the industrial production of the first-line anticancer drug paclitaxel, Taxus spp. are now widely distributed. However, the ability to develop efficient cultivation technology of Taxus spp. is compromised for lack of systematic analysis of factors affecting the growth characteristics. This study has explored the growth characteristics, including morphological/structural parameters and physiological and biochemical parameters the measurement methods of each parameter. The influencing factors of the growth characteristics is mainly focused on the growth characteristic parameters, the genetic factors, the cultivation conditions and the environmental factors. The growth characteristics are evaluated by morphological structure and physiological and biochemical indicators. Genetics is the main factor that determines the shape of the cultivated trees, and Taxus species with large crown widths are suitable for artificial afforestation. Environmental factors, such as site conditions, moisture, fertilizers, soil, light, and temperature, have significant impacts on the growth of Taxus trees. The future research, involving genomics, metabolomics, multi-feature correlation studies, protection of genetic resources, stress resistance studies and ecosystem service functions, will further promote the protection and utilization of Taxus. [Ch, 72 ref.]
  • [1] WANG Dong, YANG Xinyuan, ZHAO Yanhao, YE Chenyang, HUANG Zhenxing, GAN Yi.  Recent research progress in rhizospheric microbes of oil crops . Journal of Zhejiang A&F University, 2023, 40(5): 1139-1148. doi: 10.11833/j.issn.2095-0756.20230139
    [2] TAN Cancan, NIE Wen, LIU Yifu, WANG Ya, DONG Yao, HUANG Ruizhi, LIU Jianfeng, SHI Shengqing, CHANG Ermei, ZHAO Xiulian, JIANG Zeping, JIA Zirui.  Tree growth model and bark thickness model of three Quercus species based on trunk analysis . Journal of Zhejiang A&F University, 2023, 40(3): 589-597. doi: 10.11833/j.issn.2095-0756.20220455
    [3] YUN Huiya, BI Huaxing, JIAO Zhenhuan, WANG Ning, CUI Yanhong, ZHAO Danyang, WANG Shanshan, LAN Daoyun, LIU Zehui.  Composition and diversity of understory plants under different stand types and densities in loess region of western Shanxi Province . Journal of Zhejiang A&F University, 2023, 40(3): 569-578. doi: 10.11833/j.issn.2095-0756.20220433
    [4] CAO Penghe, XU Xuan, SUN Jiejie, WANG Yuchao, HAN Menghua, GUO Jiahuan, FENG Huili, WANG Weifeng.  Effects of stand density and spacing configuration on the non-structural carbohydrate in different organs of poplar . Journal of Zhejiang A&F University, 2022, 39(2): 297-306. doi: 10.11833/j.issn.2095-0756.20210223
    [5] LI Zhichao, ZHANG Yongqiang, HOU Lingyu, SONG Liguo, SUN Qiwu.  Response of soil microorganism to stand density in Cunninghamia lanceolata plantation . Journal of Zhejiang A&F University, 2020, 37(1): 76-84. doi: 10.11833/j.issn.2095-0756.2020.01.010
    [6] WANG Lei, CUI Ming, LIU Yuguo, ZHOU Mengling, WU Jianhong, ZHOU Taolong.  Relationship between stand growth and impact factors in karst area . Journal of Zhejiang A&F University, 2020, 37(6): 1036-1044. doi: 10.11833/j.issn.2095-0756.20190762
    [7] QIU Luhan, HE Wanying, LIU Meihua, CHEN Jingfeng, WEN Guosheng.  Differences in dust removal capability and photosynthetic characteristics of six common tree species in Hangzhou City . Journal of Zhejiang A&F University, 2018, 35(1): 81-87. doi: 10.11833/j.issn.2095-0756.2018.01.011
    [8] ZHANG Jie, YIN Dejie, GUAN Haiyan, QU Qiqi, DONG Li.  An overview of Sedum spp. Research . Journal of Zhejiang A&F University, 2018, 35(6): 1166-1176. doi: 10.11833/j.issn.2095-0756.2018.06.022
    [9] CHU Xin, PAN Ping, GUO Liling, NING Jinkui, OUYANG Xunzhi, WU Zirong.  Comparing water-holding capacity in forest litter and soils for an aerially seeded Pinus massoniana plantation with different stand densities . Journal of Zhejiang A&F University, 2017, 34(5): 808-815. doi: 10.11833/j.issn.2095-0756.2017.05.006
    [10] WANG Shuhan, ZHANG Xiaoli, ZHU Chenghao, QU Shuai.  Stand density estimates based on a local maximum spectral filter . Journal of Zhejiang A&F University, 2017, 34(3): 413-420. doi: 10.11833/j.issn.2095-0756.2017.03.005
    [11] JIAO Xiang, ZHENG Jiaqiang, ZHANG Huichun, SU Mengmeng.  Research and perspectives of modeling methods and modeling tools of virtual forest tree growth . Journal of Zhejiang A&F University, 2015, 32(6): 966-975. doi: 10.11833/j.issn.2095-0756.2015.06.021
    [12] YANG Aifang, HAN Youzhi, YANG Xiuqing, LIU Zemin, YANG Sha, WANG Guan.  Diversity of understory herbs in Picea forests with different stand densities . Journal of Zhejiang A&F University, 2014, 31(5): 676-682. doi: 10.11833/j.issn.2095-0756.2014.05.003
    [13] ZHANG Tao, LI Yongfu, JIANG Peikun, ZHOU Guomo, LIU Juan.  Research progresses in the effect of land-use change on soil carbon pools and soil respiration . Journal of Zhejiang A&F University, 2013, 30(3): 428-437. doi: 10.11833/j.issn.2095-0756.2013.03.021
    [14] LI Xiao-hong, GAO Jia-rong, ZHANG Jin-rui, YANG Qi-lin.  Determining stand density from growth indicators for young Pinus tabulaeformis in the Miyun Reservoir,Beijing . Journal of Zhejiang A&F University, 2010, 27(6): 821-825. doi: 10.11833/j.issn.2095-0756.2010.06.003
    [15] GONG Zhi-wen, KANG Xin-gang, GU Li, ZHAO Jun-hui, ZHENG Yan-feng, YANG Hua.  Research methods on natural forest stand structure:a review . Journal of Zhejiang A&F University, 2009, 26(3): 434-443.
    [16] LIU Wei, ZHOU Shan-song, ZHANG Xian-xiang, FENG Jian-guo, WU Xue-mei.  Containerized versus bare-root seedlings of Schima superba for forest regeneration . Journal of Zhejiang A&F University, 2009, 26(6): 829-834.
