-
土壤作为环境污染物的重要载体,正面临着日益严重的污染挑战。其中,重金属污染已经成为中国当前最突出的土壤污染问题之一[1]。土壤中的砷(As)、铅(Pb)等重金属污染具有持久性、不可逆性和隐蔽性,对土壤质量和土壤生产力造成极大的负面影响。此外,由于水稻Oryza sativa具有较强的重金属积累能力,As和Pb可以通过食物链对人体和其他生物体健康构成严重威胁[2]。
生物质炭是生物质在缺氧或低氧条件下热解的产物,具有发达的孔隙结构和丰富的表面官能团,能够通过物理吸附、离子交换和共沉淀等机制降低土壤中重金属的生物有效性[3]。然而,由于比表面积、成分组成和表面官能团等物理化学特性的限制,其对污染土壤中重金属的吸附能力有限,且选择性较差。YANG等[4]研究发现:由于生物质炭表面带有负电荷,其对以阴离子形式存在的污染物(如As)的钝化能力相对较弱。为了提高生物质炭对重(类)金属复合污染土壤的修复能力,对生物质炭与其他材料进行功能化改性成为了新的研究方向。
铁基材料因其成本低、制备工艺简易、种类多样及较低的毒性,成为生物质炭改性中广泛应用的材料之一[5]。改性材料主要通过离子交换和沉淀作用钝化土壤中的重金属。WEN等[6]研究表明:使用氯化铁改性后的园林废弃物生物质炭可以将As(Ⅲ)氧化为移动性较低的As(V),从而有效减少水稻对As的吸收,改善水稻的生长情况。聚合硫酸铁(polyferric sulfate,PFS)作为一种无机高分子混凝剂,相比其他铁基材料,具有成本低、水解速度快及絮凝体密度大等优点,在吸附去除污水废水中重金属离子方面表现出显著的功效[7]。有研究指出:将活化硅酸与PFS联合使用能够提高其修复效率[8]。目前,关于PFS改性生物质炭的研究主要集中在对水体污染物的去除作用,以及As单一污染土壤的修复应用,而在As和Pb复合污染土壤中的作用机制以及对作物吸收重金属的改善效应的研究相对较少。因此,深入研究PFS改性生物质炭与复合污染土壤中重金属的相互作用及其改善效应,对于提高土壤修复技术的有效性至关重要。同时,随着中国园林绿化面积的增加,园林废弃物的产量亦随之上升,探索更为环保的处理方法对实现园林废弃物的资源化及减少对环境的影响具有重要意义。
鉴于上述研究背景,本研究选用细叶榕Ficus microcarpa枝条为原材料制备生物质炭,并采用聚合硫酸铁{[Fe2(OH)n(SO4)3-n/2]m}进行改性,制得聚合硫酸铁改性细叶榕生物质炭(Fe-FMB),进行水稻盆栽试验,重点探讨这2种生物质炭与土壤中As和Pb的相互作用关系,评估对土壤酶活性的影响,同时考察水稻各器官内As和Pb的富集情况。还研究了2种生物质炭对土壤理化性质及养分的影响,旨在为聚合硫酸铁基生物质炭在重(类)金属复合污染土壤修复中的应用提供理论支持和科学依据。
-
由表1可知:Fe-FMB的pH明显低于FMB。这可能是由于浸渍热解过程中生物质炭表面Fe3+的水解作用导致溶液中H+浓度增加,从而增强了溶液的酸性。此外,Fe-FMB显示出更高的灰分和比表面积,这可能是热解过程中铁颗粒与碳质化合物之间碰撞的结果[12]。Fe-FMB的阳离子交换量也明显高于FMB,这可能与其表面含氧官能团的增加有关。
生物质炭 pH 灰分/(g·kg−1) 碳/(g·kg−1) 氢/(g·kg−1) 氮/(g·kg−1) 硅/(g·kg−1) 铁/(g·kg−1) 比表面积/(m2·kg−1) 阳离子交换量/(cmol·kg−1) FMB 9.5 79.3 753 5.0 27.5 1.50 7.89 23.4 14.45 Fe-FMB 5.3 137.8 505 7.5 13.5 7.31 49.32 132.6 30.95 Table 1. Selected physicochemical properties of the used biochars
如图1A和B所示:2种生物质炭均展现出均匀排列的管式结构。这一特征可能源于相对较低的热解温度,导致生物质炭本身的导管结构被部分保留下来[13]。相比之下,Fe-FMB的表面更加粗糙,其微孔和管式结构中可见颗粒状物质。根据2种生物质炭的X射线能量色谱仪(EDS)元素分布结果(图1C和D),发现FMB具有更多的钾(K)元素,而在Fe-FMB表面则观察到更多的铁(Fe)、硫(S)和氧(O)元素,Fe-FMB微孔和管式结构颗粒状物质主要由Fe构成的细小颗粒组成。这一结果表明FPS已成功负载于生物质炭表面。
根据X射线衍射分析图谱(图2A),在Fe-FMB的图谱中,在30.15°、35.51°和43.17°处分别观察到了Fe3O4和Fe2O3的特征衍射峰,这些峰值表明Fe成功地负载于生物质炭上,且以Fe3O4为主要形态。同时在Fe-FMB上检测到SiO2特征衍射峰,说明其含有较高的硅(Si)。FTIR分析结果(图2B)显示:Fe-FMB在650~1 000 cm−1以及
1050 cm−1处的特征峰强度高于FMB。这一结果表明:铁改性生物质炭中含氧官能团的伸缩振动增强,含氧官能团数量增加。除此之外,860 cm−1附近的吸收峰可能是由于Si—O官能团的不对称伸缩振动所致[14]。这也证明了铁改性生物质炭中Si质量分数的增加(表1)。在593.3 cm−1处的吸收峰则表明了Fe—O官能团的存在,与Fe—O络合物或铁氧化物的存在相符[15]。 -
