Volume 42 Issue 5
Oct.  2025
Turn off MathJax
Article Contents

MAO Chenyuan, GUO Ziting, ZHAO Yi, et al. Evaluation and screening of postharvest storage tolerance and vase life of 275 cut chrysanthemum cultivars[J]. Journal of Zhejiang A&F University, 2025, 42(5): 944−955 doi:  10.11833/j.issn.2095-0756.20250474
Citation: MAO Chenyuan, GUO Ziting, ZHAO Yi, et al. Evaluation and screening of postharvest storage tolerance and vase life of 275 cut chrysanthemum cultivars[J]. Journal of Zhejiang A&F University, 2025, 42(5): 944−955 doi:  10.11833/j.issn.2095-0756.20250474

Evaluation and screening of postharvest storage tolerance and vase life of 275 cut chrysanthemum cultivars

DOI: 10.11833/j.issn.2095-0756.20250474
Funds:  CHEN Fadi, CHEN Sumei, FANG Weimin, et al. Discovery of excellent Chrysanthemum germplasms and germplasm enhancement[J]. Bulletin of National Natural Science Foundation of China, 2016, 30(2): 112-115.
  • Received Date: 2025-08-31
  • Rev Recd Date: 2025-10-05
  • Available Online: 2025-10-29
  • Publish Date: 2025-10-20
  •   Objective  Enhancing storage tolerance and extending vase life constitutes the core objective of postharvest preservation research for cut flowers. This study aims to systematically evaluate and screen cut chrysanthemum (Chrysanthemum × morifolium) cultivars with superior storage tolerance and vase performance, thereby laying a robust material foundation for postharvest quality improvement and breeding of new cut chrysanthemum cultivars.   Method  A total of 275 cut chrysanthemum germplasm resources were used as research materials. Postharvest preservation-related indicators during the dry storage period and vase period were determined. The storage tolerance and vase performance of cut chrysanthemums were analyzed and evaluated by using difference analysis, variation analysis, correlation analysis, cluster analysis and principal component analysis.   Result  There were significant differences in postharvest storage tolerance and vase ornamental performance among different cut chrysanthemum cultivars. ‘Nannong Hongyi’ ‘Qinhuai Ruixue’ and ‘Pip’ had excellent storage tolerance, long vase life and outstanding comprehensive traits, which were suitable for promotion and application as main cultivars with good storage and transportation resistance and long ornamental period. ‘Nannong Lifengche’ and ‘Nannong Binyun’ had prominent storage tolerance, which were suitable for long-distance transportation and long-term storage, and could be used as excellent parents for breeding export-oriented cut chrysanthemum cultivars. ‘Nannong Hongdiandian’ and ‘Rongshan’ had a long vase ornamental period; although their storage tolerance was relatively poor, they were very suitable for localized high-quality production and could be used as key parents for breeding high-end gift flower cultivars.   Conclusion  On the basis of the storage tolerance, vase life data, and associated statistical analyses of 275 cut chrysanthemum germplasm resources, a total of 7 elite germplasms with strong storage tolerance and prolonged vase life were identified. In practical breeding applications, parental materials can be selected in line with distinct breeding objectives to facilitate targeted variety development. [Ch, 4 fig. 7 tab. 47 ref.]
  • [1] JIN Xiaoyu, WANG Yiguang, ZHAO Hongbo, DONG Bin.  Color change and physiological characteristics in Osmanthus fragrans Colour Group . Journal of Zhejiang A&F University, 2024, 41(5): 1056-1065. doi: 10.11833/j.issn.2095-0756.20240160
    [2] WANG Shuang, DONG Bin, WANG Yiguang, ZHAO Hongbo.  Analysis and evaluation of flower and fruit characteristics of different Prunus mume cultivars . Journal of Zhejiang A&F University, 2024, 41(1): 113-123. doi: 10.11833/j.issn.2095-0756.20230213
    [3] DING Yunqian, ZHU Qingxiang, TANG Zhenghao, JIN Peng, LI Xinze, WANG Xiaomin, ZHAO Guangwu.  Screening and physiological characteristics of storable Oryza sativa germplasm resources . Journal of Zhejiang A&F University, 2023, 40(2): 244-253. doi: 10.11833/j.issn.2095-0756.20220594
    [4] NIU Yuan, AO Yan, LI Yun, TIAN Xiuming, YANG Changwen, LIU Xiaotian, LI Zhihong.  Selection of pollination combinations and analysis of fruit and seed characters of excellent clones of Xanthoceras sorbifolium . Journal of Zhejiang A&F University, 2020, 37(2): 209-219. doi: 10.11833/j.issn.2095-0756.2020.02.003