    [17] DAI Jian-bing, YU Yi-wu, CAO Qun.  Summary of research on wetland protection and management . Journal of Zhejiang A&F University, 2006, 23(3): 328-333.
    [18] FANG Xi, TIAN Da-lun, XIANG Wen-hua, CAI Bao-yu.  On carbon accumulation , distribution of different densities in slash pine plantation . Journal of Zhejiang A&F University, 2003, 20(4): 374-379.
    [19] HUANG Jia-rong.  Optimal density control model of planted timber forests . Journal of Zhejiang A&F University, 2001, 18(1): 36-40.
    [20] Hong Wei, Wu Chengzhen.  A New Model for Stand Density ’Effect of Chinese Fir Plantation in Norhtern Fujian. . Journal of Zhejiang A&F University, 1996, 13(1): 15-20.
  • [1]
    SUN Minglong, LI Wei, LIU Tong, et al. Differences of photosynthetic characteristics and chlorophyll fluorescence in 3 varieties of Taxus spp. [J]. Non-wood Forest Research, 2011, 29(1): 27 − 33.
    [2]
    ZHOU Zhiqiang, HU Dan, LIU Tong. Fecundity and characteristics of flowering and fruiting of natural Taxus cuspidata population [J]. Scientia Silvae Sinicae, 2009, 45(5): 80 − 86.
    [3]
    ZHU Linyan, CHEN Liqun. Progress in research on paclitaxel and tumor immunotherapy [J/OL]. Cellular & Molecular Biology Letters, 2019, 24: 40[2023-06-02]. doi: 10.1186/s11658-019-0164-y.
    [4]
    YU Dingli, LOU Zhiping, MA Fengyun, et al. The interactions of paclitaxel with tumour microenvironment [J/OL]. International Immunopharmacology, 2022, 105: 108555[2023-06-02]. doi: 10.1016/j.intimp.2022.108555.
    [5]
    OU Jiande, WU Zhizhuang. Path analysis between canopy morphological characteristics and growth form quality of Taxus chinensis var. mairei plantation at young age [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43(4): 185 − 191.
    [6]
    CHEN Feng, XIE Wenyuan, ZHANG Fenyao, et al. Diversity and endangered status of Chinese key protected wild plants in Zhejiang Province [J]. Journal of Zhejiang A&F University, 2022, 39(5): 923 − 930.
    [7]
    WANG Zheng, GAO Shuai, HUANG Xinglong, et al. Functional importance of bird-dispersed habitat for the early recruitment of Taxus chinensis in a fragmented forest[J/OL]. Acta Oecologica, 2022, 114: 103819[2023-06-02]. doi: 10.1016/j.actao.2022.103819.
    [8]
    LEE C G, LEE J, LEE D G, et al. Immunostimulating activity of polyhydric alcohol isolated from Taxus cuspidata [J]. International Journal of Biological Macromolecules, 2016, 85: 505 − 513.
    [9]
    CHEN Jie, LONG Ting, YANG Lan, et al. Habitat suitability assessment of Taxus cuspidate [J]. Journal of Beijing Forestry University, 2019, 41(4): 51 − 59.
    [10]
    CHEN Lu. Afforestation, cultivation and ecological function analysis of Taxus chinensis in the Yangtze River Delta [J]. Molecular Plant Breeding, 2023, 21(8): 2778 − 2784.
    [11]
    ZHANG Kaikai, YANG Liying, FENG Meijing, et al. Identification and expression analysis of NAC gene family in Taxus × media Rehder [J]. Forest Research, 2022, 35(2): 97 − 103.
    [12]
    LI Wei, YANG Deguang, MOU Yao, et al. Photosynthesis and chlorophyll fluorescence characteristics of seedlings and saplings of Taxus cuspidata after removing shade [J]. Scientia Silvae Sinicae, 2018, 54(2): 179 − 185.
    [13]
    ZHAO Yan, WANG Zi, WEI Hongxu, et al. Effect of prolonged photoperiod on morphology, biomass accumulation and nutrient utilization in post transplant Taxus cuspidata seedlings [J]. Pakistan Journal of Botany, 2017, 49(4): 1285 − 1290.
    [14]
    LONG Ting, WU Xinlei, WANG Yin, et al. The population status and threats of Taxus cuspidata, a plant species with extremely small populations in China [J/OL]. Global Ecology and Conservation, 2021, 26(4): 01495[2023-06-02]. doi: 10.1016/j.gecco.2021.e01495.
    [15]
    LI Yingshuo, SUN Minghao, ZHAO Fuwei. Study on the plant species diversity and management of the sacred nature sites in the mountain area of southwestern Zhejiang, China [J]. Journal of Ecology and Rural Environment, 2021, 37 (9): 1115 − 1121.
    [16]
    JIANG Ping, ZHAO Yajie, XIONG Jia, et al. Extraction, purification, and biological activities of flavonoids from branches and leaves of Taxus cuspidata S. et Z. [J]. Bioresources, 2021, 16(2): 2655 − 2682.
    [17]
    CHEN Li, LIU Chenggong, QIAN Yingying, et al. Stoichiometric characteristics of C, N, P of Taxus chinensis var. mairei plantation needles [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(5): 53 − 61.
    [18]
    SUN Leitao, DING Shuning, LUO Qi, et al. Taxus wallichiana var. chinensis (Pilg. ) florin aqueous extract suppresses the proliferation and metastasis in lung carcinoma via JAK/STAT3 signaling pathway [J/OL]. Frontiers in Pharmacology, 2021, 12: 736442[2023-06-02]. doi: 10.3389/fphar.2021.736442.
    [19]
    FAN Xuexing, ZHANG Huichun, ZOU Yiping, et al. Inversion of plant chlorophyll content based on multispectral imaging and machine learning [J]. Scientia Silvae Sinicae, 2023, 59(7): 78 − 88.
    [20]
    DONG Chong, SHI Gongle, HERRERA F, et al. Leaves of Taxus with cuticle micromorphology from the early cretaceous of eastern inner Mongolia, Northeast China [J/OL]. Review of Palaeobotany and Palynology, 2022, 298: 104588[2023-06-02]. doi: 10.1016/j.revpalbo.2021.104588.
    [21]
    SUN Xiaowei, WANG Xingchang, SUN Huizhen, et al. Photosynthetic characteristics of dioecious Populus davidiana, Fraxinus mandshurica and Taxus cuspidata [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(1): 129 − 135.
    [22]
