Volume 42 Issue 6
Nov.  2025
Turn off MathJax
Article Contents

HUANG Huiting, ZHANG Jianhong, SHEN Dengfeng, et al. Research progress on the genomics of Ilex plants[J]. Journal of Zhejiang A&F University, 2025, 42(6): 1330−1338 doi:  10.11833/j.issn.2095-0756.20250121
Citation: HUANG Huiting, ZHANG Jianhong, SHEN Dengfeng, et al. Research progress on the genomics of Ilex plants[J]. Journal of Zhejiang A&F University, 2025, 42(6): 1330−1338 doi:  10.11833/j.issn.2095-0756.20250121

Research progress on the genomics of Ilex plants

DOI: 10.11833/j.issn.2095-0756.20250121
  • Received Date: 2025-01-16
  • Accepted Date: 2025-06-19
  • Rev Recd Date: 2025-06-17
  • Available Online: 2025-11-26
  • Publish Date: 2025-12-20
  • Ilex is the largest genus in the Aquifoliaceae family, and also the largest woody dioecious genus among angiosperms. Ilex plants have significant value in ornamental, medicinal, edible and industrial applications. Their extensive ecological distribution and rich phenotypic variation have aroused the research interests of many scientists. This article discusses the main achievements of genome research on Ilex plants based on high-throughput sequencing technology, and summarizes the differences between genomes of different species and at different levels. Currently, research on genomes of Ilex plants mainly focuses on 3 aspects: (1) assembly of nuclear and organelle genomes; (2) analysis of phylogenetics and genetic diversity; (3) mining and identification of key candidate genes for important traits. The main conclusions are as follows: the nuclear genomes of Ilex plants have the characteristics of chromosome number diversity and high heterozygosity rate. As Ilex species originated in the subtropical region of East Asia in the early Eocene, its evolutionary core may be chromosome fusion and whole genome replication events. Key genes involved in elevation adaptability, triterpenoid saponins and fruit color change have been identified. Future genomic research on Ilex should focus on improving quality and integrity of genome assembly for more representative species, conducting in-depth functional genomics research, verifying the functions and regulatory networks of key genes, analyzing the genetic basis of complex trait formation, and using genome information to accelerate the molecular breeding process of Ilex plants. [Ch, 4 tab. 51 ref.]
  • [1] LI Jiaojiao, WANG Xiaoguang, BAI Menglan, HOU Xiaogai, GUO Lili.  Research progress on Agrobacterium-mediated genetic transformation technology of plant non-tissue culture . Journal of Zhejiang A&F University, 2025, 42(5): 888-897. doi: 10.11833/j.issn.2095-0756.20250432
    [2] LIU Tingting, XU Li’ai, HU Ziwei, XIONG Xingpeng, AN Xia, CAO Jiashu.  Characteristics of the chloroplast genome and phylogenetic analysis of flowering Chinese cabbage . Journal of Zhejiang A&F University, 2025, 42(): 1-11. doi: 10.11833/j.issn.2095-0756.20250279
    [3] ZHU Mengfei, HU Yingfeng, SHI Xueqin.  Characterization and phylogenetic location analysis of chloroplast of the endangered plant Neotrichocolea bissetii . Journal of Zhejiang A&F University, 2025, 42(1): 55-63. doi: 10.11833/j.issn.2095-0756.20240356
    [4] DUAN Chunyan, WANG Xiaoling.  Genetic characteristics of whole chloroplast genome in Prunus triloba ‘Multiplex’ . Journal of Zhejiang A&F University, 2024, 41(3): 577-585. doi: 10.11833/j.issn.2095-0756.20230489
    [5] WANG Jie, HE Wenchuang, XIANG Kunli, WU Zhiqiang, GU Cuihua.  Advances in plant phylogeny in the genome era . Journal of Zhejiang A&F University, 2023, 40(1): 227-236. doi: 10.11833/j.issn.2095-0756.20220313
    [6] XIE Wenyuan, LU Yifei, CHEN Zhenghai, JIN Xiaofeng.  Taxonomic study of Cayratia s.l. from Zhejiang, China . Journal of Zhejiang A&F University, 2022, 39(6): 1212-1220. doi: 10.11833/j.issn.2095-0756.20210751
    [7] XU Sen, YANG Liting, CHEN Shuanglin, GUO Ziwu, GU Rui, ZHANG Chao.  Review on the formation of bamboo shoot palatability and its main influencing factors . Journal of Zhejiang A&F University, 2021, 38(2): 403-411. doi: 10.11833/j.issn.2095-0756.20200400
    [8] CHEN Yaxin, ZHOU Mingbing.  Genome-wide characteristics and evolution analysis of long terminal repeat retrotransposons in Phyllostachys edulis . Journal of Zhejiang A&F University, 2021, 38(3): 455-463. doi: 10.11833/j.issn.2095-0756.20200458
    [9] HONG Senrong, ZENG Qinghua, TAN Xin, CHEN Yonghua, ZHENG Yajiao, XU Yingxin, QIU Mengqin.  Whole genome re-sequencing analysis of two cultivars ('Liuyuexue' and 'Huangpixiao') of Pyrus pyrifolia in Shangrao . Journal of Zhejiang A&F University, 2019, 36(2): 227-235. doi: 10.11833/j.issn.2095-0756.2019.02.003
    [10] TONG Liang, LI Pingheng, ZHOU Guomo, ZHOU Yufeng, LI Chong.  A review of research about rhizome-root system in bamboo forest . Journal of Zhejiang A&F University, 2019, 36(1): 183-192. doi: 10.11833/j.issn.2095-0756.2019.01.023
    [11] SHUAI Minmin, ZHANG Qixiang, HUANG Youjun.  Evolution of the flowering time gene CONSTANS in a photoperiod pathway . Journal of Zhejiang A&F University, 2019, 36(1): 7-13. doi: 10.11833/j.issn.2095-0756.2019.01.002
    [12] JIANG Bing, XIE Jianhua, WANG Zichun, LIANG Wangwang, YANG Zelin, LIN Lu, ZHANG Tingjuan, PENG Yuanyi, NIE Kui, FANG Rendong.  Application of genotyping methods to monitoring and source-tracking of Listeria monocytogenes . Journal of Zhejiang A&F University, 2018, 35(4): 771-777. doi: 10.11833/j.issn.2095-0756.2018.04.024
    [13] MAO Wei, CAO Yuefen.  Genetic characteristics and research advances of genes related to cotton fiber development . Journal of Zhejiang A&F University, 2018, 35(6): 1155-1165. doi: 10.11833/j.issn.2095-0756.2018.06.021
    [14] ZHANG Jie, YIN Dejie, GUAN Haiyan, QU Qiqi, DONG Li.  An overview of Sedum spp. Research . Journal of Zhejiang A&F University, 2018, 35(6): 1166-1176. doi: 10.11833/j.issn.2095-0756.2018.06.022