    [5] HUO Yan, ZHAO Xueqing, HUANG Houyi, HUANG Xianbin, XU Yunfang, ZHU Zunling, YUAN Zhaohe.  Phenotypic genetic diversity of ornamental pomegranate cultivars . Journal of Zhejiang A&F University, 2020, 37(5): 939-949. doi: 10.11833/j.issn.2095-0756.20190619
    [6] JIANG Dongyue, SHEN Xin, CHEN Yajing, ZOU Yihan, WU Fan, LI Yingang, LIU Xinhong.  Morphological variation analysis of leaf and branch traits of wild Cerasus spp. in Zhejiang . Journal of Zhejiang A&F University, 2019, 36(4): 723-732. doi: 10.11833/j.issn.2095-0756.2019.04.012
    [7] QIAN Li, ZHANG Chao, QI Peng, YU Shuquan.  Sourcing and evaluating heavy metal pollution in the urban topsoil of Yongkang City . Journal of Zhejiang A&F University, 2016, 33(3): 427-433. doi: 10.11833/j.issn.2095-0756.2016.03.008
    [8] ZHANG Guanglai, LI Lu, LIAO Wenmei.  Principal component analysis of China's forestry industry competitiveness . Journal of Zhejiang A&F University, 2016, 33(6): 1078-1084. doi: 10.11833/j.issn.2095-0756.2016.06.022
    [9] WU Yueyan, TAO Qiaojing, LI Bo, XU Danye.  An optimal SRAP-PCR system of Rhododendron hybridum and its genetic diversity analysis with SRAP marker . Journal of Zhejiang A&F University, 2013, 30(6): 844-851. doi: 10.11833/j.issn.2095-0756.2013.06.007
    [10] ZHENG Rong.  Canonical correlation and principal components analysis of different production areas of Dendrocalamopsis oldhami with quality indicators of bamboo shoots and its soil nutrients . Journal of Zhejiang A&F University, 2012, 29(5): 710-714. doi: 10.11833/j.issn.2095-0756.2012.05.012
    [11] WANG Rong.  Principal component analysis and evaluation of waterfowl habitats along the coastline of Fujian Province . Journal of Zhejiang A&F University, 2011, 28(3): 472-478. doi: 10.11833/j.issn.2095-0756.2011.03.020
    [12] YANG Jian-hua, LI Shu-fang, FAN Zhi-yuan, XI Xue-liang, ZOU Wei-lie, LIU Jiao, PAN Li.  Principal component analysis for major economic characteristics of Carya illinoensis and selection of superior cultivars . Journal of Zhejiang A&F University, 2011, 28(6): 907-910. doi: 10.11833/j.issn.2095-0756.2011.06.011
    [13] SHEN Jun-ling, NI Hui-qun, CHEN Xiao-yang, HUANG Shao-wei.  Genetic diversity of Jatropha curcas with SRAP molecular markers . Journal of Zhejiang A&F University, 2010, 27(3): 347-353. doi: 10.11833/j.issn.2095-0756.2010.03.005
    [14] NING Hui-juan, SHAO Feng, DAI Si-lan, BAO Zhi-yi.  Application evaluation of cutting flowers of 40 chrysanthemum cultivars . Journal of Zhejiang A&F University, 2009, 26(3): 389-394.
    [15] ZHANG Fei, FANG Wei-min, CHEN Fa-di, ZHAO Hong-bo, JIA Wen-ke.  Genetic variability patterns and correlation analysis for cut-chrysanthemum with emphasis on inflorescence traits . Journal of Zhejiang A&F University, 2008, 25(3): 293-297.
    [16] ZHU Zhen, SHEN Yue-qin, WANG Jin-lian, WANG Zheng-rong.  Case study of income analysis and the policies of improving income for farmers in mountainous area . Journal of Zhejiang A&F University, 2006, 23(4): 460-464.
    [17] LIANG Jian, SUN Ting.  Clustering analysis of rodent communities in Yan'an forest region . Journal of Zhejiang A&F University, 2004, 21(1): 70-74.
    [18] TANG Juan-juan, FAN Yi-rong, ZHU Mu-yuan.  Analysis of the genetic diversity of Pinus taiwanensis populations . Journal of Zhejiang A&F University, 2003, 20(1): 23-26.
    [19] LIU An-xing.  On cluster analysis of tree height curves . Journal of Zhejiang A&F University, 2001, 18(3): 228-232.
    [20] HUANG Bi-heng.  Statistical analysis on national economy of every city in Zhejiang Province . Journal of Zhejiang A&F University, 1999, 16(4): 420-424.
  • [1]
    LI Hongjian, SHAO Jianwen. Investigation, collection and classification of chrysanthemum cultivars in China [J]. Journal of Nanjing Agricultural University, 1990, 13(1): 30−36.
    [2]
    MA Wanru, FANG Weimin, WANG Haibin, et al. Establishment of appraisal system for the stem and branch characteristics and varieties evaluation of spray cut Chrysanthemum [J]. Scientia Agricultura Sinica, 2019, 52(14): 2515−2524.
    [3]
    PAN Bo, DU Yingxin, CHEN Qingbing, et al. China’s chrysanthemum in the global market: evaluating the international competitiveness and influencing factors[J/OL]. Frontiers in Sustainable Food Systems, 2025, 9: 1521709[2025-08-20]. DOI: 10.3389/fsufs.2025.1521709.
    [4]
    HU Yaxin, GUO Ziting, FANG Ping, et al. Isolation and identification of pathogenic bacteria causing cut chrysanthemum receptacle browning and screening of antibacterial agents [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2025, 51(1): 137−147.