    CHEN Yao, LI Yunhong, TIAN Songyan, et al. Phylogenetic structure and species diversity of a Taxus cuspidata community [J]. Journal of Forest and Environment, 2022, 42(5): 498 − 505.
    [23]
    OU Jiande, OU Jialin, WU Haoyu, et al. Selection of single tree biomass model and canopy structure regulation of Taxus yunnanensis [J]. Journal of Northwest Forestry University, 2022, 37(5): 194 − 201.
    [24]
    OU Jiande, WU Zhizhuang. Relationships between management measures and terrain factors of Taxus wallichina var. mairei artificial pure forest and its forking [J]. Journal of Northeast Forestry University, 2016, 44(9): 24 − 28.
    [25]
    YANG Hong, BAI Youzhi, XING Zhen, et al. Effects of fertilization on physiology indexes and stoichiometric characteristics of Taxus himalayana [J]. Southwest China Journal of Agricultural Sciences, 2022, 35(8): 1810 − 1817.
    [26]
    ZAN Jianchun, ZHENG Jinxuan, WANG Yong, et al. Distribution prediction and evaluation of Taxus wallichiana in Yunnan based on ecological niche modeling [J]. Forest Inventory and Planning, 2022, 47(3): 40 − 46, 84.
    [27]
    XIONG Xingyao, GOU Junbo, LIAO Qinggang, et al. The Taxus genome provides insights into paclitaxel biosynthesis [J]. Nature Plants, 2021, 7(8): 1026 − 1036.
    [28]
    CHENG Jian, WANG Xiao, LIU Xiaonan, et al. Chromosome-level genome of Himalayan yew provides insights into the origin and evolution of the paclitaxel biosynthetic pathway [J]. Molecular Plant, 2021, 14(7): 1199 − 1209.
    [29]
    WANG Dandan, SUN Dan, LI Xiaohong, et al. Population genetic structure of Taxus cuspidata based on itochondrial Cytb and COI gene [J/OL]. Molecular Plant Breeding, 2023[2023-10-21]. http://link.cnki.net/urlid/46.1068.S.20231020.1149.004.
    [30]
    HU Die, HE Xinru, MA Yongzheng, et al. Effects of ABT on the morphogenesis and inclusions of Taxus chinensis (Pilger) Rehd f. Baokangsis cutting rooting [J/OL]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49(2): 12200[2023-06-02]. doi: 10.15835/nbha49212200.
    [31]
    WANG Tao. Study on Taxus chinensis var. Seedling Raising Techonlogy [D]. Harbin: Northeast Forestry University, 2019.
    [32]
    XIAO Yao, CHU Xiuli, WANG Xiuhua, et al. Effect of slow-release fertilizer loading on growth and N, P accumulation of container-growing seedlings for three precious tree species [J]. Forest Research, 2015, 28(6): 781 − 787.
    [33]
    OU Jiande, WU Zhizhuang. Optimized medium ingredient with a light medium for Taxus chinensis var. mairei potted plants [J]. Journal of Northeast Forestry University, 2015, 43(9): 52 − 55, 89.
    [34]
    LIU Tao, ZUO Qiuyu, YANG Mei. Initial effects of interplanting Taxus baccata Linn.,Manglietiastrum sinicum, Manglietia lucida on growth of Chinese fir and soil physicochemical properties [J]. Journal of Beihua University (Natural Science), 2020, 21(4): 532 − 536.
    [35]
    YANG Xue, LI Yuzheng, LI Chunying, et al. Enhancement of interplanting of Ficus carica L. with Taxus cuspidata Sieb. et Zucc. on growth of two plants [J]. Agriculture, 2021, 11(12): 1 − 14.
    [36]
    ZHU Weilin, XU Chao, LONG Ting, et al. Constraints on the maintenance of wild Taxus cuspidata populations based on regression conservation [J]. Chinese Journal of Applied Ecology, 2023, 34(8): 2133 − 2141.
    [37]
    LONG Ting, CHEN Jie, YANG Lan, et al. Characteristics and environmental interpretation of communities of Taxus cuspidata Sieb. et Zucc., a plant species with extremely small populations [J]. Plant Science Journal, 2020, 38(1): 77 − 87.
    [38]
    DONG Mingzhu, WANG Litao, LÜ Mujie, et al. Communities and protection strategy of endangered species wild Taxus cuspidata [J]. Bulletin of Botanical Research, 2020, 40(3): 416 − 423.
    [39]
    YANG Yulin, SONG Xuedong, DONG Jingxiang, et al. Resources and distribution of Taxus in the world [J]. Forest Engineering, 2009, 25(3): 5 − 10.
    [40]
    LIAN Min. The Phylogenetic Structure and Quantitative Analysis and Ordination of Taxus chinensis var. mairei Community, in Shanxi Province [D]. Taiyuan: Shanxi Normal University, 2021.
    [41]
    LIU Dan, GUO Zhongling, CUI Xiaoyang, et al. Comparison of five associations of Taxus cuspidata and their species diversity [J]. Biodiversity Science, 2020, 28(3): 340 − 349.
    [42]
    NIU Yingying, ZHANG Zidong, LIU Yanhua, et al. Mammal diversity and prey resource of Amur tiger in Heilongjiang Muling Japanese Yew National Nature Reserve [J]. Chinese Journal of Wildlife, 2021, 42(2): 355 − 362.
    [43]
    YU Chuyong. Effects of intercropping under Chinese fir forests on early growth traits of Taxus chinensis and Phoebe bournei [J]. South China Agriculture, 2022, 16(14): 23 − 25.
    [44]
    FAN Xiaohong, WANG Litao, AN Juanyan, et al. Diameter structural distribution of coniferous broad-leaved mixed forest in Taxus cuspidate habitat in Changbai Mountain [J]. Bulletin of Botanical Research, 2021, 41(1): 89 − 97.
    [45]
    LUO Ning, OU Jiande, WU Zhizhuang. Evaluation of habitat quality for Taxus wallichiana var. mairei in Fujian Province [J]. Journal of Southwest Forestry University (Natural Sciences), 2016, 36(6): 52 − 57.
    [46]
    WANG Gang, LIU Qian, LI Yaping, et al. Effects of altitude, slope direction, and light on growth and main taxane compounds of Taxus madia × T. yunnanensis ‘Yunman’ [J]. Chinese Journal of Applied and Environmental Biology, 2023, 29(3): 711 − 719.
    [47]
    CHEN Han, ZHANG Chao, YU Shuquan. Potential distribution area of Taxus chinensis var. mairei in Liandu District based on a stacking algorithm [J]. Journal of Zhejiang A&F University, 2019, 36(3): 494 − 500.
