-
人类活动引发的碳排放是全球温室气体排放的主要来源[1−2]。为有效应对气候变化,2020年中国宣布将力争在2030年前实现碳达峰,2060年前实现碳中和[3−4]。农业是第二大温室气体排放源[5−7],种植业是整个农业的核心,包括粮食作物、经济作物、饲料作物和绿肥等的生产[7−8]。中国作为一个农业大国,2000—2020年全国种植业年均碳排放量为2.33 亿t[9],占中国温室气体排放总量的16%~17%[10−13]。种植业在迅速发展的同时,碳排放量也在逐渐增加[14−15],并呈现出不同的时空演变特征。2021年,为进一步减少农业碳排放,中国明确提出了改善农业生态系统、增强减排固碳能力的发展目标。种植业低碳化发展既是重要举措,又是潜力所在。在未来严峻的减排任务下,全面掌握种植业的碳排放现状、时空演变特征以及影响因素,对中国实现农业的低碳转型发展和农业现代化具有重要的意义。
目前,与农业碳排放相关的研究集中在碳排放指标体系构建、测算及影响因素分析等方面。李波等[16]、张露等[17]、尚杰等[18]认为:种植业碳排放源主要包括农用物资如化肥、农药、农用薄膜使用过程中的碳排放,翻耕、灌溉等过程中柴油、电力等能源消耗产生的碳排放;黄和平等[19]将种植业碳排放分为农业物资投入、农田土壤利用、秸秆焚烧三大类。在测算方法方面,张广胜等[20]应用生命周期评价法(LCA)计算农业碳排放量;高晨曦等[21]采用排放因子法测算了河南省的农业碳排放量。在农业碳排放影响因素的研究上,丁宝根等[14]等运用对数平均权重迪氏指数模型(LMDI)探析中国种植业碳排放的主要驱动因素,得出农业生产结构、农业产出水平和农业劳动力规模是碳排放增加的重要驱动因素;刘丽辉等[22]基于STIRPAT 模型分析了广东农业碳排放强度的影响因素。这些研究为农业低碳发展提供了参考依据,但从研究区域看,已有研究大多集中在国家、省域层面。由于经济发展、自然禀赋差异,不同地区在农业减排措施上会有所不同;从研究对象看,多以山东、河南等农业大省为主,针对经济发达地区种植业碳排放的研究较少。作为农业的重要组成部分,种植业的碳减排研究尤为重要。
浙江省是中国经济最活跃的省份之一,人口众多,耕地面积少,农产品产量的提高高度依赖化肥、农药等化学品的投入,环境污染严重,因此合理估算浙江省各市种植业碳排放量,对制定有效的减排措施具有重要意义,也可为评估种植业碳减排措施成效及碳达峰提供依据。此外,浙江省地形复杂多样,不同地区农业生产情况相差较大,各地区地理位置、功能定位、农业发展水平的不同导致了农产品结构和经营管理措施的多样性,从而在空间上呈现出种植业碳排放差异。本研究在估算2006—2021年浙江省种植业碳排放量的基础上,分析浙江省11个市种植业碳排放在时间上的变化和空间上的异质性,运用LMDI模型从经济、社会和人口的角度分析浙江省种植业碳排放变化的驱动因素,并使用GM(1, 1)灰色模型预测2022—2040年浙江省各市种植业碳排放的发展趋势,以期为浙江省种植业碳减排工作提供有益的参考。
-
参考联合国政府间气候变化专门委员会 (IPCC)发布的碳排放系数[24]测算浙江省种植业碳排放量。浙江省种植业碳排放来自于多个排放源,包括农用薄膜、化肥、农药、农业机械总动力、农用柴油及灌溉[25],且不同排放源的碳排放量计算方式不同(表1)。碳排放量为所有排放源的碳排放量之和,计算公式如下:
碳排放源 计算公式及碳排放系数 资料来源 农用薄膜 Em = α1Gm,α1 =5.180 0 kg∙kg−1 南京农业大学农业资源与生态环境研究所[26] 化肥 Ef=α2Gf,α2 =0.895 6 kg∙kg−1 美国橡树岭国家实验室[26] 农药 Ep=α3Gp,α3 =4.934 1 kg∙kg−1 美国橡树岭国家实验室[26] 农业机械总动力 Ee=α4Se +α5Ge,α4 =16.47 kg∙hm−2,α5 =0.180 0 kg∙kW−1 王梁等[27];朱巧娴等[28] 农用柴油 Ed=α5Gd,α5=0.592 7 kg∙kg−1 联合国气候变化政府间专家委员会[26] 灌溉 Eu=α6 Si,α6 =266.48 kg∙hm−2 段华平等[29] 说明:Gm. 农用薄膜使用总量(kg);Gf. 化肥使用总量(kg);Gp. 农药使用总量(kg);Se. 农作物种植面积(hm2);Ge. 农业机械总动力(kW);Gd. 农用机械柴油消耗量(kg);Si. 农田的有效灌溉面积(hm2)。Em、Ef、Ep、Ee、Ed、Eu分别为农用薄膜、化肥、农药、农业机械总动力、农用柴油和灌溉的碳排放量。 Table 1. Carbon emission calculation formula and carbon emission factors for each carbon emission source
