Volume 42 Issue 4
Aug.  2025
Turn off MathJax
Article Contents

REN Yubo, ZHANG Bo, JIN Hui, et al. Research progress on chemical constituents and activities of generalized Polygonum plants[J]. Journal of Zhejiang A&F University, 2025, 42(4): 864−874 doi:  10.11833/j.issn.2095-0756.20240642
Citation: REN Yubo, ZHANG Bo, JIN Hui, et al. Research progress on chemical constituents and activities of generalized Polygonum plants[J]. Journal of Zhejiang A&F University, 2025, 42(4): 864−874 doi:  10.11833/j.issn.2095-0756.20240642

Research progress on chemical constituents and activities of generalized Polygonum plants

DOI: 10.11833/j.issn.2095-0756.20240642
  • Received Date: 2024-12-05
  • Accepted Date: 2025-05-08
  • Rev Recd Date: 2025-04-14
  • Available Online: 2025-07-28
  • Publish Date: 2025-08-01
  • Generalized Polygonum plants include annual and perennial herbs, which are widely distributed in the north temperate zone and are found in both the southern and northern regions of China. These plants hold significant medicinal, ecological, and economic value. In recent years, with increasing attention to the development of natural pharmaceuticals and ecological resources, generized Polygonum species have become a prominent focus in plant resource research due to their abundant reserves, diverse chemical constituents, and extensive bioactivities. This review systematically summarizes the taxonomy, representative species, diverse secondary metabolites, and pharmacological activities of generized Polygonum plants. Twelve representative species are highlighted, including Polygonum divaricatum, P. multiflorum, Reynoutria japonica, P. aviculare, P. amplexicaule, and Atraphaxis frutescens. Current research on general Polygonum species primarily focuses on the following areas: (1) extraction and structural characterization of phytochemicals, leading to the identification of numerous bioactive compounds such as flavonoids, phenolic acids, anthraquinones, terpenoids, and glycosides; (2) experimental validation and mechanistic studies of pharmacological effects, demonstrating potent anti-inflammatory, antioxidant, anticancer, antimicrobial, hypoglycemic, and neuroprotective activities; (3) modern investigations into traditional medicinal uses and clinical applications, such as the anti-aging potential of P. multiflorum and the therapeutic application of resveratrol from R. japonica; and (4) ecological functions and resource utilization, with certain species exhibiting remarkable ecological adaptation and potential in phytoremediation. In conclusion, Polygonum species have present broad potential for both fundamental research and applied development. Future studies should dedicate targeted screening and mechanistic elucidation of bioactive compounds, integration of molecular biology and omics technologies to uncover functional genes and biosynthetic pathways, and exploration of their applications in ecological remediation, sustainable agriculture, and functional foods. [Ch, 80 ref.]
  • [1] ZHU Shifan, WU Jinyue, LIANG Xia, ZHANG Qixiang, ZHENG Tangchun.  Multi-omics approaches for drought resistance research in horticultural plants . Journal of Zhejiang A&F University, 2025, 42(5): 875-887. doi: 10.11833/j.issn.2095-0756.20250385
    [2] WANG Jie, HE Wenchuang, XIANG Kunli, WU Zhiqiang, GU Cuihua.  Advances in plant phylogeny in the genome era . Journal of Zhejiang A&F University, 2023, 40(1): 227-236. doi: 10.11833/j.issn.2095-0756.20220313
    [3] WANG Lu, LI Lele, LAI Mengxia, DU Changxia, FAN Huaifu.  Research progress on the causes of spatial heterogeneity of soil salinity and its effects on plants’ growth . Journal of Zhejiang A&F University, 2022, 39(6): 1369-1377. doi: 10.11833/j.issn.2095-0756.20220155
    [4] LI Yuanyuan, ZHANG Shuangyan, WANG Chuangui, FANG Xuqin.  Chemical composition, fiber morphology, and pulping properties of logging residues in Phyllostachys edulis . Journal of Zhejiang A&F University, 2019, 36(2): 219-226. doi: 10.11833/j.issn.2095-0756.2019.02.002
    [5] DING Hao, FU Donglin, ZHANG Ruizhi.  Research advance on noise source identification methods of deconvolution beamforming . Journal of Zhejiang A&F University, 2018, 35(2): 376-379. doi: 10.11833/j.issn.2095-0756.2018.02.024
    [6] WANG Chenjing, ZHAO Xiwu, LU Guoquan, MAO Qian.  A review of characteristics and utilization of Chenopodium quinoa . Journal of Zhejiang A&F University, 2014, 31(2): 296-301. doi: 10.11833/j.issn.2095-0756.2014.02.020
    [7] DONG Leiming, ZENG Yanru, WU Yufen, HUANG Yinzhi, WU Dong, DAI Wensheng.  Variations in phenotypic traits and chemical compositions of seeds from a natural population in Torreya grandis . Journal of Zhejiang A&F University, 2014, 31(2): 224-230. doi: 10.11833/j.issn.2095-0756.2014.02.010
    [8] CHEN Chen, DENG Yu-he, XU Liao, ZHOU Yu, CHEN Min, WU Jing, WANG Xiang-ge, YANG Ying.  Microstructure and chemical composition of compressed and carbonized poplar . Journal of Zhejiang A&F University, 2012, 29(5): 671-679. doi: 10.11833/j.issn.2095-0756.2012.05.006
    [9] LIN Jun-yang, MA Liang-jin, CHEN An-liang, ZHANG Li-qin.  Chemical components and antifungal activities of extracts from the husk of Carya cathayensis . Journal of Zhejiang A&F University, 2009, 26(1): 100-104.
    [10] LUO Xian-xian, KANG Xin-gang.  Progress in research on the comprehensive monitoring of forest resources . Journal of Zhejiang A&F University, 2008, 25(6): 803-809.
    [11] BAI Jiang-li, PENG Dao-li, YU Xiao-hong.  Research progress of the restoration and reconstruction of degraded ecosystems . Journal of Zhejiang A&F University, 2005, 22(4): 458-463.
    [12] SU Wen-hui, GU Xiao-ping, MA Ling-fei, WU Xiao-li, YUE Jin-jun, ZHENG Ren-hong.  Study on chemical compositions of Bambusa wenchouensis wood . Journal of Zhejiang A&F University, 2005, 22(2): 180-184.
    [13] WANG Xiao-de, MA Jin.  Progress and outlook of landscape cover plants . Journal of Zhejiang A&F University, 2003, 20(4): 419-423.
    [14] CHEN Liang, ZHOU Zhi-xiu, SHU Ai-min, LIU Xiao.  Comparison of organoleptic evaluation and chemical composition among three kinds of kudingcha and tea . Journal of Zhejiang A&F University, 2000, 17(3): 298-300.
    [15] Liang Yuerong, Lu Jianliang, Shang Shuling.  Effect of Tea Cuifasu on Chemical Composition and Quality of Tea. . Journal of Zhejiang A&F University, 1997, 14(2): 155-158.