    [15] CAO Jing, YANG Tonghui, ZHANG Jianhong, XIA Chencheng, JIANG Xiaoli, DA Liangjun.  Population structure and regeneration types of Ilex spp. in Tiantong National Forest Park, Zhejiang Province . Journal of Zhejiang A&F University, 2015, 32(1): 76-83. doi: 10.11833/j.issn.2095-0756.2015.01.011
    [16] WANG Xuan, MA Liangjin, LÜ Quan, MENG Xianjing, ZHANG Xingyao.  Identification of the pathogens causing stem canker on Carya cathayensis . Journal of Zhejiang A&F University, 2014, 31(2): 238-245. doi: 10.11833/j.issn.2095-0756.2014.02.012
    [17] XU Chen-lu, ZHANG Shou-gong, SUN Xiao-mei.  Conifer genomic resources and its applications in conifer genetics breeding . Journal of Zhejiang A&F University, 2012, 29(5): 768-777. doi: 10.11833/j.issn.2095-0756.2012.05.021
    [18] WANG Ce, QIN Jing-jing, GAN Hong-hao, LI Hong, LUO Zhi-bin.  Genome-wide analysis of the phosphate transporter gene family in Populus trichocarpa . Journal of Zhejiang A&F University, 2012, 29(4): 516-526. doi: 10.11833/j.issn.2095-0756.2012.04.006
    [19] CHENG Ying, LI Gen-you, XIA Guo-hua, HUANG Shang-jue, HUANG Yu-feng.  Review on tissue culture of Aralia plants . Journal of Zhejiang A&F University, 2011, 28(6): 968-972. doi: 10.11833/j.issn.2095-0756.2011.06.022
    [20] He Zhenxiang, Shi Jisen, Qiu Jinqing, Xiao Shihai.  Technique and strategy of genome mapping in forest trees. . Journal of Zhejiang A&F University, 1998, 15(2): 151-157.
  • [1]
    CHEN Shukun, FENG Yuxing. Flora of China: Vol 45 Issue 2[M]. Beijing: Science Press, 1999: 1−226.
    [2]
    YAN Xiaosu, ZHANG Jianhong. Ilex: a world famous horticultural product [J]. Zhejiang Forestry, 2022(11): 20−21.
    [3]
    WANG Weili, HE Liping, YU Minfen, et al. Phylogenetic relationships among 12 cultivars of Ilex verticillata based on ISSR molecular markers [J]. Journal of Zhejiang A&F University, 2018, 35(4): 612−617.
    [4]
    YANG Yi, JIANG Lei, LIU Ende, et al. Time to update the sectional classification of Ilex (Aquifoliaceae): new insights from Ilex phylogeny, morphology, and distribution [J]. Journal of Systematics and Evolution, 2023, 61(6): 1036−1046.
    [5]
    LI Dongling, FU Hui, REN Quanjin, et al. Medicinal plant resources of Ilex in Eastern China [J]. Chinese Wild Plant Resources, 2003, 22(1): 22−24.
    [6]
    HAO Dacheng, GU Xiaojie, XIAO Peigen, et al. Research progress in the phytochemistry and biology of Ilex pharmaceutical resources [J]. Acta Pharmaceutica Sinica B, 2013, 3(1): 8−19.
    [7]
    WU Peng, GAO Hui, LIU Jianxin, et al. Triterpenoid saponins with anti-inflammatory activities from Ilex pubescens roots [J]. Phytochemistry, 2017, 134: 122−132.
    [8]
    ZHENG Jiao, ZHOU Haiyan, ZHAO Yunfang, et al. Triterpenoid-enriched extract of Ilex kudingcha inhibits aggregated LDL-induced lipid deposition in macrophages by downregulating low density lipoprotein receptor-related protein 1 (LRP1) [J]. Journal of Functional Foods, 2015, 18: 643−652.
    [9]
    LOIZEAU P A, SAVOLAINEN V, ANDREWS S, et al. Aquifoliaceae[C]// KUBITZKI K. The Families and Genera of Vascular Plants. Berlin: Springer, 2016: 31−36.
    [10]
    YAO Xin, SONG Yu, YANG Junbo, et al. Phylogeny and biogeography of the hollies (Ilex L. , Aquifoliaceae)[J]. Journal of Systematics and Evolution, 2021, 59(1): 73−82.
    [11]
    YAO Xin, ZHANG Fan, CORLETT R T. Utilization of the hollies (Ilex L. spp. ): a review[J/OL]. Forests, 2022, 13(1): 94[2024-12-16]. DOI: 10.3390/f13010094.
    [12]
    BERNAL-GALLARDO J J, de FOLTER S. Plant genome information facilitates plant functional genomics[J/OL]. Planta, 2024, 259(5): 117[2024-12-16]. DOI: 10.1007/s00425-024-04397-z.
    [13]
    ZHAO Qiang, FENG Qi, LU Hengyun, et al. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice [J]. Nature Genetics, 2018, 50(2): 278−284.
    [14]
    JIAO Wenbiao, SCHNEEBERGER K. Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics[J/OL]. Nature Communications, 2020, 11(1): 989[2024-12-16]. DOI: 10.1038/s41467-020-14779-y.
    [15]
    HUFFORD M B, SEETHARAM A S, WOODHOUSE M R, et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes[J]. Science, 2021, 373(6555): 655−662.
    [16]
    YAO Xin, LU Zhiqiang, SONG Yu, et al. A chromosome-scale genome assembly for the holly (Ilex polyneura) provides insights into genomic adaptations to elevation in Southwest China[J/OL]. Horticulture Research, 2022, 9: uhab049[2024-12-16]. DOI: 10.1093/hr/uhab049.
    [17]
    SLIWINSKA E. Flow cytometry–a modern method for exploring genome size and nuclear DNA synthesis in horticultural and medicinal plant species [J]. Folia Horticulturae, 2018, 30(1): 103−128.
    [18]
    SU Tao, ZHANG Mengru, SHAN Zhenyu, et al. Comparative survey of morphological variations and plastid genome sequencing reveals phylogenetic divergence between four endemic Ilex species[J/OL]. Forests, 2020, 11(9): 964[2024-12-16]. DOI: 10.3390/f11090964.
    [19]
    LI Jiao, ZHOU Peng, ZHANG Qiang, et al. Genome size determination of Ilex verticillata based on flow cytometry [J]. Chinese Wild Plant Resources, 2023, 42(1): 29−34.
    [20]
    GARBEROGLIO M J, GONZÁLEZ G E, KRYVENKI M A, et al. Genome size variation of southern South American species of Ilex (Aquifoliaceae) [J]. Darwiniana, Nueva Serie, 2023, 11(1): 167−179.
    [21]
    ZHOU Peng, LI Jiao, HUANG Jing, et al. Genome survey sequencing and genetic background characterization of Ilex chinensis Sims (Aquifoliaceae) based on next-generation sequencing[J/OL]. Plants, 2022, 11(23): 3322[2024-12-16]. DOI: 10.3390/plants11233322.
    [22]
    ZHOU Peng, ZHANG Qiang, LI Jiao, et al. A first insight into the genomic background of Ilex pubescens (Aquifoliaceae) by flow cytometry and genome survey sequencing[J/OL]. BMC Genomics, 2023, 24(1): 270[2024-12-16]. DOI: 10.1186/s12864-023-09359-5.
    [23]
    KONG B L, NONG Wenyan, WONG K H, et al. Chromosomal level genome of Ilex asprella and insight into antiviral triterpenoid pathway[J/OL]. Genomics, 2022, 114(3): 110366[2024-12-16]. DOI: 10.1016/j.ygeno.2022.110366.
    [24]
    GEUKENS E, HAEGEMAN A, van MEULDER J, et al. Exploring genetic diversity in an Ilex crenata breeding germplasm[J/OL]. Horticulturae, 2023, 9(4): 485[2024-12-16]. DOI: 10.3390/horticulturae9040485.