    [48]
    LIU Jianfu, WANG Mingyuan, YANG Chen, et al. Growth and physiological characteristics of Taxus wallichiana var. mairei seedlings under different site conditions [J]. Chinese Journal of Ecology, 2012, 31(12): 3011 − 3017.
    [49]
    LI Wenyang, LI Xiangyang, LIU Xiuqing, et al. Effects of drought priming on growth and physiological indexes of Taxus wallichiana var. mairei [J]. Journal of Arid Land Resources and Environment, 2023, 37(3): 129 − 136.
    [50]
    LI Wenyang, CHEN Yafei, HE Hui, et al. Effects of high temperature exercise on growth and physiological and biochemical characters of Taxus wallichiana var. mairei under drought stress [J]. Shandong Agricultural Sciences, 2023, 55(9): 57 − 63.
    [51]
    LUO Qianqian, ZHOU Zhichun, DENG Zongfu, et al. Variation law of phenotypic traits and nitrogen and phosphorus stoichiometric characteristics of leaf of natural populations of Taxus wallichiana var. mairei [J]. Journal of Plant Resources and Environment, 2021, 30(1): 27 − 35.
    [52]
    WANG Dandan, LI Xiaohong, ZHANG Yanwen, et al. Effects of physiology and secondary metabolism between wild and cultivated species of Taxus cuspidata under environmental stress [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2022, 31(8): 958 − 968.
    [53]
    ZHANG Yuyu, WANG Jinxin, MA Xu, et al. Effects of rewatering on chlorophyll content of Platycladus orientalis seedlings after drought [J]. Journal of Southwest Forestry University (Natural Sciences), 2021, 41(5): 10 − 17.
    [54]
    WEN Jiakang, XING Changjie, WANG Yaping, et al. Effects of different drought stresses and spermidine rehydration on physiological characteristics of Taxus chinensis var. mairei [J]. Water Saving Irrigation, 2023(1): 109 − 115.
    [55]
    DUAN Junpeng, WANG Feng, ZHANG Weijun, et al. Responses of radial growth to climate factors in a wild plant with extremely small populations, Taxus fuana [J]. Acta Ecologica Sinica, 2022, 42(24): 10276 − 10287.
    [56]
    XU Bochao. Effects of Fertilization on the Ecological and Physiological Characteristics in Japanses Yew [D]. Harbin: Northeast Forestry University, 2013.
    [57]
    JIAN Ronglin. Effects of different fertilizer application techniques on the growth of young Taxus chinensis stands [J]. Forest Resources Management, 2007(6): 61 − 63.
    [58]
    GUO Xiangquan. The nutrient dynamic analyses of Taxus chinensis var. mairei seedlings in different growth periods and with tertilization measure [J]. Journal of Fujian Forestry Science and Technology, 2001(4): 18 − 20, 24.
    [59]
    DOU Yongjie. Effects of planting density and nitrogen fertilizer application on the growth of Taxus chinensis seedlings [J]. Contemporary Horticulture, 2023, 46(8): 12 − 13, 18.
    [60]
    OU Jiande, WU Zhizhuang. Growth and stem form quality with pruning in Taxus wallichiana var. mairei [J]. Journal of Zhejiang A&F University, 2017, 34(1): 104 − 111.
    [61]
    SUN Zhipeng, PU Qingyu, SHANG Pengcheng, et al. Cumulative distribution regularities of the active component 10-DAB Taxus yunnanensis [J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(5): 1161 − 1167.
    [62]
    SUN Zhipeng, WANG Gang, WU Huawei, et al. Effects of exponential fertilization on active component 10-DAB and nutrient accumulation of Taxus madia×Taxus yunnanensis ‘Yunman’ seedlings [J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(9): 1561 − 1569.
    [63]
    LI Jun, WANG Xiuhua, CHU Xiuli, et al. Substrate proportion for growth and N/P absorption in two-year-old container seedlings of three precious tree species [J]. Journal of Zhejiang A&F University, 2017, 34(6): 1044 − 1050.
    [64]
    JIA Dan, WANG Qiyao, XIAO Yufei, et al. Study on soil bacterial diversity of natural Taxus cuspidata forest [J]. Forest Engineering, 2022, 38(3): 26 − 31, 39.
    [65]
    ZHANG Yuhao, YAO Sumei, MENG Li, et al. Effect of regulating soil matric potential under drip irrigation on physiological characteristics and secondary metabolite contents of Taxus chinensis [J]. Agricultural Research in the Arid Areas, 2021, 39(5): 129 − 137.
    [66]
    CAO Yang. Effect of Different Seedling-Raising Measures on Growth Characteristics of Seedlings and Cutting Seedlings of Taxus chinensis var. mairei [D]. Hefei: Anhui Agricultural University, 2019.
    [67]
    SONG Yaobin, XU Li, DUAN Junpeng, et al. Sex ratio and spatial pattern of Taxus fuana, a wild plant with extremely small populations in Tibet [J]. Biodiversity Science, 2020, 28(3): 269 − 276.
    [68]
    LUO Qianqian, LI Fengqing, YU Longhua, et al. Genetic diversity of natural populations of Taxus wallichiana var. mairei [J]. Conservation Genetics, 2021, 23(8): 1 − 12.
    [69]
    ZHANG Youjun, SCOSSA F, FERNIE A R. The genomes of Taxus species unveil novel candidates in the biosynthesis of toxoids [J]. Molecular Plant, 2021, 14(11): 1773 − 1775.
    [70]
    KUI Ling, MAJEED A, DONG Yang. Reference-grade Taxus genome unleashes its pharmacological potential [J]. Trends in Plant Science, 2022, 27(1): 10 − 12.
    [71]
    FENG Meijing, ZHANG Kaikai, CHEN Duanfen, et al. Application of multi-omics technique in Taxus spp. research [J]. Molecular Plant Breeding, 2022, 20(3): 840 − 846.
    [72]
    ZHANG Jiachun, WU Xianliang, ZHANG Zhenming, et al. Eco-stoichiometric characteristics of soil plantsystem of Taxus wallichiana under multi factor driving [J]. Polish Journal of Environmental Studies, 2021, 30(6): 5357 − 5366.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(402) PDF downloads(40) Cited by()