    [5]
    FANG Ping, JIANG Maibo, WU Haifeng, et al. Effects of edible pigment on the dyeing and preservation of single-headed fresh-cut Chrysanthemum [J]. Journal of Anhui Agricultural Sciences, 2022, 50(15): 159−162.
    [6]
    LI Li, GUAN Yue, LIU Kexin, et al. Change pattern of water potential after long-distance transportation and development of pretreatment solution for cut chrysanthemum [J]. Acta Horticulturae Sinica, 2013, 40(11): 2213−2221.
    [7]
    CHEN Longtao. Studies on Postharvest Preservative Methods of Cut Flower of Chrysanthemum[D]. Beijing: Beijing Forestry University, 2005.
    [8]
    TIAN Pei, JIANG Xiaodong, ZOU Chunli, et al. Effects of deficit irrigation on postharvest quality of cut chrysanthemum ‘Shenma’ [J]. Chinese Journal of Agrometeorology, 2024, 45(10): 1174−1182.
    [9]
    MA Wanru, FANG Weimin, WANG Haibin, et al. Screening suitable facade decoration variety in spray cut Chrysanthemum [J]. Journal of Nanjing Agricultural University, 2020, 43(3): 438−445.
    [10]
    MA Haiyan. Studies on Postharvest Flower Blooming Promoters and Storage Methods of Cut Chysanthemum[D]. Zhengzhou: Henan Agricultural University, 2012.
    [11]
    YANG Yuna, QIAN Ziyan, LI Yinglin, et al. Competition binding of CmbHLH1L and CmNLP6/7L to CmbHLH63 modulates leaf senescence in Chrysanthemum[J/OL]. Plant Biotechnology Journal, 2025[2025-08-20]. DOI: 10.1111/pbi.70308.
    [12]
    ZHENG Pengli, SONG Yan, ZHOU Mingqin. Influence of different solutions on the fresh-keeping effect of cut chrysanthemum [J]. Hubei Agricultural Sciences, 2019, 58(8): 113−116.
    [13]
    LI Nana, DAI Silan. Consumption status and market prospect of cut chrysanthemum in China [J]. Hunan Agricultural Sciences, 2011(8): 27−29.
    [14]
    XIAO Yue’e. The effects of different concentration of vase solution on fresh preservation of Iris × lousianna ‘Bryced Leigh’ cut flowers [J]. Botanical Research, 2022, 11(3): 419−425.
    [15]
    FANG Hua, WANG Chunlei, WANG Shuya, et al. Hydrogen gas increases the vase life of cut rose ‘Movie Star’ by regulating bacterial community in the stem ends [J/OL]. Postharvest Biology and Technology, 2021, 181: 111685[2025-08-20]. DOI: 10.1016/j.postharvbio.2021.111685.
    [16]
    DWIVEDI D H. Effect of vase solutions and gamma radiation on vase life of Chrysanthemum (Chrysanthemum morifolium R. ) cv. Vasantika [J]. International Journal of Pure & Applied Bioscience, 2017, 5(3): 522−529.
    [17]
    SUDATI A. Use of botanicals to improve the vase life of cut flowers[J]. Just Agriculture, 2023, 3(8): 2582−8223.
    [18]
    KUMAR P, SINGH A K. Role of salicylic acid and gibberellic acid in regulating floral characteristics and post-harvest longevity of rose (cv. Taj Mahal) under protected cultivation [J]. Journal of Experimental Agriculture International, 2025, 47(5): 382−391.
    [19]
    OROJLOO M. Evaluation of the physical characteristics and nutritional value of five varieties of dates (Phoenix dactylifera L. ) in two years of storage [J]. ALKHAS, 2020, 2(1): 1−7.
    [20]
    GHADIMIAN S, DANAEI E. Influences of ascorbic acid and salicylic acid on vase life of cut flowers rose (Rosa hybrida cv. Black Magic) [J]. ALKHAS; the Journal of Environment, Agriculture and Biological Sciences, 2020, 2(1): 1−6.
    [21]
    MOHAMMADI M, AELAEI M, SAIDI M. Pre-harvest spray of GABA and spermine delays postharvest senescence and alleviates chilling injury of Gerbera cut flowers during cold storage [J/OL]. Scientific Reports, 2021, 11: 14166[2025-08-20]. DOI: 10.1038/s41598-021-93377-4.
    [22]
    EL HOUDA LEZOUL N, SERRANO M, RUIZ-ARACIL M C, et al. Melatonin as a new postharvest treatment for increasing cut carnation (Dianthus caryophyllus L. ) vase life [J/OL]. Postharvest Biology and Technology, 2022, 184: 111759[2025-08-20]. DOI: 10.1016/j.postharvbio.2021.111759.
    [23]
    LI Guangya, FAN Huapeng, WANG Pan, et al. Effect of melatonin for cut flower preservation with Lilium spp. and Rosa hybrida [J]. Anhui Agricultural Science Bulletin, 2020, 26(22): 54−56.
    [24]
    LOU X, ANWAR M, WANG Y, et al. Impact of inorganic salts on vase life and postharvest qualities of the cut flower of perpetual carnation [J]. Brazilian Journal of Biology, 2021, 81(1): 228−236.
    [25]
    ZHOU Jie, ZHANG Chunyan, YANG Guomeng, et al. Research progress on influencing factors of fresh cut flower quality and preservation technology [J]. Contemporary Horticulture, 2024, 47(17): 17−21, 24.