    [25]
    DUAN Yifan, LI Lan, YANG Xinxin, et al. Study on ploidy and genome sizes of Osmanthus fragrans and its related species [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(5): 47−52.
    [26]
    XU Kewang, WEI Xuefen, LIN Chenxue, et al. The chromosome-level holly (Ilex latifolia) genome reveals key enzymes in triterpenoid saponin biosynthesis and fruit color change[J/OL]. Frontiers in Plant Science, 2022, 13: 982323[2024-12-16]. DOI: 10.3389/fpls.2022.982323.
    [27]
    GOTTLIEB A M, POGGIO L. Quantitative and qualitative genomic characterization of cultivated Ilex L. species [J]. Plant Genetic Resources, 2015, 13(2): 142−152.
    [28]
    FENG Landi, YAO Yingjun, KANG Minghui, et al. Integrated genomic, transcriptomic, and metabolomic analyses of Ilex hylonoma provide insights into the triterpenoid saponin biosynthesis [J]. The Plant Journal, 2024, 120(3): 1176−1189.
    [29]
    XU Zhenxiu, WEI Haikun, LI Mingyue, et al. Impact of chromosomal fusion and transposable elements on the genomic evolution and genetic diversity of Ilex species[J/OL]. Plants, 2024, 13(18): 2649[2024-12-16]. DOI: 10.3390/plants13182649.
    [30]
    JIANG Zhuanzhuan, CHEN Hong, BAO Hongyan, et al. Chloroplast genome characteristics and molecular marker development of Pennisetum [J]. Journal of Zhejiang A&F University, 2025, 42(2): 365−372.
    [31]
    DANIELL H, LIN C S, YU Ming, et al. Chloroplast genomes: diversity, evolution, and applications in genetic engineering[J/OL]. Genome Biology, 2016, 17(1): 134[2024-12-16]. DOI: 10.1186/s13059-016-1004-2.
    [32]
    ZHOU Ting, NING Kun, MO Zhenghai, et al. Complete chloroplast genome of Ilex dabieshanensis: genome structure, comparative analyses with three traditional Ilex tea species, and its phylogenetic relationships within the family Aquifoliaceae[J/OL]. PLoS One, 2022, 17(5): e0268679[2024-12-16]. DOI: 10.1371/journal.pone.0268679.
    [33]
    CHEN Yan, CHEN Huaxu, LI Haili, et al. Complete plastome sequence of Ilex asprella (Hooker and Arnott) Champion ex Bentham (Aquifoliaceae), a Chinese folk herbal medicine [J]. Mitochondrial DNA Part B, 2019, 4(2): 2341−2342.
    [34]
    KONG B L, PARK H S, LAU T D, et al. Comparative analysis and phylogenetic investigation of Hong Kong Ilex chloroplast genomes[J/OL]. Scientific Reports, 2021, 11(1): 5153[2024-12-16]. DOI: 10.1038/s41598-021-84705-9.
    [35]
    YAO Xin, TAN Yunhong, LIU Yingying, et al. Chloroplast genome structure in Ilex (Aquifoliaceae)[J/OL]. Scientific Reports, 2016, 6: 28559[2024-12-16]. DOI: 10.1038/srep28559.
    [36]
    PARK J, KIM Y, NAM S, et al. The complete chloroplast genome of horned holly, Ilex cornuta Lindl. & Paxton (Aquifoliaceae) [J]. Mitochondrial DNA Part B, 2019, 4(1): 1275−1276.
    [37]
    XU Kewang, LIN Chenxue, LEE S Y, et al. Comparative analysis of complete Ilex (Aquifoliaceae) chloroplast genomes: insights into evolutionary dynamics and phylogenetic relationships[J/OL]. BMC Genomics, 2022, 23(1): 203[2024-12-16]. DOI: 10.1186/s12864-022-08397-9.
    [38]
    ZHAI Xuyang, WANG Sen, ZHENG Yi, et al. Assembly and comparative analysis of four mitochondrial genomes of Malus [J]. Journal of Beijing University of Agriculture, 2023, 38(3): 28−33.
    [39]
    XU Zhiqiang, HAO Yifei, XU Yue. Characterization of the complete mitochondrial genome of Ilex pubescens [J]. Mitochondrial DNA Part B, 2019, 4(1): 2003−2004.
    [40]
    ZHOU Peng, ZHANG Qiang, LI Fei, et al. Assembly and comparative analysis of the complete mitochondrial genome of Ilex metabaptista (Aquifoliaceae), a Chinese endemic species with a narrow distribution[J/OL]. BMC Plant Biology, 2023, 23(1): 393[2024-12-16]. DOI: 10.1186/s12870-023-04377-7.
    [41]
    WANG Yuxiao, SUN Ning, SHI Wenxi, et al. Assembly and comparative analysis of the complete mitochondrial genome of Ilex macrocarpa[J/OL]. Forests, 2023, 14(12): 2372[2024-12-16]. DOI: 10.3390/f14122372.
    [42]
    CHEN Xiaomin, LI Yilin, HE Weinuo, et al. Research progress of molecular marker technology in goat breeding [J]. China Herbivore Science, 2023, 43(6): 45−51.
    [43]
    HUANG Hongbao, HE Yinghui, HUANG Xin, et al. Chloroplast whole genome of Ilex rotunda and its phylogenetic analysis [J]. Agricultural Research and Application, 2022, 35(5): 7−14.
    [44]
    KIM Y, OH D R, KIM Y J, et al. Chloroplast microsatellite-based high-resolution melting analysis for authentication and discrimination of Ilex species[J/OL]. Forests, 2022, 13(10): 1718[2024-12-16]. DOI: 10.3390/f13101718.
    [45]
    MANEN J F, BARRIERA G, LOIZEAU P A, et al. The history of extant Ilex species (Aquifoliaceae): evidence of hybridization within a Miocene radiation [J]. Molecular Phylogenetics and Evolution, 2010, 57(3): 961−977.
    [46]
    CUÉNOUD P, del PERO MARTINEZ M A, LOIZEAU P A, et al. Molecular phylogeny and biogeography of the genus Ilex L. (Aquifoliaceae) [J]. Annals of Botany, 2000, 85(1): 111−122.
    [47]
    CASCALES J, BRACCO M, GARBEROGLIO M J, et al. Integral phylogenomic approach over Ilex L. species from southern south America[J/OL]. Life, 2017, 7(4): 47[2024-12-16]. DOI: 10.3390/life7040047.
    [48]
    ZHANG Guojin, MA Hong. Nuclear phylogenomics of angiosperms and insights into their relationships and evolution [J]. Journal of Integrative Plant Biology, 2024, 66(3): 546−578.
    [49]
    MIETTINEN K, POLLIER J, BUYST D, et al. The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis[J/OL]. Nature Communications, 2017, 8: 14153[2024-12-16]. DOI: 10.1038/ncomms14153.
    [50]
    WANG Jie, HE Wenchuang, XIANG Kunli, et al. Advances in plant phylogeny in the genome era [J]. Journal of Zhejiang A&F University, 2023, 40(1): 227−236.
    [51]
    SHI Dongqing, WU Jun, TANG Haibao, et al. Single-pollen-cell sequencing for gamete-based phased diploid genome assembly in plants [J]. Genome Research, 2019, 29(11): 1889−1899.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(4)