Related
Proportional views

Research progress on influencing factors of growing characteristics of Taxus spp.

doi: 10.11833/j.issn.2095-0756.20230495

Abstract: As one of the precious afforestation trees in China and the source of raw materials for the industrial production of the first-line anticancer drug paclitaxel, Taxus spp. are now widely distributed. However, the ability to develop efficient cultivation technology of Taxus spp. is compromised for lack of systematic analysis of factors affecting the growth characteristics. This study has explored the growth characteristics, including morphological/structural parameters and physiological and biochemical parameters the measurement methods of each parameter. The influencing factors of the growth characteristics is mainly focused on the growth characteristic parameters, the genetic factors, the cultivation conditions and the environmental factors. The growth characteristics are evaluated by morphological structure and physiological and biochemical indicators. Genetics is the main factor that determines the shape of the cultivated trees, and Taxus species with large crown widths are suitable for artificial afforestation. Environmental factors, such as site conditions, moisture, fertilizers, soil, light, and temperature, have significant impacts on the growth of Taxus trees. The future research, involving genomics, metabolomics, multi-feature correlation studies, protection of genetic resources, stress resistance studies and ecosystem service functions, will further promote the protection and utilization of Taxus. [Ch, 72 ref.]

CHEN Yong. Research progress on influencing factors of growing characteristics of Taxus spp.[J]. Journal of Zhejiang A&F University, 2023, 40(6): 1366-1375. doi: 10.11833/j.issn.2095-0756.20230495
Citation: CHEN Yong. Research progress on influencing factors of growing characteristics of Taxus spp.[J]. Journal of Zhejiang A&F University, 2023, 40(6): 1366-1375. doi: 10.11833/j.issn.2095-0756.20230495
  • 红豆杉Taxus spp.别名紫杉、观音杉、红豆树等,是红豆杉科Taxaceae红豆杉属Taxus植物的总称[1],是新生代第四纪冰川时期的古老珍贵树种[2],1996年被联合国教科文组织列入全球珍稀濒危植物,1999年被中国列为一类珍稀濒危野生植物。红豆杉是天然稀有抗癌植物,其根、茎、叶等都可入药,由红豆杉提取的紫杉醇具有抗肿瘤、抗氧化、排毒、消炎及镇痛作用[3],其新颖的化学结构、广泛的生物活性、独特的作用机制使其成为研究重点[4]。同时,红豆杉是中国南方主要的珍贵用材造林树种,且造型优美,具备多重观赏价值,在园林绿化中有着广泛的应用前景[5]。。

    红豆杉栽培地主要在中国亚热带地区及温带南部地区[6]。目前,红豆杉的栽培和造林面临着艰巨的挑战。原因包括:其一,红豆杉种子对萌发环境要求苛刻,对水分、土壤和气候等有特殊要求,使天然条件下红豆杉再生困难;其二,红豆杉生长缓慢,需要几十年才能成熟;其三,乱砍滥伐导致了资源匮乏。所以,人工栽培红豆杉已成为红豆杉可持续发展的关键[7]。研究影响红豆杉生长特征的因素,是探寻科学、合理的人工栽培种植方式的重要基础。