式(1)中:E为种植业碳排放量;$ {E}_{i} $为第i种碳源的排放量;$ {T}_{i} $为第i 种碳源的使用量;$ {\delta }_{i} $为第i碳源的碳排放系数。
-
为了量化不同地区的碳排放差异,采用单位面积的种植业碳排放量表示不同地区的碳排放强度。计算公式为:
式(2)中:$ {{E}}_{{{\mathrm{c}}}{j}} $为第j个地区碳排放强度;$ {{E}}_{{j}} $为第j个地区种植业碳排放量;$ {{S}}_{{j}} $为第j个地区农作物种植面积。
-
作为研究能源环境问题常用的方法之一,LMDI模型相较于其他方法操作性和适用性更强,可以有效分析总体指标,保持各个分解指标之间的高度一致性,因此本研究参考刘杨等[5]、丁宝根等[14]的方法,将浙江省种植业碳排放影响因素分解为种植业生产效率、农业产业结构、地区产业结构、经济发展水平和人口数量等5个因素,进行影响因素驱动分析。具体分解如下:
式(3)~(7)中:C为浙江省种植业碳排放量(万t);Gc、Ga、Gz分别为浙江省种植业产值、农业产值、生产总值(亿元);P为浙江省总人口数量(万人);CI表示种植业生产效率,用单位种植业产值上的碳排放来表示,这是一个反指标因素,该指标越大,生产效率就越低;AI表示农业生产结构,种植业是农业中能源消耗的主体产业,在农业产出规模既定的情况下,种植业所占比例越大,碳排放也会越大,本研究用种植业在农业产值中的比例来表示;GI表示地区产业结构,反映该地区产业内部结构的优化程度,用农业产值占全省GDP的比例表示;EI表示地区经济发展水平,以人均GDP表示,经济发展水平高的地区,农业生产会更倾向于资本密集型[30],对农药、化肥等高碳农资的依赖度更高;P表示人口因素,人口规模的扩大必然带来能源消费水平的增加,以浙江省人口数量表示。
-
使用灰色预测模型GM(1, 1)预测2022—2040年浙江省的种植业碳排放量,其基本原理是用原始数据组成原始序列(0),再通过累加生成法生成序列(1),该步骤可以弱化原始数据的随机性,使其呈现更为明显的特征规律,对生成变换后的序列(1)建立1阶微分方程模型即GM(1, 1)模型[5−6]。
-
化肥施用量、农药用量、农用薄膜用量、农作物播种面积、农业机械总动力、有效灌溉面积、耕地面积、种植业产值、农业产值、全省生产总值及人口数据均来源于浙江省统计局发布的2007—2022年的《浙江统计年鉴》、浙江省各市统计局发布的统计年鉴以及自然资源统计公报。
-
基于灌溉、农业机械、柴油、化肥、农药、农用薄膜等6种碳排放源核算的2006—2021年浙江省种植业碳排放量、碳排放强度测算结果见图1。2006—2021年浙江省种植业碳排放量从2006年的870.89 万t减少至2021年的619.66 万t,年均减排率为−1.80%,累计排放总量为12 868.10 万t,年均排放量为804.26 万t。2006—2012年碳排放量处于比较稳定的状态,在870 万t上下波动,于2012年达到峰值(877.56 万t);2012—2021年为持续下降阶段,且下降趋势较为明显,从2012年的877.56 万t下降至2021年的619.66 万t,年均减排率为−2.94%。2006—2014年浙江省种植业碳排放强度呈波动上升,至2014年达到峰值(4.21 t·hm−2),2014—2021年持续下降,平均每年下降3.36%,2021年下降至3.08 t·hm−2。
浙江省种植业碳排放量及强度的变化趋势与国家的农业政策密不可分。2004年,政府开始对粮食种子及农机进行购买补贴,2006年,全面取消传统农业税[31]。在一系列政策措施的激励下,农药、农用薄膜等农资投入不断增加,农用机械消耗能源持续加大,在作物产量上升的同时,碳排放量及强度也稳步提高[9]。2013年后,浙江省推广使用有机肥,实施化肥减量增效,并积极发展绿色无公害农业,在全国率先提出“肥药两制”改革,健全化肥农药源头管理管控机制,为全国碳减排提供“浙江方案”。2014年开始,浙江省种植业碳排放强度开始下降,种植业碳排放量得到有效控制。