Article views(404) PDF downloads(21) Cited by()

Related
Proportional views

Research progress on the genomics of Ilex plants

doi: 10.11833/j.issn.2095-0756.20250121

Abstract: Ilex is the largest genus in the Aquifoliaceae family, and also the largest woody dioecious genus among angiosperms. Ilex plants have significant value in ornamental, medicinal, edible and industrial applications. Their extensive ecological distribution and rich phenotypic variation have aroused the research interests of many scientists. This article discusses the main achievements of genome research on Ilex plants based on high-throughput sequencing technology, and summarizes the differences between genomes of different species and at different levels. Currently, research on genomes of Ilex plants mainly focuses on 3 aspects: (1) assembly of nuclear and organelle genomes; (2) analysis of phylogenetics and genetic diversity; (3) mining and identification of key candidate genes for important traits. The main conclusions are as follows: the nuclear genomes of Ilex plants have the characteristics of chromosome number diversity and high heterozygosity rate. As Ilex species originated in the subtropical region of East Asia in the early Eocene, its evolutionary core may be chromosome fusion and whole genome replication events. Key genes involved in elevation adaptability, triterpenoid saponins and fruit color change have been identified. Future genomic research on Ilex should focus on improving quality and integrity of genome assembly for more representative species, conducting in-depth functional genomics research, verifying the functions and regulatory networks of key genes, analyzing the genetic basis of complex trait formation, and using genome information to accelerate the molecular breeding process of Ilex plants. [Ch, 4 tab. 51 ref.]