    [26]
    JIANG Yalian, LU Lin, QU Suping, et al. Effects of different concentrations of 6-BA and B9 on preservation effect of carnation cut flowers [J]. Journal of Shanxi Agricultural Sciences, 2020, 48(4): 644−648.
    [27]
    ZHANG Ying, ZHANG Qin, LIU Jie, et al. Effects of GA3 on the growth and postharvest quality of double-flower lily Thalita [J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2022, 43(1): 111−117.
    [28]
    CHANG Huaicheng, LUO Weirong, ZHANG Yufei, et al. Effect of exogenous nitric oxide on preservation of fresh-cut carnation [J]. Heilongjiang Agricultural Sciences, 2019(7): 89−93.
    [29]
    GU Xiaoyun. Studies on Storage and Postharvest Physiological Effect of Paeonia lactiflora Cut Flowers[D]. Nanjing: Nanjing Forestry University, 2009.
    [30]
    LEI Shuxiang, LI Decheng. Fresh keeping techniques for flower cuttings [J]. Hebei Journal of Forestry and Orchard Research, 2003, 18(1): 60−63.
    [31]
    LI Yushan, XIAO Jing, MA Yue, et al. Identification and evaluation of phenotypic characters and genetic diversity analysis of 169 tomato germplasm resources [J]. Scientia Agricultura Sinica, 2024, 57(18): 3671−3683.
    [32]
    PAN Kecheng, NIU Muge, WEI Lu, et al. Comprehensive evaluation of fruit traits in 45 pecan germplasms [J]. Non-wood Forest Research, 2025, 43(2): 110−118.
    [33]
    KAHLON C S, LI Bin, BOARD J, et al. Cluster and principle component analysis of soybean grown at various row spacings, planting dates and plant populations [J]. Open Agriculture, 2018, 3(1): 110−121.
    [34]
    MENGISTU S , ASEFA M. Genetic diversity based on cluster and principal component analyses for agro-morphological traits of wheat germplasm [J]. International Journal of Genetics and Genomics, 2022, 10(3): 79−84.
    [35]
    LI Chunhua, XIE Zhiming, WANG Yanqing, et al. Correlation and genetic analysis of seed shell thickness and yield factors in Tartary buckwheat (Fagopyrum tataricum (L. ) Gaertn. ) [J]. Breeding Science, 2019, 69(3): 464−470.
    [36]
    JIANG Bo, LI Yilin, YU Zhirun, et al. Evaluation of wild medicinal plant resources on Nanji Islands [J]. Journal of Zhejiang A&F University, 2025, 42(4): 736−744.
    [37]
    LETUNIC I, BORK P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool [J]. Nucleic Acids Research, 2024, 52(W1): W78−W82.
    [38]
    LI Chunyuan, WANG Youbin, ZHAO Jingyi, et al. Study on storage and vase quality of fresh-cut roses of different varieties [J]. Storage and Processing, 2025, 25(6): 60−66.
    [39]
    ZHOU Hua. Study on Storage of Peony cut Flowers for Olympics Use[D]. Beijing: Beijing Forestry University, 2008.
    [40]
    LIN Li, HU Huizhen, WANG Taotao, et al. Research progress on fresh-keeping technology of fresh-cut roses [J]. Flowers, 2021(4): 25−26.
    [41]
    LIU Longchang, SHANG Fude, XIANG Qibai. Multifactoria appraisal methods on the plant cultivars: taking Osmanthus fragrans as an example [J]. Journal of Henan University (Natural Science), 2003, 33(1): 14−17.
    [42]
    XUE Xianbin, JIA Qiong, CHEN Zhengfeng, et al. Comprehensive evaluation of agronomic characteristics of recombinant inbred lines of Tartary buckwheat based on principal component analysis [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 748−759.
    [43]
    LI Yandong, LI Yunxing, YIN Yiming, et al. Establishment of quality evaluation model of Phalaenopsis based on principal component analysis [J]. Northern Horticulture, 2024(6): 61−68.
    [44]
    WU Dianting, WU Di. Some problems in comprehensive evaluation of the principal component analysis [J]. Mathematics in Practice and Theory, 2015, 45(20): 143−150.
    [45]
    TONG Enhui, WANG Wenjun, ZHU Weiyin, et al. Study on the fresh-keeping effect of different storage treatments on cut Phalaenopsis flowers [J]. Northern Horticulture, 2024(9): 94−102.
    [46]
    PENG Yonghong, SONG Lili, LI Ling. Recent advances on physiology of senescence and technologies of preservation and transportation of freshly cut flowers [J]. Journal of South China Normal University (Natural Science), 2002, 34(2): 120−126.
    [47]
    CHEN Fadi, CHEN Sumei, FANG Weimin, et al. Discovery of excellent chrysanthemum germplasms and germplasm enhancement [J]. Bulletin of National Natural Science Foundation of China, 2016, 30(2): 112−115.
  • 2025-0474fubiao_print.pdf
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)  / Tables(7)