就碳排放结构而言,2006—2021年化肥始终是种植业碳排放的首要来源,平均占比达到45.32%,引起的碳排放量在2006—2013年呈缓慢下降趋势,2014—2021年下降幅度较大,下降了102.44万t,减少了26.15%。其次是农业机械总动力和柴油,平均占比分别为28.03%和14.43%。2006—2013年,农业机械总动力引起的碳排放量稳定,年均排放量维持在260 万t。期间浙江省耕地面积不断减少,农业机械化水平不断提高,耕作机械、拖拉机、脱粒机大量应用,在提高农业生产效率的同时消耗了大量能源,使这几年的碳排放量在耕地面积持续缩减的情况下依旧保持稳定[32];2014—2021年碳排放量呈迅速下降趋势,年均下降13.9 万t,占比从2013年的29.88%下降至21.79%。因其他碳排放源排放量的下降,柴油的碳排放量比例不断上升,2021年达16.85%。农药、农用薄膜、灌溉引起的碳排放量占比较小,分别为3.34%、4.06%、4.82%。农药引起的碳排放量逐年下降,由2006年的32.64 万t下降到2021年的17.04 万t,年平均下降率为3.2%。农用薄膜与之相反。农用薄膜的施用可以有效提高作物产量且污染较小[33],但很难回收处理,导致碳排放量由2006年的24.61 万t增长至2021年36.10 万t,年平均增长率为3.11%。灌溉引起的碳排放量由有效灌溉面积决定,变化趋于稳定。
-
由表2可以看出:2006—2021年,浙江省11个市种植业碳排放量年平均值呈中部高南北两侧低的分布格局,且各市碳排放量均呈下降趋势。台州、杭州、金华与宁波种植业碳排放量平均值超过90 万t·a−1,分别为112.89、98.64、95.08、93.71 万t·a−1,占全省的51.54%;嘉兴、绍兴与温州种植业碳排放量平均值为60~80 万t·a−1,占全省的28.31%;湖州、衢州与丽水为30~60 万t·a−1,占全省的18.86%;舟山为10.03 万t·a−1,占全省的1.29%。2021与2006年相比,温州、杭州、嘉兴与湖州种植业碳排放量下降幅度最大,超过了25.00%,其次是丽水、衢州、台州与宁波,为15.00%~25.00%,绍兴、金华与舟山下降幅度最小,为10.00%~15.00%。
地区 碳排放量平均值/
(万t·a−1)碳排放量
变化率/%碳排放强度/
(t·hm−2)地区 碳排放量平均值/
(万t·a−1)碳排放量
变化率/%碳排放强度/
(t·hm−2)台州 112.89 −17.17 4.92 温州 69.57 −33.68 3.00 杭州 98.64 −28.13 3.05 衢州 55.87 −17.77 2.69 金华 95.08 −14.40 4.01 湖州 55.11 −27.98 2.99 宁波 93.71 −16.13 3.42 丽水 35.46 −24.30 2.16 嘉兴 76.98 −29.60 2.73 舟山 10.03 −13.35 5.76 绍兴 73.31 −10.53 2.59 Table 2. Average value, rate of change and carbon intensity of carbon emissions from planting industry in Zhejiang Province in 2006-2021
浙江省各市面积差异较大,用碳排放强度可以更加直观地反映各市间种植业碳排放的差异[34]。由表2可以看出:舟山、台州与金华碳排放强度最大,分别为5.76、4.92、4.01 t·hm−2,超过全省的平均碳排放强度(3.69 t·hm−2),其次是宁波、杭州与温州,分别为3.42、3.05、3.00 t·hm−2,湖州、嘉兴、衢州与绍兴等市为2.59~2.99 t·hm−2,丽水碳排放强度最低,为2.16 t·hm−2。
浙江省地形复杂,各市的地理条件、经营措施、主要种植作物都存在着差异,导致各地区碳排放量的不同。台州位于浙江省东部沿海地区,碳排放量与碳排放强度居全省前列。台州辖区内的温黄平原富含肥沃且保肥能力强的中碱性土壤,是浙江省重要的商品粮生产基地。碳排放量较高的水稻Oryza sativa等粮食作物是台州市主要种植的农作物,农用薄膜、化肥等高碳物资用量大,要降低碳排放量首先要调整种植业生产结构,并减少化肥、农药等物资的投入。舟山群岛虽然耕地面积小,但柴油消耗导致的碳排放量较高;可能与当地的种植特点有关。杭州、嘉兴、湖州与绍兴位于杭嘉湖水网平原、宁绍平原地区,是浙江省重要的农业区,农田精耕细作,低碳农业发展迅速,农业生产方式先进,现代化机械及技术应用较多,农业人才聚集,种植业碳排放强度较低,碳排放量下降快。丽水、衢州、金华位于浙江省西南部,多丘陵盆地,耕地质量差别大且面积少。这些地区农药、化肥、柴油使用量相较于沿海地区都较低,种植业较其他地区发展滞后,对种植业的人才、资金、政策等扶持力度较弱,导致种植业碳排放强度低。
-
根据LMDI模型从种植业生产效率、农业生产结构、地区产业结构、经济发展水平以及人口因素共5个方面对浙江省种植业碳排放进行影响因素分解分析,结果见图2。测算结果中各影响因素变化所引起的碳排放变化量为正值,表示该因素对碳排放的增加起促进作用;反之,各影响因素变化引起的碳排放变化量为负值,表示该因素对碳排放的增加起抑制作用。