    [16] Mao Yan.  A Preliminary Study of Chemical Composition in Leaves of Phyllostachys praecox and Ph. prominens. . Journal of Zhejiang A&F University, 1997, 14(4): 410-414.
    [17] Yu Xuejun, Tian Jingxiang.  Chemical Compositions of Fastgrowing Chinese Fir Wood Zhejianng. . Journal of Zhejiang A&F University, 1997, 14(4): 330-332.
    [18] Liu Hong′e, Liu Li, Shi Hongguang, Feng Han, Han Yifan.  Chemical Composition of Wood of Some Poplars . Journal of Zhejiang A&F University, 1995, 12(4): 343-346.
    [19] Lai Chungen, Ma Yuhuan, Zhang Bin, Xu Weifu..  Chemical Composition of the Leaf-extracts of Indocalamus. . Journal of Zhejiang A&F University, 1995, 12(2): 161-165.
    [20] Wu Bingsheng, Xia Yufang, Fu Maoyi, Zhang Jiaxian, Zhou Wei..  Chemical Composition of Bambusa distegia Wood. . Journal of Zhejiang A&F University, 1995, 12(3): 281-285.
  • [1]
    HAO Dacheng, GU Xiaojie, XIAO Peigen. Phytochemical and biological research of Polygoneae medicinal resources[M]// HAO Dacheng, GU Xiaojie, XIAO Peigen. Medicinal Plants. Amsterdam: Elsevier, 2015: 465−529.
    [2]
    LI Jingjuan, LI Yongxiang, LI Na, et al. The genus Rumex (Polygonaceae): an ethnobotanical, phytochemical and pharmacological review[J/OL]. Natural Products and Bioprospecting, 2022, 12(1): 21[2024-12-01]. DOI: 10.1007/s13659-022-00346-z.
    [3]
    SHEN Bingbing, YANG Yupei, YASAMIN S, et al. Analysis of the phytochemistry and bioactivity of the genus Polygonum of Polygonaceae [J]. Digital Chinese Medicine, 2018, 1(1): 19−36.
    [4]
    HUANG Changyudong, ZHANG Yiqiong, XU Yongjie, et al. Prepared radix polygoni multiflori and emodin alleviate lipid droplet accumulation in nonalcoholic fatty liver disease through MAPK signaling pathway inhibition [J]. Aging, 2024, 16(3): 2362−2384.
    [5]
    CAI Yanzi, WU Lingfeng, LIN Xue, et al. Phenolic profiles and screening of potential α-glucosidase inhibitors from Polygonum aviculare L. leaves using ultra-filtration combined with HPLC-ESI-qTOF-MS/MS and molecular docking analysis[J/OL]. Industrial Crops and Products, 2020, 154: 112673[2024-12-01]. DOI: 10.1016/j.indcrop.2020.112673.
    [6]
    SALEEM M, SHAZMEEN N, NAZIR M, et al. Investigation on the phytochemical composition, antioxidant and enzyme inhibition potential of Polygonum plebeium R. Br: a comprehensive approach to disclose new nutraceutical and functional food ingredients[J/OL]. Chemistry & Biodiversity, 2021, 18(12): e2100706[2024-12-01]. DOI: 10.1002/cbdv.202100706.
    [7]
    HARTL A, POLLEICHTNER A, NOVAK J. “Purplish blue” or “greenish grey”? Indigo qualities and extraction yields from six species[J/OL]. Plants, 2024, 13(7): 918[2024-12-01]. DOI: 10.3390/plants13070918.
    [8]
    ODONBAYAR B, MURATA T, BATKHUU J, et al. Antioxidant flavonols and phenolic compounds from Atraphaxis frutescens and their inhibitory activities against insect phenoloxidase and mushroom tyrosinase [J]. Journal of Natural Products, 2016, 79(12): 3065−3071.
    [9]
    JOMOVA K, MAKOVA M, ALOMAR S Y, et al. Essential metals in health and disease [J/OL]. Chemico-Biological Interactions, 2022, 367: 110173[2024-12-01]. DOI: 10.1016/j.cbi.2022.110173.
    [10]
    CUI Yanyan, YUAN Yongxu, GUO Mingkun, et al. Structural characterization of Polygonum divaricatum L. polysaccharide and its inhibitory effect on lipopolysaccharide-induced inflammation in RAW264.7 cells [J]. Food Science, 2024, 45(24): 128−138.
    [11]
    JABEEN Z, RIAZ A, NAZ F, et al. Evaluation of antifungal potential of indigenous plant extracts against grey mould and HPLC and LC-MS based identification of phytochemical compounds in Polygonum amplexicaule D. don extracts [J]. International Journal of Phytopathology, 2022, 11(3): 287−299.
    [12]
    ZHOU Qing, LI Jie, LIU Fang, et al. Determination of biological activity of Polygonum hydropiper extract and GC-MS analysis of its volatile components [J]. Journal of Chongqing Normal University (Natural Science), 2023, 40(4): 136−142.
    [13]
    WANG Yuping, GAO Huihui, ZHANG Feng, et al. Altitudinal phenotypic plasticity of leaf characteristics of Polygonum viviparum [J]. Chinese Journal of Applied Ecology, 2021, 32(6): 2070−2078.
    [14]
    FAN Zhiliang, LI Lailai, PU Xiang, et al. Research progress on the chemical composition and pharmacological mechanism of action of Polygonum capitatum [J]. Asia-Pacific Traditional Medicine, 2023, 19(8): 229−233.
    [15]
    DUAN Chaohui, LI Yang, YANG Guie, et al. Simultaneous determination of various active components in Polygonum divaricatum based on UPLC-MS/MS technology [J]. Journal of Chinese Medicinal Materials, 2018, 41(10): 2381−2385.
    [16]
    MAHMOUDI M, ABDELLAOUI R, FEKI E, et al. Analysis of Polygonum aviculare and Polygonum maritimum for minerals by flame atomic absorption spectrometry (FAAS), polyphenolics by high-performance liquid chromatography-electrospray ionization–mass spectrometry (HPLC-ESI-MS), and antioxidant properties by spectrophotometry [J]. Analytical Letters, 2021, 54(18): 2940−2955.
    [17]
    PARK S H, JANG S, SON E, et al. Polygonum aviculare L. extract reduces fatigue by inhibiting neuroinflammation in restraint-stressed mice[J]. Phytomedicine, 2018, 42: 180−189.
    [18]
    QUILANTANG N G, RYU S H, PARK S H, et al. Inhibitory activity of methanol extracts from different colored flowers on aldose reductase and HPLC-UV analysis of quercetin [J]. Horticulture, Environment, and Biotechnology, 2018, 59(6): 899−907.
    [19]
    WEI Jie. Study on the Chemical Constituents of Persicaria lapathifolia and Three Fungi [D]. Guyuan: Ningxia Normal University, 2023.
    [20]
    BATOOL S, GULFRAZ M, AKRAM A, et al. Evaluation of antioxidant potential and HPLC based identification of phenolics in Polygonum amplexicaule extract and its fractions [J]. Pakistan Journal of Pharmaceutical Sciences, 2015, 28(2): 431−435.
    [21]
    LI Yanyi, WANG Qi, YANG Jianbo, et al. Influences of growth years and harvest seasons on content of 14 components in polygoni multiflori Radix [J]. Modern Chinese Medicine, 2023, 25(8): 1769−1775.
    [22]
    WU Jing, CAO Mingyuan, ZENG Jinguo, et al. Simultaneous determination of three flavonoid glycosides in the leaves of Polygonum multiflorum thunb. by HPLC [J]. Biological Chemical Engineering, 2022, 8(5): 17−23.
    [23]
    HAILEMARIAM A, FEYERA M, DEYOU T, et al. Antimicrobial chalcones from the seeds of Persicaria lapathifolia[J/OL]. Biochemistry & Pharmacology, 2018, 7(1): 55194360[2024-12-01]. DOI: 10.4172/2167-0501.1000237.
    [24]