HUANG Huiting, ZHANG Jianhong, SHEN Dengfeng, et al. Research progress on the genomics of Ilex plants[J]. Journal of Zhejiang A&F University, 2025, 42(6): 1330−1338 doi:  10.11833/j.issn.2095-0756.20250121
Citation: HUANG Huiting, ZHANG Jianhong, SHEN Dengfeng, et al. Research progress on the genomics of Ilex plants[J]. Journal of Zhejiang A&F University, 2025, 42(6): 1330−1338 doi:  10.11833/j.issn.2095-0756.20250121
  • 冬青属Ilex是冬青科Aquifoliaceae最大的属[1],包含600多种,为雌雄异株灌木和乔木[2]。中国是冬青种质资源最丰富的国家之一,约有204种冬青属植物,主要分布于秦岭南坡、长江流域及其以南地区[1]。冬青属植物在园林观赏和城市绿化中发挥着重要作用,例如,轮生冬青I. verticillata因秋季落叶、果实鲜艳并且果期长等特点,常用于切枝观赏、居室盆栽和景观美化[3],年产值达2亿元以上,促进了中国农业和农村经济的发展[4]。大多数冬青属植物都含有具有保健和药用价值的化学成分[5],多种冬青属植物已应用于医药领域[67]。例如,苦丁茶冬青I. kudingcha常用于治疗高血脂和动脉粥样硬化[6],毛冬青I. pubescens可用于消炎[7]。部分冬青属物种还具有食用和工业价值[8],其中60多种适合制作各种饮料[9],例如,巴拉圭冬青I. paraguariensis和苦丁茶冬青可以用来制茶[6, 1011]

    破译冬青属植物基因组序列对于解析其形态多样性、发掘复杂性状的调控基因及其分子机制和遗传改良具有重大意义。随着测序技术的快速发展,植物基因组学领域已经取得了显著的成就。截至2024年3月,已有1 482种植物的4 604个基因组被相继揭晓[12],包括玉米Zea mays、水稻Oryza sativa和多脉冬青I. polyneura[1316]。本研究全面总结了冬青属植物核基因组和细胞器基因组的研究进展,以及冬青基因组学在多态性分子标记的开发、遗传多样性与系统发育关系研究以及候选基因的挖掘等方面的应用,以期为冬青属植物遗传学研究和产业发展提供基础。

    • 早期研究主要依赖流式细胞术(flow cytometry,FCM)预测基因组大小。该方法凭借高通量、高准确度、高分辨率以及对植物样品破坏小等优点[17],成功揭示了基因组大小与形态学特征、染色体倍性和性别差异(如轮生冬青雄株的基因组显著小于雌株)的关联性[1820]

      近年来,二代测序技术与流式细胞术结合,除基因组大小外还解析了多脉冬青、大叶冬青I. latifolia、冬青I. chinensis和毛冬青基因组的复杂性特征(杂合率以及重复序列率)[16, 2122]。冬青属植物基因组大小见表1。综合分析发现:冬青属普遍具有高杂合率(>0.80%)及复杂基因组结构(重复率>37.00%),这些特征表明其基因组进化过程中可能经历了频繁的杂交和重复序列扩张。实时荧光定量聚合酶链式反应(real-time quantitive PCR, RT-qPCR)也被用来评估基因组大小,如秤星树I. asprella基因组的研究[23]

      物种 基因组大小/
      Mb
      杂合率/%
      重复序列占比/% 染色体数目
      (2n)
      倍性 参考文献
      多脉冬青 741.48 1.18 38.00 40 二倍体 [16]
      冬青 618.00~655.00 1.10 38.00 [21]
      毛冬青 722.00±8.00 1.93 37.52 [22]
      大叶冬青 772.55 0.80 37.52 40 二倍体 [26]
      齿叶冬青 40、60、80 二倍体、三倍体、四倍体 [24]
      I. dumosa 1 670.00 40 二倍体 [27]
      落叶冬青 728.46~2 108.98 [19]
      巴拉圭冬青 1 848.00 40 二倍体 [27]
      秤星树 804.90 36 二倍体 [24]
      绿冬青 1 232.00 [18]
      香冬青 1 121.00 [18]
      细刺枸骨 817.90 40 二倍体 [28]
      小果冬青 1 493.00 [18]
        说明:-表示未知,没有得到相应的数据。巴拉圭冬青I. paraguariensis;绿冬青I. viridis;香冬青I. suaveolens;细刺枸骨I. hylonoma;小果冬青I. micrococca

      Table 1.  Genome size of Ilex species

      染色体数目数据库(The Chromosome Counts Database,CCDB)收录了45种冬青属植物的染色体数据。这些植物的染色体基数为17~20条,其中,有28个物种染色体数为40 (2n)条,这是最具有代表性的,太平洋多核冬青I. anomalaI. argentina染色体数为80 (2n)条,为四倍体;具柄冬青I. pedunculosa染色体数为120 (2n)条,为六倍体,其余均为二倍体 [20]。有研究发现:齿叶冬青I. crenata的不同品种具有不同的染色体数和倍性,还发现了1个三倍体品种;I. yunnanensis var. gentilis的染色体数为160 (2n)条,大于染色体数目数据库中的物种[24],可能是八倍体。这种染色体数量上的变化促进了种间的差异。落叶冬青I. verticillata不同品种基因组大小差异显著,最高达2 108.98 Mb,远超大多数冬青(700~1 000 Mb)[19]。这些信息为冬青属植物的染色体水平参考基因组序列的测序和组装奠定了基础[25]。冬青属植物的基因组大小跨度极大,并且在染色体数目及倍性上存在广泛的多样性,体现了该属物种可能在进化过程中经历了显著的基因组扩张与多倍化事件,从而展现出较强的适应性。