Article views(183) PDF downloads(9) Cited by()

Related
Proportional views

Evaluation and screening of postharvest storage tolerance and vase life of 275 cut chrysanthemum cultivars

doi: 10.11833/j.issn.2095-0756.20250474
Funds:  CHEN Fadi, CHEN Sumei, FANG Weimin, et al. Discovery of excellent Chrysanthemum germplasms and germplasm enhancement[J]. Bulletin of National Natural Science Foundation of China, 2016, 30(2): 112-115.

Abstract:   Objective  Enhancing storage tolerance and extending vase life constitutes the core objective of postharvest preservation research for cut flowers. This study aims to systematically evaluate and screen cut chrysanthemum (Chrysanthemum × morifolium) cultivars with superior storage tolerance and vase performance, thereby laying a robust material foundation for postharvest quality improvement and breeding of new cut chrysanthemum cultivars.   Method  A total of 275 cut chrysanthemum germplasm resources were used as research materials. Postharvest preservation-related indicators during the dry storage period and vase period were determined. The storage tolerance and vase performance of cut chrysanthemums were analyzed and evaluated by using difference analysis, variation analysis, correlation analysis, cluster analysis and principal component analysis.   Result  There were significant differences in postharvest storage tolerance and vase ornamental performance among different cut chrysanthemum cultivars. ‘Nannong Hongyi’ ‘Qinhuai Ruixue’ and ‘Pip’ had excellent storage tolerance, long vase life and outstanding comprehensive traits, which were suitable for promotion and application as main cultivars with good storage and transportation resistance and long ornamental period. ‘Nannong Lifengche’ and ‘Nannong Binyun’ had prominent storage tolerance, which were suitable for long-distance transportation and long-term storage, and could be used as excellent parents for breeding export-oriented cut chrysanthemum cultivars. ‘Nannong Hongdiandian’ and ‘Rongshan’ had a long vase ornamental period; although their storage tolerance was relatively poor, they were very suitable for localized high-quality production and could be used as key parents for breeding high-end gift flower cultivars.   Conclusion  On the basis of the storage tolerance, vase life data, and associated statistical analyses of 275 cut chrysanthemum germplasm resources, a total of 7 elite germplasms with strong storage tolerance and prolonged vase life were identified. In practical breeding applications, parental materials can be selected in line with distinct breeding objectives to facilitate targeted variety development. [Ch, 4 fig. 7 tab. 47 ref.]