    目前红豆杉的研究主要集中在化学成分提取[8]、种群结构分布[9]、生态功能分析[10]、基因功能[11]和人工繁育[1213]等方面,但其形态结构、生理生化生长特征的研究还较少见,特别是缺乏对影响红豆杉生长特征的因素及其互作效应综合分析。深入了解红豆杉生长特征的影响因素,可以优化生长环境、调整林分结构和增加土壤肥力,从而提高红豆杉的质量和产量[14];可为生态系统的恢复和保护提供科学依据,促进生物多样性的保护和生态系统的健康发展[15];也有助于深入了解其生物学特性和药用活性成分的合成规律,从而进一步拓展红豆杉的应用价值[16]。本研究对红豆杉形态结构参数和生理生化参数等生长特征及其主要影响因素进行综述,以期为红豆杉科学管理与精准培育提供理论依据和实践指导。

    • 红豆杉的形态结构参数包括树高、地径、胸径、干径、冠幅、树梢长度、树梢直径、枝条数量、株数、树皮颜色、叶片长度、叶片宽度、叶色、叶倾角、叶空间分布等[17]。树高、冠幅、树梢长度等参数采用塔尺、树木测高仪等测定。地径、胸径、干径、树梢直径采用卷尺、软尺、游标卡尺、树木测径仪等测定。叶片长度、叶片宽度等用尺测定,树皮颜色、叶色用比色卡测定,叶倾角、叶空间分布等用量角器测定[18]。在当前造林实践中,通过测定红豆杉表征形态结构诸等参数,可以快速地评价红豆杉人工林生长状况。

    • 红豆杉的生理生化参数包括光合速率、叶绿素含量、紫杉醇含量等。叶片光合速率采用红外线二氧化碳分析仪、光合测量仪等测定。叶片叶绿素含量采用叶绿素测量仪测定[19]。紫杉醇含量用高效液相色谱仪测定。通过测定红豆杉生理生化指标,可以准确把握红豆杉生长状态,为后续红豆杉生长特征影响因素的研究提供科学、稳定的分析参数。

    • 红豆杉的树冠、树枝、叶等生长特征差异与遗传有关。中国有5种红豆杉,包括中国红豆杉T. chinensis、东北红豆杉T. cuspidata、云南红豆杉T. yunnanensis、南方红豆杉T. wallichiana var. mairei、西藏红豆杉T. wallichiana[20]。中国红豆杉高可达20 m,具有狭长的塔形冠,叶长而扁,条形针叶状,深绿色,叶长大约1.5~3.0 cm,叶尖略尖,叶基宽而扁平,边缘微卷曲或不卷曲[21]。东北红豆杉树高度不超过2 m,树形紧凑且矮小,通常呈圆形或多枝丛生,叶呈针叶状,长而稍扁,叶长1~2 cm,叶排成不规则的二列,斜上伸展,约成45°“V”形开展,形状为条形,通常直,稀微弯,上下几等宽[22]。云南红豆杉树高可达25 m,树形挺拔,枝叶茂盛伸展,冠幅宽大,叶片质地薄,披针状条形或条状披针形,叶长1~3 cm,常呈弯镰状,排列较疏[23]。南方红豆杉树高10~20 m,具有挺拔的树干和树冠,树枝水平分枝,叶片宽长,呈条形或披针状条形,多为弯镰状,边缘不卷曲,叶长2~4 cm,表面光滑[24]。西藏红豆杉叶片质地较厚,形状为条形,较密地排列成彼此重叠的不规则两列,叶形直[2526]。不同种红豆杉在形态特征方面有着巨大差异,这说明遗传因子在红豆杉生长发育过程中发挥了决定性的作用。近年来,多种红豆杉的全基因组序列被发表,大量差异遗传位点也得到了解析,这为解析控制红豆杉生长发育的遗传因子打下了坚实的基础[2729]。要根据种植地区、气候、造林用途选择合适的红豆杉种,如在原料林培育模式中,宜选用冠幅宽大的云南红豆杉。

    • 红豆杉育苗方式有直播法、深盘播种法、盆栽法、穴盘育苗法等[30]。直播法是将红豆杉种子直接播撒在育苗床或种植地上,简单易行,繁殖系数高,但因红豆杉种子有深度休眠特性,自然条件下易受环境因素的影响,且对红豆杉的生长特征影响较大[31]。深盘播种法是将种子播种在深盘中,在苗期逐步移栽到较大的容器中,优点是红豆杉的苗木根系发育较好,生长速度较快,能耐较大风力,同时,抗旱能力也较强[32]。盆栽法是将种子直接栽种到盆栽土中,有利于生长环境的控制,盆栽红豆杉苗木受限于盆的体积在早期生长比较缓慢,但经过适当的管理,可以在后期获得良好的生长特征表现[33]。穴盘育苗法是将红豆杉种植在多孔的穴盘中,随后将整个穴盘一同移栽到目标地,能更好地保护红豆杉根系,减少移栽造成的伤害,对促进整体生长有积极的影响[31]。由于各地自然条件不同,在选择育苗方式上需要因地制宜。在合适土壤条件下,适合使用直播法,可以有效降低成本,减轻工作量。在较为恶劣的自然环境下,可使用深盘播种法,以降低环境对红豆杉幼苗生长发育的影响。在土壤条件差、干旱等不利自然条件下,适合使用盆栽法和穴盘育苗法等更能保护根系的育苗方法。