    • 目前,仅有多脉冬青、大叶冬青、秤星树和细刺枸骨4种冬青属植物完成了染色体水平全基因组测序(表2)。多脉冬青作为冬青目Aguifoliales中首个染色体水平的参考基因组,其组装结合了Illumina短读长技术、Pacific Biosciences (PacBio)的单分子实时(single molecule real-time,SMRT)测序技术和高通量染色体构象捕获技术(high-through-put/resolution chromosome conformation capture,Hi-C),通过4DTv值分布分析鉴定出了2个全基因组复制事件[16],这为解析冬青属复杂的进化过程与广泛的适应性提供了重要的线索。大叶冬青染色体水平基因组的组装通过Illumina和Oxford Nanopore纳米孔测序技术结合Hi-C技术完成,揭示了2次全基因组复制事件发生在大叶冬青与多脉冬青的共同祖先中,并且与被子植物多倍性演化历史密切相关[26]。秤星树染色体水平基因组利用Illumina和Oxford Nanopore纳米孔测序技术对进行了测序,并通过Omni-C (Omni-Chromosome Conformation Capture)技术完成基因组的组装,基于基因组序列的比对和功能注释获得了23种氧化鲨烯环化酶(OSC)和16种CYP716酶的假设蛋白[23]。近期,细刺枸骨的参考基因组利用PacBio HiFi测序和Hi-C技术成功构建,通过与多脉冬青和秤星树全基因组进行比较分析,进一步证实了冬青属植物在演化过程中存在2个全基因组复制事件,并且存在染色体重排从而可能导致遗传分化增加,促进了物种的形成。这可能导致该属的单倍体染色体数从20条,减少到19条,并进一步演变为17条[28]

      物种 基因组
      大小/Mb
      ScaffoldN50/
      bp
      基因
      数量
      BUSCO/
      %
      GC含
      量/%
      数据来源 参考文献
      多脉冬青 727.10 36.59 32 838 97.60 36.08 国家基因组科学数据中心(NGDC),编号:GWHBDNW00000000
      (https://ngdc.cncb.ac.cn/gwh/Assembly/21460/show)
      [16]
      大叶冬青 766.02 33.45 35 218 92.22 36.44 国家基因组科学数据中心(NGDC),编号:GWHBIST00000000
      (https://ngdc.cncb.ac.cn/gwh/Assembly/25220/show)
      [26]
      秤星树 804.00 32.50 39 215 94.40 36.25 美国国家生物技术信息中心(NCBI),编号:JAHQCQ000000000
      (https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/023/539/305/GCA_
      023539305.1_CUHK_Ilex_v2.1/)
      [23]
      细刺枸骨 806.51 33.68 36 312 97.50 36.91 美国国家生物技术信息中心(NCBI)(https://doi.org/10.6084/m9.figshare.
      24958638.v2)
      [28]

      Table 2.  Chromosomal level genome of Ilex species

      综合比较多脉冬青、大叶冬青和秤星树参考基因组发现:转座元件(TEs)占3个物种基因组的57.7%~59.8%,其中LTR转座子占主导地位(34%~36%)。秤星树的启动子区域TEs相关顺式调控元件数量仅为其他2个物种的1/5,TE密度与基因密度呈反比关系,可能影响基因调控和染色体结构 [29]

      通过已报道的基因组大小与基因数量来看,两者之间没有明显的线性关系(表2),故基因组差异可能是非编码区域的作用,例如TEs。冬青属物种GC含量较为接近,表明其在基因组碱基组成上有较高的保守性。比较Scaffold N50和通用单拷贝同源基因基准(BUSCO)可以发现多脉冬青和细刺枸骨组装质量更高。冬青属植物基因组的复杂性要求使用长读长和短读长测序技术以确保连续性和完整性,但在处理高重复区域时仍然面临挑战,误差相对较高可能导致基因组组装的不准确。多脉冬青和大叶冬青基因组锚定到假染色体上的比例相对较高,分别有97.6%和99.8%,而秤星树和细刺枸骨仅有80.53%和89.36%,仍有许多序列未能正确定位到染色体上。组装的染色体基因组杂合率较高,如多脉冬青为1.18%。

    • 相较于核基因组,叶绿体基因组具有母系遗传、结构相对简单且易于测序组装的特点,这对研究遗传多样性具有重要意义,因此常用于植物系统发育研究[30]。陆地植物的叶绿体基因组具有高度保守的环状结构,主要由1个大单拷贝区(large single-copy region,LSC)、一个小单拷贝区(small single-copy region,SSC)和2个反向重复区(inverted repeat region,IR)组成[31]

      迄今为止,NCBI数据库中提供了90种冬青属植物完整的叶绿体基因组序列,其总长度从157 119 bp (纤花冬青I. graciliflora)至158 020 bp (广东冬青I. kwangtungensis),差异仅有901 bp。具体来看,大单拷贝区约为87.0 kb,小单拷贝区约为18.4 kb,反向重复区约为52.0 kb。总体来说,冬青属植物叶绿体基因组在序列长度和基因组组成上有较高的保守性,其边界扩展和收缩相对稳定。大部分物种包含88个蛋白质编码基因,但部分物种(如多脉冬青、毛冬青等)显著增加到96个,这可能与植物胁迫响应有关,tRNA基因主要以37个和40个为主,但浙江冬青I. zhejiangensis仅有20个。相比之下,rRNA是最稳定的,通常为8个,而秤星树和大别山冬青I. dabieshanensis仅有4个。冬青属植物叶绿体基因组GC含量高于核基因组,在37%以上,且具有较高的稳定性(表3)。有研究将大别山冬青、巴拉圭冬青、大叶冬青和枸骨I. cornuta进行叶绿体基因组比较分析,发现序列具有很高的相似度,变异区域主要是非编码区[32]