MAO Chenyuan, GUO Ziting, ZHAO Yi, et al. Evaluation and screening of postharvest storage tolerance and vase life of 275 cut chrysanthemum cultivars[J]. Journal of Zhejiang A&F University, 2025, 42(5): 944−955 doi:  10.11833/j.issn.2095-0756.20250474
Citation: MAO Chenyuan, GUO Ziting, ZHAO Yi, et al. Evaluation and screening of postharvest storage tolerance and vase life of 275 cut chrysanthemum cultivars[J]. Journal of Zhejiang A&F University, 2025, 42(5): 944−955 doi:  10.11833/j.issn.2095-0756.20250474
  • 菊花Chrysanthemum × morifolium是中国传统名花,具有悠久栽培历史和深厚文化底蕴,兼具观赏、食用、药用等多种价值,是世界四大切花之一[1]。近年来,切花菊市场占有率稳步上升,产业规模持续扩大,国内外新品种选育成果层出不穷,商业化价值日益凸显[2]

    当前中国切花菊栽培面积与产量已位居世界前列。除满足国内市场需求外,切花菊也大量出口至海外市场,在中国鲜切花出口中长期占据主导地位[34]。在实际生产中,切花菊采后商业价值主要取决于耐贮性与耐瓶插性,长距离运输对切花菊的耐贮性提出了更高要求[4]。切花菊采后受水分代谢失调、营养缺乏及激素紊乱影响,花的衰老主要表现为花瓣质地变软导致萎蔫、下垂或脱落,花径收缩且开放进程失衡(或停滞或过度开放后衰败),花色暗淡、色素降解或局部褐变,以及花序整体观赏性丧失[59]。切花菊采后叶片早衰问题也很突出,主要表现为贮运及瓶插观赏期间叶片常先于花序萎蔫或黄化,导致观赏价值丧失,已成为制约产业发展的关键问题之一[1012]。采后叶片寿命与花朵保鲜期共同决定了切花菊的观赏品质与市场价值,是采后保鲜研究中最为关键的评价指标[13]

    当前鲜切花保鲜已形成多维度综合技术体系,研究前沿逐渐聚焦精准调控与绿色技术创新。在物理保鲜层面,依花卉类型进行差异化控温可有效抑制呼吸代谢延缓衰老[14];富氢水可减少月季Rosa chinensis茎端细菌阻塞导管[15],伽马辐射配合保鲜液还能提升菊花瓶插寿命[16]。化学层面,天然保鲜剂(百里香精油、黄芩提取物等)兼具环保与抑菌延寿作用[17];硝酸钾延缓菊花叶片衰老[17],柠檬酸调节pH防止茎部阻塞,水杨酸也能增加切花玫瑰Rosa rugosa吸水[1820],γ-氨基丁酸延长非洲菊Gerbera jamesonii寿命[21],褪黑素能延缓多种鲜切花衰老[2224]。生物保鲜技术也取得突破性进展,基因调控可调节鲜切花气孔敏感性与乙烯代谢以延缓衰老[25],植物生长调节剂如1-甲基环丙烯能增大花径[26],6-苄氨基嘌呤可提升百合Lilium brownii var. viridulum叶绿素含量和花径[27],硝普钠能延缓康乃馨Dianthus caryophyllus衰老[28]。除开发新型保鲜技术外,通过育种手段选育耐衰老、耐贮运的鲜切花品种,已成为提升采后品质的重要途径,这也对优良亲本的选择提出了更高要求。

    本研究以275个切花菊品种为研究对象,通过测定干贮期与瓶插期关键指标,结合差异分析、变异分析、相关性分析、聚类分析及主成分分析,系统评价不同品种切花菊采后耐贮性与耐瓶插性差异,筛选耐贮性优、瓶插期长或两者兼优的种质,为切花菊采后新品种选育提供参考。