由图3A可见:在水稻生长的各时期,与对照相比,FMB土壤pH提高了0.21~0.49,Fe-FMB土壤pH则显著降低(P<0.05)。与对照相比,2种生物质炭均显著提高了土壤中有机碳质量分数(P<0.05),其中FMB的增幅达43%~105%(图3B)。根据图3C,施用Fe-FMB显著提高了土壤阳离子交换量(1.26~1.57 cmol·kg−1)(P<0.05),在幼苗期增幅最大,与对照相比,增幅达18%。
-
如图4A所示:施用2种生物质炭后,土壤的速效钾质量分数均显著提升(P<0.05)。FMB对速效钾质量分数的提升效果更为显著,与对照相比提升了92%~227%。与对照相比,FMB和Fe-FMB在各个时期均明显提升了土壤中有效磷质量分数,增幅分别为8%~57%和12%~76%(图4B)。施用生物质炭后,土壤的碱解氮质量分数显著下降(图4C,P<0.05)。
如图5A所示:与对照相比,Fe-FMB显著提升了土壤中有效硅的质量分数(P<0.05),增幅为24%~49%。根据图5B的结果,与对照相比,施用Fe-FMB后,土壤中无定型硅的占比均显著增加(P<0.05),增幅为3%~25%,也显著提高了土壤中铁锰氧化态硅的占比(P<0.05)。
-
如图6A所示:在水稻生长的各时期,与对照和FMB相比, Fe-FMB显著降低了土壤中有效砷的质量分数(P<0.05),降幅最高达37%,FMB与对照差异不显著。由图6B和图6C可见:Fe-FMB在水稻各生长时期都显著降低了水稻茎、稻谷中的砷质量分数(P<0.05),与对照相比,分别下降了71%~84%和70%;FMB仅在水稻灌浆期和成熟期显著降低了茎的砷质量分数(P<0.05)。
Figure 6. Effect of biochar application on the availability of As and Pb in soil and their accumulation in rice straw
据图6D可知:与对照相比,施用2种生物质炭均显著降低了土壤中有效铅质量分数(P<0.05),其中FMB在成熟期对铅的固定效果最好,降幅达24%。使用FMB显著降低了水稻植株各部分的铅质量分数(图6E和图6F,P<0.05),Fe-FMB处理的水稻植株各部分的铅质量分数升高。
-
由图7可见:与对照相比,FMB显著提高了土壤中β-葡萄糖苷酶的活性(P<0.05),同时对酸性磷酸酶的活性也有一定抑制作用。Fe-FMB则在提升土壤中除β-葡萄糖苷酶外其他酶的活性方面表现出显著效果(P<0.05),与对照相比,最高增幅分别达121%、99%及33%。
-
由表2可知:与对照相比,2种生物质炭均显著提高了水稻的生物量和稻谷产量(P<0.05),Fe-FMB处理的提升效果又显著高于FMB(P<0.05)。
处理组 不同生长时期水稻生物量(干质量)/g 稻谷产量/g 幼苗期 分蘖期 灌浆期 成熟期 对照 0.76±0.05 c 1.56±0.21 c 4.81±0.86 c 6.20±0.56 c 6.11±0.11 c FMB 1.68±0.15 b 2.93±0.29 b 6.54±0.42 b 7.54±0.22 b 8.42±0.47 b Fe-FMB 2.35±0.20 a 4.34±0.37 a 7.96±0.40 a 11.41±0.77 a 11.01±0.23 a 说明:不同小写字母表示同一时期内不同处理间差异显著(P<0.05)。 Table 2. Impact of biochar on rice biomass (dry weight) and grain yield
-
相关性分析(图8)表明:土壤有效砷的质量分数与土壤pH呈极显著正相关(P<0.01);而土壤中有效铅的质量分数则与土壤pH及有效磷质量分数呈极显著负相关(P<0.01);土壤pH与β-葡萄糖苷酶活性呈显著正相关(P<0.05);水稻植株生物量和稻谷产量与土壤有效硅及酶活性呈极显著正相关(P<0.01)。
Effect of iron-modified biochars on soil nutrients and bioavailability of As and Pb
doi: 10.11833/j.issn.2095-0756.20240171
- Received Date: 2024-02-07
- Accepted Date: 2024-07-18
- Rev Recd Date: 2024-07-03
- Available Online: 2024-11-20
- Publish Date: 2024-11-20
-
Key words:
- biochar /
- heavy metal /
- soil remediation /
- silicon /
- soil enzyme
Abstract:
Citation: | MAO Haonan, YANG Xing, LU Kouping, WU Jiasen, WANG Hailong. Effect of iron-modified biochars on soil nutrients and bioavailability of As and Pb[J]. Journal of Zhejiang A&F University, 2024, 41(6): 1222-1232. doi: 10.11833/j.issn.2095-0756.20240171 |