    • 林分类型是红豆杉野生种群维持与更新的关键制约因素[34],红豆杉一般生长于针阔混交林、阔叶混交林、阔叶纯林、多龄级林分、原生林等林分。红豆杉多散生于油松Pinus tabuliformis+栗树Castanea mollissima林、臭冷杉Abies nephrolepis+紫椴Tilia amurensis林、杉木Cunninghamia lanceolata林、柏木Cupressus funebris林、杂木林、马尾松Pinus massoniana林、兴安鱼鳞云杉Picea jezoensis+臭冷杉林、红松Pinus koraiensis+紫椴林、红松+云杉Picea asperata+冷杉Abies fabri林、红松+槭树林、红松+风桦Betula costata林等针阔混交林中,这种林分类型提供了适宜的土壤环境和光照条件,气候适应性强,为红豆杉的成长提供了较好的生境[35]。研究表明:不同林分类型下东北红豆杉更新数量差异显著,臭冷杉+紫椴林下东北红豆杉种群更新数量明显多于杂木林[36],红松-紫椴林内的东北红豆杉种群生长最佳,分布个体也最多[37]。红豆杉对生境的要求较为严苛,多生长于阴坡、半阴坡及沟谷,喜阴忌晒,一般为天然散生,以“混合、复层、异龄”为主要特征,在天然林中罕见纯林,也极少有团块分布[3839]。红豆杉群落的谱系多样性指数与物种丰富度指数存在正相关关系,物种多样性对群落的结构类型和组织水平有一定影响[22, 4041]。上述研究表明,较高的生物多样性和完整的生态系统是保障野生红豆杉种群的关键,在造林过程中,选择合适的林分类型有助于红豆杉稳定生长发育。

    • 林分密度的适度增加对红豆杉更新具有一定的促进作用,林分由低密度增到中密度时,红豆杉更新幼苗数量显著增加,因为较高的林分密度会使林下光照强度减小,从而提供遮阴环境,有助于提升红豆杉幼苗的存活率与生长速度[42]。但林分密度太高时,会限制阳光的透入,减少红豆杉叶片的光合作用和能量获取。郁闭度对杉木林下套种红豆杉的生长特征有显著影响,杉木间伐后林分保留郁闭度为0.55~0.60时,最有利于其林下套种的南方红豆杉生长发育[43]。林分密度较高的森林具有较高的湿度和降雨截留能力,可以提供更加湿润的生境条件,这对红豆杉这种喜湿植物来说是有益的[44]。然而,林分密度较高时,树木之间的竞争会增加,争夺有限的水分、养分和空间资源,导致红豆杉的生长受到限制,树形狭窄、枝条细弱,甚至死亡。另外,林分密度较高时,红豆杉病虫害的传播和发生风险可能会增加,因为密集的林分形成的环境有利于寄生虫和病原体的繁殖[10]。因此,适当的林分密度可以减少竞争压力,有利于红豆杉的生长和发育[43]。综上可见,适度提高林分密度对于红豆杉生长特征是有益的。但是,林分密度的确定因红豆杉种类、生态环境和管理目标而异,科学合理的林分管理措施可以提高红豆杉的生长质量和产量,保护该树种的可持续发展。

    • 红豆杉多生长于海拔300~1 600 m的山坡、沟谷、河边的阴湿处,在海拔2 000~3 000 m的深山丛林中也可见。已有研究表明不同坡位、坡向、海拔对红豆杉生长均有显著影响[45]。不同地形坡位对红豆生长的影响存在差异,红豆杉幼苗成活率在山谷和坡下部较高,中坡次之,坡上部、山顶最差,中下坡红豆杉各项特征指数更高、长势更佳[4546]。原因是在海拔的影响下,上坡位光照充足,但土壤肥力和水分条件较差;中坡位具备的光照、水分、土壤等各条件适中;下坡位水分及土壤情况最优。海拔是影响红豆杉生长的重要因素,有研究显示,影响南方红豆杉分布的最重要环境因子就是海拔,其重要性远高于年平均降水量、归一化差分植被指数、年平均最少降水量和年平均气温等[47]。海拔和红豆杉长势成反比,随着海拔的升高,红豆杉的株高、干径、冠幅和光合速率呈逐渐降低的趋势。另外,坡向也是影响红豆杉幼苗生长的重要立地条件,坡向主要通过不同的光照强度、风力、水分等因素对红豆杉的生长产生影响,在海拔相近的样地,半阴阳坡红豆杉生长特征优于阴坡,阴坡红豆杉生长特征显著优于阳坡,原因在于半阴阳坡、阴坡更能满足红豆杉喜阴忌晒的生物学特性,但过于荫蔽或过强光照反而会影响红豆杉生长发育[46, 48]。综上所述,在红豆杉造林立地条件选择中,坡位、坡向、海拔等是首要考虑的参数。中下坡、低海拔、北坡向的立地条件最适合红豆杉造林。

    • 在水分不足的情况下,红豆杉通过减少叶面积、控制蒸腾速率来减少水分的丧失,累积更多溶质降低细胞渗透率来应对干旱胁迫[4950]。不同干旱程度对红豆杉的影响不同,对于形态结构而言,轻度干旱胁迫下,红豆杉幼苗新梢长度和直径生长量均增大,即适度干旱胁迫对促进红豆杉生长量提升有一定帮助,可增强植株抗旱性能;但是当干旱胁迫程度加剧到中度和重度时,新梢生长量减少,即通过降低形态结构发育来维持生长[51]。对于生理生化参数而言,在低强度和短时间的干旱胁迫作用下,红豆杉产生应激反应,使叶绿素含量显著升高[52]。而当干旱胁迫延长到3周左右时,叶绿素含量经历短暂的下降,此时随着干旱时间持续增加,土壤干旱程度加深,红豆杉开始适应干旱胁迫[53]。干旱胁迫持续至后期,重度胁迫下的红豆杉叶绿素总含量迅速下降,此时红豆杉生理调节能力可能已达极限,造成不可逆失活[54]。在相对干旱的区域,红豆杉生长特征通常与降水量正相关[55]。综合可见,适度干旱有利于提升红豆杉生物量,这对提高红豆杉经济价值具有正向作用。