    • 试验于2023—2024年在南京农业大学中国菊花种质资源保存中心湖熟基地、八卦洲切花菊种植基地开展,供试材料为275个切花菊品种(https://zlxb.zafu.edu.cn/fileZJNLDXXB/journal/article/file/f59970d4-f728-476c-b201-62e47c744846.pdf),其中包括主要的市场流通品种及南京农业大学菊花遗传与种质资源创新团队所选育出的特色种质资源品种。所选品种涵盖了不同花色、花型、叶型的切花大菊与切花小菊。在9—10月菊花开放期,每个品种选取茎秆粗度一致,开放度符合内销标准,即最外层花瓣呈现松散舒展的形态,花瓣展幅占品种完全开放时展幅的 30%~50%,健康无病虫害,花、叶无机械损伤的花枝30枝。采收后30 min内运送至4 ℃冷库,在冷库中进行采后处理,统一留取花枝长度65~80 cm,保留顶花以下50 cm范围内的叶片及分枝,去除基部多余叶片与分枝。将处理后的花枝每10枝为1扎用聚乙烯薄膜包装袋包裹成束,共3扎,于4 ℃条件下预冷3 h,随后装入标准切花运输纸箱,于黑暗环境的4 ℃冷库中进行干贮[14]

    • 于干贮0、7、14 d共3个时间点,在每扎中随机抽取4枝花枝共12枝进行测定。采用电子数显游标卡尺(精度0.01 mm),对花序进行十字交叉法测量(图1A),分别读取其最大直径和最小直径,计算两者的算术平均值作为该花序的平均花径(cm)[12]。以每扎(10枝)切花菊为1组,使用百分之一电子天平称其总鲜质量(g),并计算单平均鲜质量(g),测定时间为15:00—18:00。叶片衰老度参照图1B的标准,对叶片黄化、萎蔫、褐变等表型进行视觉评级并记录。

      Figure 1.  Diagrams of flower diameter measurement method and grading standards for leaf senescence degree during dry storage

    • 干贮14 d后,将花枝取出进行瓶插试验。统一修剪花枝至45 cm左右,去除茎下部20 cm范围内的全部叶片与分枝,并清除其余基部分枝与叶片。将处理好的花枝每4枝为1组,插入盛有500 mL纯净水的透明容器中。瓶插环境控制在室温(25±2) ℃、相对湿度50%~70%,自然散射光条件。3 d更换1次纯净水并清洗瓶壁,7 d修剪1次花枝基部,斜切切口约2 cm[10]。每天定时观察记录指标。于瓶插0、3、7 d,使用百分之一电子天平称量单枝花枝鲜质量(g),测定时间为19:00—22:00;从瓶插之日起至50%外缘花瓣出现萎蔫、下垂、失去观赏价值之日止为花瓶插寿命(d);从瓶插之日起至50%叶片叶缘或30%叶面出现严重萎蔫、卷曲或枯萎之日止为叶瓶插寿命(d);记录瓶插期间花序完全开放时,按十字交叉法测得的平均花径最大值为瓶插最大花径(cm)。

    • 使用 Excel 2010 收集和整理各性状的测量数据;运用 SPSS 26.0进行数据分析,分析前对原始数据进行Z-score标准化以消除量纲影响。通过单因素方差分析(ANOVA)比较品种间性状差异,计算平均值、标准差和变异系数;利用Pearson相关分析检验性状间相关性;采用主成分分析(PCA)降维并计算因子得分;构建样本间距离矩阵,采用离差平方和法(Ward法)进行聚类分析,并通过 iTOL 平台将聚类结果以环状谱系图形式可视化。

      采用主成分和隶属函数相结合的方法计算切花菊采后耐贮性与瓶插寿命的综合评价[2937]。隶属函数值($ {\mu }_{i} $)计算公式为:$ \mu_i=\dfrac{x_i-x_{\mathrm{min}}}{x_{\mathrm{max}}-x_{\mathrm{min}}},i=1,2,\cdots,n $。式中xi表示某主成分中第i个主成分的得分,xmaxxmin为主成分分析后所得某主成分得分的最大值和最小值。权重($ {W}_{i} $)计算公式为:$ {W}_{i}=\dfrac{{P}_{i}}{ \sum\limits _{i=1}^{n}{P}_{i}}, i=1,2,\cdots ,n $。式中,$ {P}_{i} $代表经主成分分析所得各切花菊品种第$ i $个性状指标的贡献率。综合评价得分(D)计算公式为:$ D= \sum \limits_{i=1}^{n}({\mu }_{i}\times {W}_{i}),i=\mathrm{1,2},\cdots ,n $。