    XIANG Meixian, SU Hanwen, HONG Zongguo, et al. Chemical composition of total flavonoids from Polygonum amplexicaule and their pro-apoptotic effect on hepatocellular carcinoma cells: potential roles of suppressing STAT3 signaling [J]. Food and Chemical Toxicology, 2015, 80: 62−71.
    [25]
    MOORE G, BROOKS P, PAPPALARDO L, et al. Phenolic profiles of Australian monofloral Eucalyptus, Corymbia, Macadamia and Lophostemon honeys via HPLC-DAD analysis[J/OL]. Food Chemistry, 2025, 462: 140900[2024-12-01]. DOI: 10.1016/j.foodchem.2024.140900.
    [26]
    LIN Hongwei, SUN Mingxue, WANG Yunhua, et al. Anti-HIV activities of the compounds isolated from Polygonum cuspidatum and Polygonum multiflorum [J]. Planta Medica, 2010, 76(9): 889−892.
    [27]
    WANG Xinhui. Phytochemical Investigations of Atraphaxis spinosa and Camphorosma lessingii Litv.[D]. Tianjin: Tianjin University, 2018.
    [28]
    CAO Xiaohui, MA Yangmin, WU Yan, et al. Chemical constituents from Fallopia multiflora [J]. Chinese Traditional Patent Medicine, 2018, 40(4): 862−865.
    [29]
    TAO Xin, PAN Duo, XU Nan, et al. Chemical constituents from Polygonum lapathifolium [J]. Chinese Traditional Patent Medicine, 2018, 40(4): 866−870.
    [30]
    PAN Fengguang, LIU Xianglin, QIAO Mengying, et al. Innovative composite systems for enhancing plant polyphenol stability and bioavailability [J]. Food Science and Biotechnology, 2025, 34(9): 1819−1834.
    [31]
    DONG Lihua, ZHU Yuye, ZHANG Zhongli, et al. Chemical constituents of Polygonum divaricatum herb [J]. Journal of Chinese Medicinal Materials, 2019, 42(5): 1059−1061.
    [32]
    YAN Sheng, LI Li, HUANG Chencun, et al. Chemical composition analysis of Xuesanqi based on HPLC-Q-orbitrap-MSn [J]. Journal of Hunan University of Chinese Medicine, 2023, 43(6): 1042−1048.
    [33]
    NUGROHO A, KIM E J, CHOI J S, et al. Simultaneous quantification and peroxynitrite-scavenging activities of flavonoids in Polygonum aviculare L. herb [J]. Journal of Pharmaceutical and Biomedical Analysis, 2014, 89: 93−98.
    [34]
    CHEN Liangqiang, ZHENG Huizhen, CHENG Keqi, et al. Deciphering the acidophilia and acid resistance in Acetilactobacillus jinshanensis dominating Baijiu fermentation through multi-omics analysis[J/OL]. Food Microbiology, 2025, 125: 104655[2024-12-01]. DOI: 10.1016/j.fm.2024.104655.
    [35]
    GRANICA S, CZERWIŃSKA M E, ŻYŻYŃSKA-GRANICA B, et al. Antioxidant and anti-inflammatory flavonol glucuronides from Polygonum aviculare L. [J]. Fitoterapia, 2013, 91: 180−188.
    [36]
    TANTRY M A, RADWAN M M, AKBAR S, et al. 5, 6-Dihydropyranobenzopyrone: a previously undetermined antioxidant isolated from Polygonum amplexicaule [J]. Chinese Journal of Natural Medicines, 2012, 10(1): 28−31.
    [37]
    NIKOLAEVA G G, LAVRENT’EVA M V, NIKOLAEVA I G. Phenolic compounds from several Polygonum species [J]. Chemistry of Natural Compounds, 2009, 45(5): 735−736.
    [38]
    LI Manman, LIU Zenghui, WANG Haiyan, et al. Studies on the antibacterial activities and chemical constituents of Polygonum aviculare L [J]. Natural Product Research and Development, 2014, 26(4): 526−530.
    [39]
    CHEN Huaguo, PENG Lei, ZHAO Chao, et al. Protective mechanism of Polygonum perfoliatum L. extract on chronic alcoholic liver injury based on UHPLC-QExactive plus mass spectrometry lipidomics and MALDI-TOF/TOF mass spectrometry imaging[J/OL]. Foods, 2022, 11(11): 1583[2024-12-01]. DOI: 10.3390/foods11111583.
    [40]
    LI Shuoguo, CHEN Lili, HUANG Xiaojun, et al. Five new stilbene glycosides from the roots of Polygonum multiflorum [J]. Journal of Asian Natural Products Research, 2013, 15(11): 1145−1151.
    [41]
    LÜ Lishuang, SHAO Xi, WANG Liyan, et al. Stilbene glucoside from Polygonum multiflorum thunb. a novel natural inhibitor of advanced glycation end product formation by trapping of methylglyoxal [J]. Journal of Agricultural and Food Chemistry, 2010, 58(4): 2239−2245.
    [42]
    NAWROT-HADZIK I, ŚLUSARCZYK S, GRANICA S, et al. Phytochemical diversity in rhizomes of three Reynoutria species and their antioxidant activity correlations elucidated by LC-ESI-MS/MS analysis[J/OL]. Molecules, 2019, 24(6): 1136[2024-12-01]. DOI: 10.3390/molecules24061136.
    [43]
    CHEN Zhihua, WANG Guoen, JIANG Renwang. Two new sucrose cinnamates from Polygonum lapathifolium var. salicifolium [J]. China Journal of Chinese Materia Medica, 2021, 46(4): 944−950.
    [44]
    KIMURA H, TOKUYAMA-NAKAI S, HIRABAYASHI Y, et al. Anti-inflammatory and bioavailability studies on dietary 3, 5, 4′-trihydroxy-6, 7-methylenedioxyflavone-O-glycosides and their aglycone from indigo leaves in a murine model of inflammatory bowel disease[J/OL]. Journal of Pharmaceutical and Biomedical Analysis, 2021, 193: 113716[2024-12-01]. DOI: 10.1016/j.jpba.2020.113716.
    [45]
    XIANG Meixian, XU Zong, SU Hanwen, et al. Emodin-8-O-β-D-glucoside from Polygonum amplexicaule D. don var. sinense Forb. promotes proliferation and differentiation of osteoblastic MC3T3-E1 cells [J]. Molecules, 2011, 16(1): 728−737.
    [46]
    HWANGBO K, ZHENG Mingshan, KIM Y J, et al. Inhibition of DNA topoisomerases Ⅰ and Ⅱ of compounds from Reynoutria japonica [J]. Archives of Pharmacal Research, 2012, 35(9): 1583−1589.
    [47]
    YU Jie, XIE Jie, MAO Xiaojian, et al. Hepatoxicity of major constituents and extractions of Radix polygoni multiflori and Radix polygoni multiflori praeparata [J]. Journal of Ethnopharmacology, 2011, 137(3): 1291−1299.
    [48]
    LI Jianbei, LIN Mao. Studies on the chemical constituents of tuber fleeceflower(Polygonum multiflorum) [J]. Chinese Traditional and Herbal Drugs, 1993, 24(3): 115−118, 166.
    [49]
    MATSUDA H, SHIMODA H, MORIKAWA T, et al. Phytoestrogens from the roots of Polygonum cuspidatum (Polygonaceae): structure-requirement of hydroxyanthraquinones for estrogenic activity [J]. Bioorganic & Medicinal Chemistry Letters, 2001, 11(14): 1839−1842.
    [50]
    WANG Dingyong, LU Dinghong. Chemical constituents in roots of Polygonum perfoliatum [J]. Subtropical Plant Science, 2004, 33(2): 10−12.
    [51]
    AL-HAZIMI H M A, HAQUE S N. A new naphthoquinone from Polygonum aviculare [J]. Natural Product Letters, 2002, 16(2): 115−118.
    [52]
    LI Hongfang, MA Qingyun, LIU Yuqing, et al. Chemical constituents fromPolygonum perfoliatum [J]. Chinese Journal of Appplied Environmental Biology, 2009, 2009(5): 615−620.
    [53]