Figure 2. Contribution value of carbon emission driving factors in planting industry of Zhejiang Province
与2006年相比,2021年浙江省种植业实现碳减排251.23 万t。提升种植业生产效率以科技创新为基础,提高化肥、农用薄膜及农药等农产品要素的投入使用率,降低能源消耗,促使种植业在科技带动下向绿色低碳转型。由图2可知:种植业生产效率、地区产业结构的贡献值为负值,是浙江省种植业碳减排的主要因素。种植业生产效率是促进碳减排的首要因素,平均每年贡献碳减排量为64.49 万t。地区产业结构平均每年贡献碳减排量34.19 万t,农业产值占全省生产总值比例由2006年的5.97%下降至2021年3.00%,表明浙江省正在积极推进地区产业结构升级。经计算,第一产业产值占全省生产总值比例每下降1.00%,碳排放量就会减少184.66 万t。地区经济发展水平、人口数量、农业生产结构的贡献值为正值,对浙江省种植业碳排放量的增加起促进作用,其中地区经济发展水平是主要决定性因素。研究期间,由经济发展累计增加的碳排放量达1 208.47 万t,占增加碳排放量的91.03%,人口数量变化引起的碳排放量比较稳定,占比较小。农业生产结构对碳排放的贡献值虽然总体是正值,但在2011、2016年种植业比例下降时是负值。可见,降低种植业在农业中的比例,可以起到抑制碳排放量增加的效果,且潜力巨大。因此,促进产业结构升级是保证浙江省未来种植业碳排放量持续下降的关键。
-
上述研究发现:2014年后,浙江省种植业碳排放总量及强度开始下降。为了更精准地预测浙江省11个市未来种植业的碳排放量,分别以2006—2021、2014—2021年的种植业碳排放量数据作为样本,构建灰色预测模型GM(1, 1),预测2022—2040年种植业碳排放量。由图3可知:2种预测结果均显示2022年后浙江省种植业碳排放量呈下降趋势,其中以2014—2021年种植业碳排放量数据为样本的预测值曲线与原始值的曲线拟合度更高,置信区间更加接近,即预测结果更加精确,原因可能是种植业的发展与国家的政策密切相关。预测值显示,2040年较2021年下降62.80%,年均下降20.28 万t。
基于上述分析,以浙江省11个市2014—2021年种植业碳排放量为依据,构建灰色预测模型GM(1, 1),预测2022—2040年种植业碳排放量。由图4可知:2022—2040年浙江省各市种植业碳排放量呈现持续下降趋势,不同地区下降幅度并不相同,其中杭州、嘉兴、绍兴、金华未来减排潜力很大,2040年碳排放量较2021年分别下降67.55%、64.69%、68.07%、66.33%,占全省的44.85%。舟山、台州、温州碳排放量降幅较小,2040年较2021年分别下降46.60%、52.41%、50.95%。究其原因,可能是舟山地区农业机械与种植技术比较落后,清洁型农业能源推广效果甚微,台州、温州地区是浙江省重要的粮仓,为了保证粮食产量,投入的化肥、柴油、农用薄膜消耗较大。因此,各地区应因地制宜,根据实际情况充分发挥地区特色,制定相应的减排目标,促进各地区种植业低碳发展。
Spatiotemporal evolution law and driving factors of carbon emissions in planting industry in Zhejiang Province
doi: 10.11833/j.issn.2095-0756.20240156
- Received Date: 2024-01-30
- Accepted Date: 2024-07-26
- Rev Recd Date: 2024-07-12
- Available Online: 2024-09-25
- Publish Date: 2024-09-25
-
Key words:
- planting industry /
- carbon emission /
- spatiotemporal change /
- driving factors /
- carbon emission projection
Abstract:
Citation: | LI Wenhan, LIU Feiyang, ZHANG Meng, GU Lei, ZHOU Guomo. Spatiotemporal evolution law and driving factors of carbon emissions in planting industry in Zhejiang Province[J]. Journal of Zhejiang A&F University, 2024, 41(5): 898-908. doi: 10.11833/j.issn.2095-0756.20240156 |