      物种
      叶绿体基因组特征 参考文献
      大小/
      bp
      大单拷贝区/
      bp
      小单拷贝区/
      bp
      反向重复区/
      bp
      GC含量/
      %
      蛋白质编码
      基因数目
      tRNA基因
      数目
      rRNA基因
      数目
      巴拉圭冬青 157 614 87 144 18 307 52 154 37.60 86 37 8 [18]
      大别山冬青 157 218 86 607 18 427 52 184 37.69 79 30 4 [32]
      秤星树 157 856 87 258 18 441 52 164 37.60 85 30 4 [33]
      大叶冬青 157 558 86 945 18 427 52 186 37.60 88 37 8 [34]
      多脉冬青 157 621 87 064 18 435 52 122 37.60 96 40 8 [35]
      枸骨 157 224 86 610 18 429 52 184 37.70 86 37 8 [36]
      广东冬青 158 020 87 400 18 412 52 208 37.60 88 37 8 [34]
      毛冬青 157 741 87 109 18 436 52 196 37.60 96 40 8 [35]
      纤花冬青 157 119 86 506 18 427 52 186 37.70 88 37 8 [34]
      浙江冬青 157 182 86 575 18 423 52 184 37.69 91 20 8 [37]

      Table 3.  Chloroplast genome of Ilex species

    • 线粒体与叶绿体一样具备半自主遗传特性,承载着关键的遗传信息[38]。目前仅有毛冬青、河滩冬青I. metabaptista和大果冬青I. macrocarpa等3个物种的线粒体基因组被成功测序(表4)。

      物种线粒体基因组特征参考文献
      大小/bpGC含量/%蛋白编码基因数目tRNA基因数目rRNA基因数目
      毛冬青517 52045.6033183[39]
      河滩冬青529 56045.6142223[40]
      大果冬青538 46145.5339193[41]

      Table 4.  Mitochondrial genome of Ilex species

      冬青属植物线粒体基因组为典型的环状结构,目前的研究结果表明:其长度为518~538 kb,GC含量较为稳定,为45.53%~45.60%,低于染色体和叶绿体基因组。非编码区占比极高,河滩冬青和大果冬青可达92.0%以上,毛冬青为87.4%[39]。在基因编辑方面,线粒体基因组的rRNA基因数量一致。在河滩冬青的蛋白质编码基因中,无内含子的高达82.9%,而部分基因(如nad1、nad2等)含多个内含子,这对基因的表达调节有重要影响[40]。大果冬青中预测到569个分布不均的RNA编辑位点,95%以上编辑位点多位于密码子第1位和第2位,且密码子使用偏好A/T结尾。研究人员还发现了叶绿体基因向线粒体基因迁移的现象,在大果冬青中鉴定到66个叶绿体同源基因组片段[41]。总体而言,目前线粒体基因组数据较少,若要揭示属内多样性和基因组的动态演化规律与生态适应性之间的关联,还需增加样本量。尚不清楚线粒体与叶绿体基因迁移片段是否保留原先功能或参与信号传递。

    • 分子标记是一类基于基因组DNA多态性,能够直接反映生物体DNA水平差异的遗传标记[42]。在叶绿体基因组中,毛冬青有341个重复序列和11个高变热点区域可作系统发育分子标记[35]。通过比较不同物种发现:冬青属编码区保守,而IRs/SSC连接处以及可能用于DNA标记的一些热点区域则存在变异[18]。一些物种,例如小果铁冬青I. rotunda var. microcarpa的叶绿体基因组中单核苷酸重复序列达到44.00%~56.00%,且有4个高度不同的序列(rps16-trnQ、rpl32-trnL、 ndhD-psaCycf1)[34]。铁冬青I. rotunda的叶绿体基因组含有131个简单重复序列标记(simple sequence repeats,SSR),其中有91.60% (120个)为单核苷酸SSR[43]。即使在相近物种之间,叶绿体基因组的结构也可能存在显著差异,这些差异体现在IR/SC边界的变化、基因位置的变动以及特定基因的扩张或收缩等方面[32]。可以通过定位叶绿体基因组中的一个特定区域(trnSUGA-psbZ),并结合DNA条形码和高分辨率溶解曲线(high-resolution melting,HRM)分析技术,实现冬青属内不同物种的鉴定和认证[44]

      在染色体基因组中,单个核苷酸的变异比较多。有研究发现:10个不同的冬青属物种的47~63个SSRs中,单核苷酸重复序列占93.00%[23]。在多脉冬青21个种群中鉴定出了862 714个单核苷酸多态性(single nucleotide polymorphism,SNP)[16]。这些研究揭示了冬青属植物基因组的丰富变异和多态性,为物种鉴定、系统发育关系以及遗传多样性研究提供了宝贵的遗传资源。

    • 冬青属植物在世界各地广泛分布,且不同区域物种多样性差异显著[10]。冬青属植物的系统发育研究在时间尺度与起源地等问题上存在显著争议。早期基于108种冬青属植物的系统发育研究认为:冬青属现存物种的共同祖先追溯到新世中期(约1 300万年前),起源地为东亚或北美地区[45]。近期通过分析覆盖所有分布区的177种冬青的2个核基因及化石校准点,认为应追溯至始新世早期(约5 600万年前),起源地为东亚亚热带地区。这一时间点与白垩纪-始新世广泛的谱系灭绝相吻合[10]。冬青属通过长距离扩散(如北美/东亚和北美/南美的双向迁移)以及气候变化驱动的适应性辐射,逐渐形成了现今的全球分布格局[10, 45]