    AHMAD R, BAHARUM S N, BUNAWAN H, et al. Volatile profiling of aromatic traditional medicinal plant, Polygonum minus in different tissues and its biological activities [J]. Molecules, 2014, 19(11): 19220−19242.
    [54]
    JIANG J. Volatile composition of the laksa plant (Polygonum hydropiper L.), a potential source of green note aroma compounds [J]. Flavour and Fragrance Journal, 2005, 20(5): 455−459.
    [55]
    DATTA B K, DATTA S K, CHOWDHURY M M, et al. Analgesic, antiinflammatory and CNS depressant activities of sesquiterpenes and a flavonoid glycoside from Polygonum viscosum [J]. Die Pharmazie, 2004, 59(3): 222−225.
    [56]
    SUN Mingxue, LI Xu, LIU Wenyong, et al. 5, 7-dimethoxyisobenzofuran-1(3H)-one[J/OL]. Acta Crystallographica Section E Structure Reports Online, 2009, 65(9): o2146[2024-12-01]. DOI: 10.1107/s1600536809031183.
    [57]
    STEFANOWICZ A M, KAPUSTA P, STANEK M, et al. Invasive plant Reynoutria japonica produces large amounts of phenolic compounds and reduces the biomass but not activity of soil microbial communities[J/OL]. Science of The Total Environment, 2021, 767: 145439[2024-12-01]. DOI: 10.1016/j.scitotenv.2021.145439.
    [58]
    KHALIL A A K, PARK W S, LEE J, et al. A new anti-Helicobacter pylori juglone from Reynoutria japonica [J]. Archives of Pharmacal Research, 2019, 42(6): 505−511.
    [59]
    YANG Xiufang, CAO Xiaohui, MA Yangmin, et al. A new analog of pyrrolezanthine from the roots of Reynoutria ciliinervis (Nakai) Moldenke [J]. Natural Product Research, 2018, 32(3): 302−307.
    [60]
    CHOI S G, KIM J, SUNG N D, et al. Anthraquinones, Cdc25B phosphatase inhibitors, isolated from the roots of Polygonum multiflorum Thunb. [J]. Natural Product Research, 2007, 21(6): 487−493.
    [61]
    PAN Yingming, ZHANG Xiaopu, WANG Hengshan, et al. Antioxidant potential of ethanolic extract of Polygonum cuspidatum and application in peanut oil [J]. Food Chemistry, 2007, 105(4): 1518−1524.
    [62]
    OLUFUNMILAYO E O, GERKE-DUNCAN M B, DAMIAN HOLSINGER R M. Oxidative stress and antioxidants in neurodegenerative disorders[J/OL]. Antioxidants, 2023, 12(2): 517[2024-12-01]. DOI: 10.3390/antiox12020517.
    [63]
    DUAN Chaohui, LI Yang, MA Yingli. Extraction, purification and antioxidant activity of flavonoids from Polygonum divaricatum L. by Box-Behnken Methodology [J]. China Food Additives, 2018, 29(11): 62−72.
    [64]
    LIU Qili, XIAO Junhua, MA Rong, et al. Effect of 2, 3, 5, 4′-tetrahydroxystilbene-2-O-beta-d-glucoside on lipoprotein oxidation and proliferation of coronary arterial smooth cells [J]. Journal of Asian Natural Products Research, 2007, 9(8): 689−697.
    [65]
    ABILKASSYMOVA A, TURGUMBAYEVA A, SARSENOVA L, et al. Exploring four Atraphaxis species: traditional medicinal uses, phytochemistry, and pharmacological activities[J/OL]. Molecules, 2024, 29(4): 910[2024-12-01]. DOI: 10.3390/molecules29040910.
    [66]
    AL-KHAYRI J M, SAHANA G R, NAGELLA P, et al. Flavonoids as potential anti-inflammatory molecules: a review[J/OL]. Molecules, 2022, 27(9): 2901[2024-12-01]. DOI: 10.3390/molecules27092901.
    [67]
    ZHANG Y Z, SHEN J F, XU J Y, et al. Inhibitory effects of 2, 3, 5, 4'-tetrahydroxystilbene-2-O-β-d-glucoside on experimental inflammation and cyclooxygenase 2 activity [J]. Journal of Asian Natural Products Research, 2007, 9(4): 355−363.
    [68]
    GONZÁLEZ BEGNÉ M, YSLAS N, REYES E, et al. Clinical effect of a Mexican Sanguinaria extract (Polygonum aviculare L. ) on gingivitis [J]. Journal of Ethnopharmacology, 2001, 74(1): 45−51.
    [69]
    LIAO Shanggao, ZHANG Lijuan, SUN Fa, et al. Antibacterial and anti-inflammatory effects of extracts and fractions from Polygonum capitatum [J]. Journal of Ethnopharmacology, 2011, 134(3): 1006−1009.
    [70]
    LI Liangliang, LI Ping, CHANG Kun, et al. Progress in utilization of medicinal plant Polygonum orientale [J]. Agriculture and Technology, 2023, 43(9): 170−172.
    [71]
    WILD C P. The global cancer burden: necessity is the mother of prevention [J]. Nature Reviews: Cancer, 2019, 19(3): 123−124.
    [72]
    KENNEDY L B, SALAMA A K S. A review of cancer immunotherapy toxicity [J]. CA: A Cancer Journal for Clinicians, 2020, 70(2): 86−104.
    [73]
    TANG Xiaolong, LIU Lin, LI Yan, et al. Chemical profiling and investigation of molecular mechanisms underlying anti-hepatocellular carcinoma activity of extracts from Polygonum perfoliatum L.[J/OL]. Biomedicine & Pharmacotherapy, 2023, 166: 115315[2024-12-01]. DOI: 10.1016/j.biopha.2023.115315.
    [74]
    LI Cairong, CAI Fei, YANG Yinqiao, et al. Tetrahydroxystilbene glucoside ameliorates diabetic nephropathy in rats: involvement of SIRT1 and TGF-β1 pathway [J]. European Journal of Pharmacology, 2010, 649(1/3): 382−389.
    [75]
    SOHN E, KIM J, KIM C S, et al. Root of Polygonum cuspidatum extract reduces progression of diabetes-induced mesangial cell dysfunction via inhibition of platelet-derived growth factor-BB (PDGF-BB) and interaction with its receptor in streptozotocin-induced diabetic rats[J/OL]. BMC Complementary and Alternative Medicine, 2014, 14: 477[2024-12-01]. DOI: 10.1186/1472-6882-14-477.
    [76]
    SHE Penggui, TAN Xiaowen, GUO Hongling. Effects of total flavonoids extract from Polygonum perfoliatum on liver function and aquaporin in cirrhotic rats with ascites [J]. Chinese Journal of Clinical Rational Drug Use, 2023, 16(12): 84−87.
    [77]
    CUI Junjian, YUAN Jiangfeng, ZHANG Zhiqi. Anti-oxidation activity of the crude polysaccharides isolated from Polygonum Cillinerve (Nakai) Ohwi in immunosuppressed mice [J]. Journal of Ethnopharmacology, 2010, 132(2): 512−517.
    [78]
    SUNG Y Y, YOON T, YANG W K, et al. The antiobesity effect of Polygonum aviculare L. ethanol extract in high-fat diet-induced obese mice[J/OL]. Evidence-Based Complementary and Alternative Medicine, 2013, 2013: 626397[2024-12-01]. DOI: 10.1155/2013/626397.
    [79]
    AYAZ M, WADOOD A, SADIQ A, et al. In-silico evaluations of the isolated phytosterols from polygonum hydropiper L. against BACE1 and MAO drug targets[J]. Journal of Biomolecular Structure and Dynamics, 2022, 40(20): 10230−10238.
    [80]
    BASHIR M I, ABDUL AZIZ N H K, NOOR D A M. Antidepressant-like effects of Polygonum minus aqueous extract in chronic ultra-mild stress-induced depressive mice model[J/OL]. Behavioral Sciences, 2022, 12(6): 196[2024-12-01]. DOI: 10.3390/bs12060196.
  • 2024-0642-tab_online.pdf
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(453) PDF downloads(27) Cited by()