    • 红豆杉对肥料要求较高,尤其对氮、磷、钾等营养元素需求较大,正确的施肥方式能提高土壤养分含量,使红豆杉更好地吸收养分,促进生长发育,达到提高苗木质量的目的。当氮肥施用量适当增加时,红豆杉幼苗的冠幅、苗高、干径、新生枝条数量和叶绿素含量均增加[56]。施肥方法及施肥种类也会显著影响红豆杉的地径和树高等形态结构生长特征,混合施用硫酸钾复合肥和发酵牛粪可显著提高红豆杉幼林生长量[2557]。在不同生长期施肥对红豆杉的促进效果不同。对南方红豆杉而言,在生长后期施肥有利于氮、钙及微量元素的积累,显著提高生物量和根冠比等参数[58]。此外,红豆杉幼苗种植密度也会影响氮肥施用的效果。施用相同氮肥条件下,当种植密度由1.0万株·hm−2增加至2.0万株·hm−2时,红豆杉幼苗的树高和冠幅均呈显著降低趋势[59]。因为种植密度过大会降低光照,从而减小红豆杉的干径;种植密度过小,充裕的光照会促进新生枝条的发育,也会让红豆杉干径变小[5960]。近年来,指数施肥方式被应用到红豆杉苗期养分精准调控与高效培育中,指数施肥方式和传统的平均施肥方式相比,更能促进红豆杉幼苗的株高、地径等生长,能更大程度地满足红豆杉在不同生长时期对养分的需求,且生长速率稳定[61]。另外,在相同施肥量下,指数施肥方式下的红豆杉幼苗各部位的氮、磷、钾含量均大于传统的平均施肥方式,这是由于红豆杉苗木生长后期存在“奢养消耗”现象,指数施肥方式增加了其苗木体内更多的养分承载[6263]。因此,选取科学合理的施肥方式对提高肥料利用效率和促进红豆杉健康生长非常必要。

    • 土壤质量与红豆杉的生长密切相关[64]。其一,红豆杉偏好中性到酸性土壤,最适pH为4.5~7.5,如果土壤的pH过高,可以通过添加酸性肥料或者改良土壤的方式来降低土壤的pH[65]。其二,红豆杉为适应具有适度排水性的土壤,不适应过湿或过干的土壤,过湿的土壤可能导致根系缺氧和腐烂,影响植物的正常生理功能,过干的土壤会限制根系的水分吸收能力。其三,质地疏松的土壤有利于根系的生长,便于水分和养分的渗透与吸收。重壤、黏土、砂土等都不适合红豆杉的生长。草炭土、珍珠岩、骨粉和少量土壤混合,有利于红豆杉生长,对于质地太重的土壤,可以通过添加有机物质或者砂土改良土壤,提高土壤的透气性和排水性[22]。其四,土壤有机质可以提供养分和保持土壤湿润度,有助于红豆杉的生长。综上所述,在红豆杉的种植和管理过程中,选择微酸性、具有适度排水性、轻质、含有丰富有机质的土壤,可以促进红豆杉的生长。

    • 光照、温度等气候条件是影响红豆杉生长的重要因素。研究发现3年生以下的红豆杉幼苗对光照极为敏感,更适宜荫蔽的环境,因此需对其适当遮光。南方红豆杉1年生实生苗的最适遮光率为65%~75%,2年生幼苗的最适遮光率为45%左右,最适遮光率下苗木保存率最高;苗高和地径大小受光照影响也较为明显,均随遮光率增加呈现增加趋势,超过最适遮光率后随遮光率增加而降低[46, 66]。红豆杉的生长与温度的相关性较为复杂。在降水量充足、气候较为湿润的南方大部分区域,分布在高海拔区域的红豆杉径向生长与年平均气温显著正相关,与各月气温也有较高的正相关性,但低海拔区域红豆杉对气温的变化却不敏感[55]。在高海拔区域,环境温度相对降低,成为影响红豆杉径向生长的限制因子,较高的气温可使红豆杉免受低温胁迫,安全度过休眠期,并能提升在生长季的细胞生理活动和光合效率,加速生长;在低海拔区域,温度条件本身较好,红豆杉径向生长与温度的响应关系弱于高海拔区域。温度超过红豆杉的最适温度范围上限,会导致红豆杉加快生理活动,消耗大量营养物质,影响其生长[55, 67]。因此,在红豆杉造林实践中,选择光照和温度适合的区域有利于红豆杉幼林的生长发育。

    • 红豆杉生长特征影响因素研究的新技术主要包括基因组学技术、代谢组学技术、多特征相关性研究技术。随着基因组测序技术的迅速发展,3种不同红豆杉的全基因组序列已发表[2729],这表明红豆杉生长特征研究更加注重对红豆杉基因组的利用[68]。基因组学研究可以揭示红豆杉的基因组结构、功能基因和调控机制,有助于理解红豆杉生长特征形成的基本原理[6970]。代谢组学是研究生物体代谢产物组成和变化的科学,可以实现对红豆杉次生代谢产物的高通量分析和识别,发现潜在的生物活性物质和药用价值,有助于发掘红豆杉的药用和化工潜力[71]。红豆杉形态结构特征各参数之间、生理生化特征各参数之间、形态结构特征和生理生化特征之间存在着相关性,比如树高和胸径、叶绿素含量和氮含量、叶片颜色和叶绿素含量,因此,运用统计方法对各因素进行相关性分析能全面解析红豆杉生长机制。

      红豆杉资源的保护和合理利用是未来研究的重点。对不同地理种群的遗传多样性、基因流动和种群结构等方面开展研究,可为红豆杉的保育和种质资源的合理利用提供科学依据[72]。红豆杉具有较强的环境适应性,可聚焦于红豆杉的耐旱、耐寒、耐病虫害等抗逆性机制,揭示其适应逆境的生理和分子调控机制,为抗逆基因的克隆、功能研究和应用提供新思路[68]

      综上所述,作为珍贵树种抚育以及生态育林的核心主体,系统分析红豆杉生长特征影响因素将有助于发展红豆杉新型高效栽培技术。未来红豆杉生长特征影响因素研究的发展将更加多样化和综合化,包括基因组学、代谢组学、多特征相关性、资源保护、抗逆性以及生态系统服务功能等。这些研究将推动红豆杉的保护与利用,为更好地了解和利用这一珍贵资源提供科学支持。

Reference (72)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return