      在分类群划分与亲缘关系方面,早期研究将冬青属分为亚洲分支、落叶分支、欧亚分支、美洲分支四大分支[46],但后续分子标记的多样性导致分类争议。例如核基因数据支持多脉冬青、毛冬青、尾叶冬青I. wilsonii、大果冬青的亲缘关系[47],而CHEN等[33]基于不同标记支持陷脉冬青I. delavayi与上述4种冬青的亲缘关系,形成分类矛盾。基因组数据的冲突进一步凸显:核基因组表明毛冬青和河滩冬青关系密切,大果冬青在另外一个分支上;线粒体基因组表明冬青目是唇形目Lamiales、茄目Solanales和龙胆目Gentianales的姊妹植物,而叶绿体基因组表明河滩冬青和大果冬青关系密切,冬青目与菊目Asterales和伞形目Apiales的亲缘关系更为密切[41]。目前普遍认为:核基因组数据更能反映物种的真实进化关系,因其重组频率高且受选择压力的影响较小,而叶绿体和线粒体基因组的母系遗传特性可能导致系统发育信号偏差[48]

      大叶冬青、多脉冬青和细刺枸骨的染色体数均为20条,而秤星树仅有19条。对基因组进行共线性分析发现:秤星树的第1号染色体与其他两者的2条染色体(大叶冬青的第10号和第11号染色体,多脉冬青的第10号和第18号染色体)具有高度的同源性。通过系统发育分析推测:秤星树的染色体融合事件发生在它与多脉冬青分化之后,属于近期的染色体融合事件[29]。多脉冬青的系统发育分析和群体遗传分析(连锁不平衡衰减分析)揭示了中海拔种群同时包含高海拔和低海拔种群的遗传成分,且中海拔种群内连锁不平衡衰减速度较慢,具有更高的遗传多样性,可能存在高海拔与低海拔种群的基因交换[16]

    • 通过基因组学数据可以挖掘调控冬青属植物重要性状的关键候选基因。近年来,关于三萜类物质合成的关键基因研究取得了显著的进展。基于大叶冬青参考基因组和转录组数据,研究鉴定出CYP716ACYP72A基因,这些基因可能参与了大叶冬青三萜皂苷的生物合成[26]CYP716ACYP72A属于CYP450家族,在植物中广泛参与次生代谢产物的氧化修饰。具体而言,CYP716A基因可能催化三萜骨架的羟基化反应,而CYP72A基因则可能进一步修饰三萜皂苷的结构[49]。在秤星树中,研究鉴定出负责三萜皂苷骨架修饰的关键基因,包括氧化鲨烯环化酶、CYP716和糖基转移酶 (UGT)。OSC基因负责将2,3-氧化鲨烯环化为三萜骨架,而CYP716和UGT基因则分别催化三萜骨架的氧化和糖基化反应,这些修饰方式的共同作用,使得三萜皂苷的结构类型极为丰富[23]。在细刺枸骨的参考基因组研究中,进一步证实了OSCCYP450和UGT是三萜皂苷生物合成调控的候选基因。除此之外还发现了一些转录因子(如MYB,ERF和bHLH家族)也参与其中[28]。研究者对分布在不同海拔(675~2 362 m)的21个多脉冬青群体进行群体基因组学研究,通过全基因组测序数据结合连锁不平衡和选择性清除分析,成功挖掘出34个可能与海拔适应性相关的候选基因。这些基因的功能涉及对非生物和生物胁迫的响应,包括光合作用和防御反应等[16]。有研究发现:F3H (Ila10G001350.1)和F3′H (Ila14G014210.1) 2个基因在红色果皮中的高表达(大于绿色果皮1.5倍),可能是调控冬青果实颜色变化的关键基因[26]。总的来说,冬青属候选基因的鉴定揭示了其背后的遗传机制。未来的研究应进一步探索这些基因的具体功能,例如通过基因编辑技术(如CRISPR-Cas9)验证这些基因在三萜类物质和环境适应中的作用,也可以通过比较基因组学揭示这些基因在冬青属植物中的进化历史等,进而从更深层次上理解冬青属植物的多样性。

    • 目前,在冬青属基因组学领域的探索相对有限,研究焦点多集中于细胞器基因组(如叶绿体)的解析,有近90个物种的叶绿体基因组已成功组装。开展对尚未研究的物种以及更高质量的基因组研究,可以更全面解析冬青属的多样性。在植物细胞的3套遗传系统中,染色体全基因组编码的遗传信息量最大,调控着植物绝大多数的生理生化功能及形态性状特征,蕴含丰富的遗传变异[50]。然而目前冬青属仅有4个物种成功完成了高质量全基因组测序。尽管这些研究提供了宝贵的数据,但难以覆盖该属600余种的复杂多样性。现有研究揭示冬青属普遍存在高杂合率。针对此问题,可以构建2个单倍型基因组进行组装,有助于识别同源染色体之间的基因组变异,从而提高组装质量。该方法已在蔷薇科Rosaceae等复杂基因组中验证其可行性[51]。冬青属传统分类系统(如Loesener和Galle体系)因依赖形态特征,常形成非单系群,与分子系统发育结果存在显著冲突[4]。可以通过多组学整合策略提供更高分辨率的分子标记,如可以基于全基因组重测序开发群体特异性单核苷酸多态性标记。

      冬青属的观赏价值及药用潜力受多基因调控,其分子机制尚未明晰。未来可利用基因组学数据结合相应的转录组,通过数量性状基因座(quantitative trait locus,QTL)定位和全基因组关联分析(genome-wide association studies,GWAS)等挖掘调控重要性状的候选基因,例如调控花色苷合成的关键位点等。也可以通过代谢组与基因组进行关联分析,挖掘具有药用价值的次生代谢物合成通路的调控网络。

      为全面解析冬青属的多样性,未来还需要进行多组学整合与精准育种,利用高通量染色体构象捕获技术构建染色体构象,解析染色体互作对冬青属基因表达的调控,另外,可以开发基因CRISPR/Cas9的基因组编辑体系,定向改良冬青属的观赏性状。

Reference (51)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return