Related
Proportional views

Research progress on chemical constituents and activities of generalized Polygonum plants

doi: 10.11833/j.issn.2095-0756.20240642

Abstract: Generalized Polygonum plants include annual and perennial herbs, which are widely distributed in the north temperate zone and are found in both the southern and northern regions of China. These plants hold significant medicinal, ecological, and economic value. In recent years, with increasing attention to the development of natural pharmaceuticals and ecological resources, generized Polygonum species have become a prominent focus in plant resource research due to their abundant reserves, diverse chemical constituents, and extensive bioactivities. This review systematically summarizes the taxonomy, representative species, diverse secondary metabolites, and pharmacological activities of generized Polygonum plants. Twelve representative species are highlighted, including Polygonum divaricatum, P. multiflorum, Reynoutria japonica, P. aviculare, P. amplexicaule, and Atraphaxis frutescens. Current research on general Polygonum species primarily focuses on the following areas: (1) extraction and structural characterization of phytochemicals, leading to the identification of numerous bioactive compounds such as flavonoids, phenolic acids, anthraquinones, terpenoids, and glycosides; (2) experimental validation and mechanistic studies of pharmacological effects, demonstrating potent anti-inflammatory, antioxidant, anticancer, antimicrobial, hypoglycemic, and neuroprotective activities; (3) modern investigations into traditional medicinal uses and clinical applications, such as the anti-aging potential of P. multiflorum and the therapeutic application of resveratrol from R. japonica; and (4) ecological functions and resource utilization, with certain species exhibiting remarkable ecological adaptation and potential in phytoremediation. In conclusion, Polygonum species have present broad potential for both fundamental research and applied development. Future studies should dedicate targeted screening and mechanistic elucidation of bioactive compounds, integration of molecular biology and omics technologies to uncover functional genes and biosynthetic pathways, and exploration of their applications in ecological remediation, sustainable agriculture, and functional foods. [Ch, 80 ref.]

REN Yubo, ZHANG Bo, JIN Hui, et al. Research progress on chemical constituents and activities of generalized Polygonum plants[J]. Journal of Zhejiang A&F University, 2025, 42(4): 864−874 doi:  10.11833/j.issn.2095-0756.20240642
Citation: REN Yubo, ZHANG Bo, JIN Hui, et al. Research progress on chemical constituents and activities of generalized Polygonum plants[J]. Journal of Zhejiang A&F University, 2025, 42(4): 864−874 doi:  10.11833/j.issn.2095-0756.20240642
  • 蓼科Polygonaceae植物包含多个属,如蓼属Polygonum、虎杖属Reynoutria、蓼蓝属Persicaria和木蓼属Atraphaxis,其种类丰富,分布广泛,主要集中于北温带地区[1]。本研究将蓼科植物中具有药用、生态或经济价值的植物统称为“广义蓼属植物”,包括叉分蓼Polygonum divaricatum、何首乌P. multiflorum、虎杖R. japonica、萹蓄P. aviculare、血三七P. amplexicaule、木蓼A. frutescens、蓼蓝Persicaria tinctoria等。近年来,随着现代分离技术的发展,从广义蓼属植物中分离出多种化学成分,主要包括黄酮类、酚酸类、糖苷类、蒽醌类及萜类化合物[2]。这些次生代谢物具有丰富的生物活性,如抗癌、抗肿瘤、抗氧化、抗炎、抗菌、降糖和镇痛等作用,使该类植物在传统医学和现代药物开发中占据重要地位[3]。何首乌富含蒽醌类化合物,其加工产品被广泛用于治疗高血压、非酒精性脂肪肝病、阿尔茨海默病等疾病[4]。萹蓄的乙醇提取物表现出很强的α-葡萄糖苷酶抑制作用[5],习见萹蓄P. plebeium是营养保健品和功能性食品新成分的重要来源[6]。蓼蓝因其提取物含蓝色颜料靛蓝而被广泛应用于纺织染色行业[7]。木蓼的黄酮类和酚类化合物对蘑菇酪氨酸酶和酚氧化酶具有抑制作用[8]。叉分蓼的嫩茎因富含氨基酸和微量元素,具有改善血液代谢、缓解肌肉疲劳和镇静止痛的潜力[9];其多糖组分可通过下调细胞炎症相关蛋白表达水平,改善机体的氧化应激[10]。血三七甲醇提取物表现出高的抗真菌活性,能抑制草莓灰霉病Botrytis cinerea的生长[11]。此外,水蓼Polygonum hydropiper中富含烷烃、烯烃、有机酸等成分,具有消积止痛、调理血症、提升食欲、缓解瘤肿痛等功效[12]

    广义蓼属植物不仅在药用和经济价值方面表现出优质潜力,还在生态适应中发挥重要作用。如珠芽蓼P. viviparum生态幅宽和逆境耐受性强,能够在复杂环境中展现较强的生存能力[13]。目前,关于广义蓼属植物的化学成分和药理活性研究多集中于特定的种类,尚缺乏系统性的总结[14]。本研究综述了12种广义蓼属植物的主要化学成分及其药理作用机制,以期为进一步研究和开发提供参考。

    • 黄酮类化合物广泛分布于广义蓼属植物中,是其主要的次生代谢物质,也是其重要的药效成分。通过多种分离鉴定技术,已从不同广义蓼属植物的根、茎、叶、花、种子及全草中分离出大量黄酮类化合物,根据化学结构,可将黄酮类化合物分为黄酮醇类、黄酮苷类及特有化合物(https://zlxb.zafu.edu.cn/fileZJNLDXXB/journal/article/file/0287ab66-338c-4885-ad79-7c8a61810c0e.pdf)。

    • 黄酮醇类化合物是广义蓼属植物中最常见的一类次生代谢物,主要包括槲皮素、山奈酚和杨梅素及其衍生物。这类化合物广泛分布于叉分蓼、萹蓄、杠板归P. perfoliatum、蓼蓝、酸模叶蓼P. lapathifolia和血三七等植物的地上部分和全草中。如从叉分蓼和萹蓄分离到槲皮素和杨梅素[1518];从酸模叶蓼和血三七的植株地上部分检测到山奈酚[1920]。现有研究明确了黄酮醇类化合物在广义蓼属植物中分布广泛,但对这些化合物在蓼属植物不同组织中的积累规律及其与环境因子的关系研究仍不足。

    • 黄酮苷类化合物是广义蓼属植物的另一大类次生代谢物,主要分布于植株地上部分,包括全草、叶等。从叉分蓼全草中分离出扁蓄苷和芦丁 [15];从何首乌根中检测到虎杖苷和金丝桃苷 [21],其叶片中则含有杨梅苷和槲皮苷 [22];从萹蓄全草中检测到大量异槲皮苷和槲皮苷[1617]。目前,对黄酮苷类化合物的研究主要集中在分离和鉴定上,而对它们在广义蓼属植物内的生物学功能及分布差异的研究尚待深入。

    • 在部分广义蓼属植物中还发现了一些独特的黄酮类化合物,如从酸模叶蓼的全草中分离出的5,7,3′,4′-四羟基-3-甲氧基黄酮[19]和查尔酮类化合物[23];从血三七根茎中分离到多种C-糖苷类黄酮化合物[24]。这些特有化合物的发现为广义蓼属植物的分类和化学特性研究提供了重要参考。

      近年来,随着现代化学技术,如液相色谱-质谱联用(LC-MS)、核磁共振等的发展,科研人员从广义蓼属植物中鉴定出大量黄酮类化合物,涵盖多个物种,研究成果不断积累[2529]。然而现有研究存在不足,如缺乏对黄酮类化合物在不同组织、环境条件下分布规律的系统性分析。

    • 酚酸类化合物是广义蓼属植物的重要次生代谢产物,根据其母核结构,可分为苯甲酸类和肉桂酸类两大类[30]。这些化合物在抗菌、抗氧化以及响应环境胁迫中发挥重要作用,为研究广义蓼属植物的生态适应性和药用价值提供了科学依据(https://zlxb.zafu.edu.cn/fileZJNLDXXB/journal/article/file/0287ab66-338c-4885-ad79-7c8a61810c0e.pdf)。

    • 苯甲酸类化合物是广义蓼属植物中最常见的酚酸类化合物之一,主要以没食子酸、对羟基苯甲酸及其衍生物的形式存在。如没食子酸在叉分蓼、萹蓄和酸模叶蓼等植物中被广泛报道[3134];羟基苯甲酸则在叉分蓼和何首乌的全草和根中检测到[21, 31]。此外,酸模叶蓼的全草中分离出2,4,6-三羟基苯甲酸甲酯这一苯甲酸类甲酯化合物[19]

    • 肉桂酸类化合物主要以咖啡酸、对香豆酸及其衍生物的形式存在。这类化合物多分布于植物的地上部分及全草中。如从叉分蓼全草中分离出咖啡酸和阿魏酸 [31];从萹蓄全草中检测到对香豆酸、反式羟基肉桂酸及其顺式异构体[16, 35];血三七的地上部分富含绿原酸和咖啡酸[36]。此外,在何首乌根中也发现了对香豆酸这一重要化合物[21]

    • 广义蓼属植物中还包含一些独特的酚酸类衍生物。如叉分蓼和木蓼中分别分离出丁二酸和α-亚麻酸 [27, 31];血三七的全草中分离到3-、4-和5-没食子酰基奎宁酸等结合型酚酸化合物[32]。酚酸类化合物在广义蓼属植物中表现出显著的化学多样性,但现有研究主要集中在化合物的分离与结构鉴定上,其功能性研究仍显不足。特别是肉桂酸类化合物在植物-微生物互作中的作用机制仍需进一步研究,特有酚酸类化合物的代谢途径和调控机制尚需进一步验证。

    • 广义蓼属植物含有丰富的糖苷类化合物(https://zlxb.zafu.edu.cn/fileZJNLDXXB/journal/article/file/0287ab66-338c-4885-ad79-7c8a61810c0e.pdf),这些化合物由糖基与多种母核(如黄酮、酚酸、蒽醌等)通过糖苷键结合形成,展现出化学多样性和生物活性。这些化合物不仅为广义蓼属植物的化学分类和生态功能研究提供了重要参考,也为其药用开发奠定了基础。

    • 黄酮苷类化合物是广义蓼属植物中分布最广的一类化合物,由黄酮类化合物(如山奈酚、异鼠李素、杨梅素等)与糖基结合形成。如从叉分蓼全草中分离到luteolin-7-glycoside[37];从萹蓄全草及其地上部分分离出kaempferol 3-O-β-(2″-O-acetyl-β-D-glucuronide)和myricetin 3-O-(3″-O-galloyl)-rhamnopyranoside[34, 38];在杠板归全草中检测到sanitol-7-O-rhamnose-3-O-glucoside[39]。这些化合物的多样性不仅增强了其溶解性和生物稳定性,还可能影响其生态功能。

    • 苯乙烯苷类化合物是广义蓼属植物的另一类特征性糖苷,主要分布于何首乌、虎杖和叉分蓼的根、根茎及全草。如从叉分蓼全草中分离到白藜芦醇苷 [31];从何首乌根中分离出(E)-2,3,5,4′-tetrahydroxystilbene与多种葡萄糖苷衍生物[40−41];在虎杖根茎中发现白皮杉醇葡萄糖苷[42]

    • 广义蓼属植物中还存在多种其他类型的苷类化合物,包括蒽醌苷、吲哚苷及其他复杂结构的苷类。如从叉分蓼全草中分离出胡萝卜苷[31];从酸模叶蓼全草中分离出(1,3-O-di-p-coumaroyl)-β-D-fructofuranosyl-(2→1)-α-D-glucopyranoside及其乙酰化衍生物[43];在蓼蓝叶中发现的indoxyl-β-D-glucoside是靛蓝代谢的前体化合物,与植物色素生成密切相关[44];此外,在虎杖和血三七根部发现的大黄素-8-O-β-D-葡萄糖苷是一种蒽醌苷类化合物[45−46]

      广义蓼属植物中糖苷类化合物种类和结构的多样性为其次生代谢和生态功能研究提供了丰富资源。然而,现有研究主要集中于化合物的分离和结构鉴定,系统性的功能研究仍较薄弱。未来研究应加强对广义蓼属植物苷类化合物的系统调查,结合多组学技术和生物信息学手段,解析其代谢合成途径及调控机制[34]

    • 蒽醌类化合物是广义蓼属植物的重要活性成分,广泛分布于何首乌和虎杖的根部,具有较高的药用价值和生态功能。这类化合物的代表性成分包括大黄素、大黄素甲醚和芦荟大黄素(https://zlxb.zafu.edu.cn/fileZJNLDXXB/journal/article/file/0287ab66-338c-4885-ad79-7c8a61810c0e.pdf),具有广泛的药用价值[47]。李建北等[48]研究揭示了何首乌中的其他蒽醌类化合物,包括大黄素-1,6-二甲醚和2-乙酰基大黄素。从虎杖根中检测到柠檬黄素、1,5-dihydroxyanthraquinone、1,8-dihydroxyanthraquinoe [46, 49]。此外,从杠板归和萹蓄中也分离到大黄素衍生物和6-methoxyplumbagin [5051]

      蒽醌类化合物在广义蓼属植物中的分布具有组织和种属特异性,其优异的生物活性为药用开发提供了丰富资源。尽管蒽醌类化合物在化学组成和生物活性方面取得了一定的研究进展,但其生态功能和生物合成机制的研究仍需加强。未来,应结合代谢组学、基因组学和生物信息学等多组学技术,深入探索蒽醌类化合物的生态作用及代谢调控网络,为药物开发和生态应用提供理论依据和技术支持。

    • 萜类化合物是广义蓼属植物次生代谢物的重要组成部分,包括葫芦素类、倍半萜类和萜类酸等(https://zlxb.zafu.edu.cn/fileZJNLDXXB/journal/article/file/0287ab66-338c-4885-ad79-7c8a61810c0e.pdf)。这些化合物在植物的生态适应性和药用价值中占据重要地位。如杠板归全草中富含葫芦素类化合物(Cucurbitacin IIa和Cucurbitacin U等)[52];酸模叶蓼中分离得到(3S,5R)-dihydroxy-6R,7-megstigmadien-9-one[19];研究还发现:在小蓼Persicaria minor和水蓼中检测到β-caryophyllene,这是一种常见的倍半萜化合物[5354];从香蓼Polygonum viscosum地上部分分离到viscosumic acid和viscozulenic acid[55]。总体而言,广义蓼属植物萜类化合物具有化学多样性,涵盖了不同结构类型和生物活性功能。这些化合物在植物的生态功能、环境适应性及药理活性研究中具有重要意义。未来应深入解析这些化合物的代谢合成途径及在植物生态系统中的作用。

    • 广义蓼属植物还含有其他多种次生代谢产物,如多酚类和吡咯衍生物等(https://zlxb.zafu.edu.cn/fileZJNLDXXB/journal/article/file/0287ab66-338c-4885-ad79-7c8a61810c0e.pdf)。这些化合物因其结构的独特性和生物活性,为广义蓼属植物的生态适应性和药用开发提供了广阔的研究前景。如从何首乌中分离得到白藜芦醇、阿福豆苷 [21, 46, 56];在虎杖中分离得到胡桃醌类化合物和白皮杉醇等[5758];在毛脉蓼Reynoutria ciliinerve中分离得到赤藓醇和吡咯花青素的新类似物[5-(butoxymethyl)-1-(4-hydroxyphenethyl)-1H-pyrrole-2-carbaldehyde][59];从酸模叶蓼和血三七中分别分离得到2-甲基-5-n-十一烷基间苯二酚等[36]。这些化合物在广义蓼属植物中不仅发挥着调节环境适应性的重要作用,也是药物开发的潜在化学资源。未来研究应聚焦其在植物生态系统中的功能及潜在药用价值,为新型药物开发提供化学依据。

      广义蓼属植物中含有黄酮类、蒽醌类、酚酸类、糖苷类及萜类化合物等多种活性成分。这些成分的种类和含量因植物种类、提取部位及生长环境的不同而异,构成了广义蓼属植物药理功能的核心来源。黄酮类化合物是广义蓼属植物中分布最广的次生代谢物之一,具有显著的抗氧化、抗炎和抗菌活性。代表性成分如槲皮素、山奈酚及其衍生物,广泛分布于何首乌、萹蓄和杠板归等植物中,是广义蓼属植物药理作用的主要贡献者[4748]。酚酸类如没食子酸、咖啡酸和对香豆酸,分布于叉分蓼、何首乌和萹蓄的不同部位,展现了抗氧化及应对环境胁迫的重要功能,同时在生态适应中发挥关键作用[21, 31]。蒽醌类化合物则集中于何首乌和虎杖的根部,以大黄素及其甲醚衍生物,因其抗肿瘤、抗菌和抗炎活性而备受关注,是传统药用植物研究的热点[4647]

      部分广义蓼属植物因其活性成分的高含量和显著的药理作用,已被广泛开发利用:何首乌作为传统中药,因其富含黄酮类和蒽醌类化合物,被广泛应用于抗衰老、强筋骨、调节免疫和养血补肝的药物开发中[60];虎杖是白藜芦醇的重要来源,其苷类衍生物和黄酮类化合物具有强抗氧化、抗炎和抗菌活性,用于抗衰老产品、心血管健康领域及天然抗菌剂的开发[61];血三七富含多种黄酮类和蒽醌类化合物,尤其是大黄素及其葡萄糖苷衍生物,具有抗炎、抗肿瘤和抗氧化活性,其提取物常用于活血化瘀、消肿止痛及改善微循环的治疗中[20]。尽管何首乌、虎杖和血三七已成为广义蓼属植物开发利用的代表种类,但其他种类如叉分蓼和毛脉蓼的研究和开发仍处于初级阶段。这些植物中虽检测到多种活性成分,但其药理功能及开发潜力尚未被充分挖掘。未来应重点研究其活性成分的分布规律、代谢合成机制及生态功能,结合现代技术手段提升其应用价值。

    • 抗氧化剂通过抑制或清除活性氧(ROS),有效减轻氧化应激对细胞的损害,从而在预防神经退行性疾病、心血管疾病及癌症等方面发挥重要作用。同时,抗氧化剂在食品保存中也起着关键作用。广义蓼属植物因含有丰富的黄酮类和酚酸类化合物,是天然抗氧化剂的主要来源[62]。研究发现,叉分蓼含有丰富的黄酮类和酚酸类化合物,这些化合物展示了显著的抗氧化作用,能够降低氧化相关疾病的风险[63];何首乌提取物中的2,3,5,4′-四羟基二苯乙烯-2-O-β-D-葡萄糖苷(THSG)能拮抗脂蛋白氧化,抑制血管平滑肌细胞的增殖并促进一氧化氮释放[64];木蓼含有杨梅苷和大黄素8-O-β-D-吡喃葡萄糖苷,这些化合物通过清除自由基降低氧化应激对细胞的损害[65];在血三七的研究中,其乙醇提取物分离得到的5,6-二氢吡喃苯并吡喃酮在1,1-二苯基-2-苦基肼(DPPH)自由基清除试验中表现出较强的抗氧化活性[36]。广义蓼属植物因其卓越的抗氧化性能在健康维护和食品保存领域具有广阔的应用前景。未来研究应进一步探讨其抗氧化机制和应用潜力。

    • 炎症是人体对有害刺激的一种复杂生物反应。虽然急性炎症对宿主有益,但慢性炎症可能导致多种健康问题,包括心血管疾病、神经退行性疾病、糖尿病和某些癌症。广义蓼属植物富含黄酮类化合物,如山奈酚、槲皮素和杨梅素,通过抑制促炎介质和信号通路的活化,有助于缓解炎症[66]。研究发现何首乌、萹蓄、蓼蓝等广义蓼属植物的提取物或特定成分具有抗炎潜力。例如,何首乌提取物中THSG具有显著的抗炎作用,能够减轻促炎因子活化并通过抗氧化活性缓解炎症反应[67];萹蓄提取物对牙龈炎具有缓解作用,通过抑制口腔病原菌的生长和减轻炎症反应促进牙龈健康[68];蓼蓝叶含有3,5,4′-三羟基-6,7-亚甲基二氧黄酮(TMF),研究显示其糖苷和游离配基均能预防实验性结肠炎[44];此外,头花蓼Polygonum capitatum和红蓼Polygonum orientale以其特有的化学成分在抗菌和抗炎方面展现出显著的效果[6970]。广义蓼属植物及其提取物的抗炎潜力为新型抗炎药物的开发提供了重要参考,但仍需进一步研究其作用机制及安全性。

    • 植物提取物因其多靶点作用、低副作用和较低成本的特点,在癌症治疗领域显示出重要价值。广义蓼属植物中的活性成分大黄素、白藜芦醇和酚类化合物,具有抑制肿瘤细胞增殖、诱导肿瘤细胞凋亡和调节癌症相关信号通路的作用[7172]。例如,何首乌根甲醇提取物通过抑制拮抗细胞内激酶作用的调节酶,能显著抑制肿瘤细胞增殖[60];血三七提取物诱导肝癌细胞凋亡,且对重要器官无明显毒性,显示出良好的安全性[20];虎杖含有3,5-二羟基苯甲醇,对 DNA 拓扑异构酶 Ⅰ 和 Ⅱ 具有显著抑制效果,为抗癌药物开发提供了新思路[46];此外,杠板归中的花旗松素、杨梅素、圣草酚和乔松素等化合物对肝癌细胞展现出细胞毒作用,同时对正常肝细胞显示出较高的安全性[73]。广义蓼属植物及其所含的活性成分在癌症治疗中表现出了巨大潜力和前景。然而,仍然需要进一步探索其作用机制及药物安全性。

    • 广义蓼属植物还具有多种其他药理功能,如抗菌、消肿止痛、利尿、降糖和保护神经等。如何首乌根部提取物THSG ,通过激活 MAP 激酶途径,诱导黑色素生成,并表现出治疗糖尿病及其并发症的潜力[74];虎杖提取物在糖尿病治疗中降低尿蛋白水平,表现出保护肾功能的潜在应用[75];杠板归对耐药性大肠埃希菌Escherichia coli具有抑制作用,同时改善肝硬化相关症状[76];此外,在对毛脉蓼的研究中发现,其提取物粗多糖具有抗氧化和体外抗肿瘤活性,其吡咯黄嘌呤类似物显示出抗真菌作用[77];扁蓄乙醇提取物在高脂饮食诱导的肥胖小鼠模型中表现出抗肥胖作用,并通过抑制 α-葡萄糖苷酶活性降低餐后血糖水平[78]。在神经系统疾病的治疗方面,广义蓼属植物也显示出了巨大的潜力。如水蓼提取物中的β-谷甾醇对神经系统疾病具有抑制潜力[79];小蓼水提取物在神经系统疾病中展现良好疗效[80]

      广义蓼属植物因其多样的药理活性成为药用植物研究的热点。这些植物中活性成分的药理功能,不仅为新型药物的开发提供了科学依据,也为预防和治疗多种慢性疾病提供了可能。未来的研究需聚焦于以下3个方向:药物安全性评估,明确其在实际应用中的毒理学特性及安全性;新技术的引入,结合多组学和药物筛选技术,拓展广义蓼属植物的潜在应用;作用机制的深入探索,揭示活性成分的分子机制和作用靶点。

    • 广义蓼属植物因丰富的化学成分和多样的药理作用,研究进展显著,特别是何首乌、虎杖等代表性物种,其主要成分(如黄酮类、蒽醌类和酚酸类化合物)的药理作用已得到广泛报道。然而,现有研究仍存在以下不足:首先,研究多集中于少数代表性物种,大量潜在具有重要药用价值的广义蓼属植物尚未被系统探索;其次,尽管部分化合物的药理作用已被证实,但对其与靶分子或信号通路的具体相互作用缺乏深入研究,影响了药理机制的全面解析;此外,现有研究主要停留在体外试验和动物模型阶段,系统临床研究较少,难以充分验证这些植物化合物的药效、安全性及适用范围。

      广义蓼属植物活性成分种类繁多且结构复杂,传统分离与鉴定技术效率低、时间长。此外,活性分子的筛选与药理验证耗时耗力,增加了研究难度。技术进步为研究提供了新路径,高通量筛选、代谢组学及人工智能辅助药物设计,可提升活性成分鉴定效率与功能探索的深度。未被充分开发的广义蓼属植物种类蕴藏丰富的活性分子,对这些物种的研究有望带来新型活性成分的发现和广泛疗效的药物开发。此外,多学科交叉合作,整合植物化学、药理学及生物信息学的研究力量,将进一步推动广义蓼属植物的系统研究和应用,为从分子机制解析到实际应用的转化提供理论依据。

      为了充分挖掘广义蓼属植物的药用潜力,未来的研究应在多个方向上展开。首先,需要系统探索尚未充分研究的广义蓼属植物,特别是分布广泛但利用率较低的物种。这些植物可能蕴含新的活性分子或药物先导化合物,为药用开发提供更多选择。其次,应采用核磁共振(NMR)、液相色谱-质谱联用(LC-MS/MS)等技术,提高化学成分的鉴定效率和精确性,并结合高通量筛选和代谢组学分析技术,加速活性成分的筛选与功能验证。此外,深入研究广义蓼属植物活性成分的分子机制也是未来的重点方向,包括探讨其与靶分子和信号通路的相互作用,以揭示药效来源并为精准药物开发提供科学依据。同时,应深入解析药理机制并推动临床应用,使广义蓼属植物成为开发新型药物的重要来源。

Reference (80)
Supplements:
2024-0642-tab_online.pdf

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return