    • 表1结果显示:不同品种各性状指标在干贮期均存在不同程度变异,5个指标的变异系数范围为36.01%~688.58%,其中干贮7~14 d花径变化率变异系数最大(688.58%),品种间差异较大,干贮0~7 d花径变化率变异系数次之(342.03%),而叶片评级变异系数最小(36.01%),不同品种的叶片衰老情况差异较小。从具体性状来看,花径变化率方面,干贮0~7 d平均值为−3.60% (变幅为−59.92%~66.94%),干贮7~14 d平均值为2.03% (变幅为−33.98%~59.46%),部分品种花径呈收缩趋势(变化率为负)、部分仍能维持生长或保持良好(变化率为正),这种双向变异为筛选花径稳定性优良品种提供了丰富遗传基础;鲜质量变化率方面,干贮0~7与7~14 d平均值分别为−4.28%和−3.79%,变幅分别为−14.80%~−0.21%和−13.87%~−0.32%,所有品种均有不同程度失水,但品种间水分保持能力差异明显;叶片评级平均值为1.83,介于1级(叶片叶色、硬度正常,有光泽)与2级(叶片变软明显,叶色基本正常)之间,表明大部分品种干贮14 d后叶片仍能保持较好观赏品质。

      统计指标 花径变化率
      (0~7 d)/%
      花径变化率
      (7~14 d)/%
      鲜质量
      变化率
      (0~7 d)/%
      鲜质量
      变化率
      (7~14 d)/%
      叶片
      评级
      最大值 66.94 59.46 −0.21 −0.32 3.00
      最小值 −59.92 −33.98 −14.80 −13.87 1.00
      平均值 −3.60 2.03 −4.28 −3.79 1.83
      标准差 12.31 14.01 2.76 2.81 0.66
      变幅 126.86 93.44 14.59 13.55 2.00
      变异系
      数/%
      342.03 688.58 64.53 74.10 36.01

      Table 1.  Phenotypic variation of cut chrysanthemums in dry storage period     

    • 表2可见:从开放特性来看,瓶插开放度平均值为32.10%,变幅为0.20%~186.47%。部分品种采后开放度不足1%,这部分品种主要为切花小菊,表明其采后花朵开放程度低,后期观赏性状稳定,瓶插过程中花径和花形不会发生较大变化,而个别品种开放度变化率可达186.47%,显示出极强的后期绽放潜力,这种明显的差异为筛选适宜不同市场需求的开花特性品种提供了重要依据。从水分代谢特性来看,瓶插0~3 d鲜质量变化率平均值为18.09%,变幅为−27.49%~59.27%,表明多数品种在瓶插初期能够有效吸收水分维持花枝鲜质量;而瓶插3~7 d鲜质量变化率平均值为−9.35%,变幅为−63.63%~27.02%,表明不同品种在瓶插后期的水分保持能力出现明显分化,部分品种仍能维持正增长,而部分品种失水严重,这种时序性的水分代谢特征为筛选水分平衡能力优异的品种提供了关键指标。

      统计指标 瓶插开
      放度
      鲜质量变化
      率(0~3 d)/%
      鲜质量变化
      率(3~7 d)/%
      瓶插花
      寿命/d
      瓶插叶
      寿命/d
      最小值 0.20 −27.49 −63.63 4.25 2.50
      最大值 186.47 59.27 27.02 47.00 56.50
      平均值 32.10 18.09 −9.35 20.51 17.82
      标准差 29.38 12.78 11.52 7.05 11.05
      变幅 186.27 86.76 90.65 42.75 54.00
      变异系数/% 91.51 70.68 123.23 34.40 62.02

      Table 2.  Phenotypic variation of cut chrysanthemums in vase period

      统计干贮后瓶插的花寿命与叶寿命发现:切花菊普遍存在叶寿命显著短于花寿命的现象(图2)。花寿命平均值为20.5 d (变幅为4.2~47.0 d),其中寿命超25 d、15~25 d、不足15 d的品种占比分别为38.5% (106个)、45.1% (124个)、16.4% (45个);叶寿命平均值为17.8 d,较花寿命缩短13.1% (变幅为2.5~56.5 d),寿命超20 d、10~20 d、不足10 d的品种占比分别为22.9% (63个)、54.2% (149个)、22.9% (63个)。进一步分析发现:81.5% (224个)的品种叶寿命短于花寿命,11.6% (32个)的品种花叶寿命基本持平(差值在±1 d内),仅6.9% (19个)的品种叶寿命长于花寿命,且这类品种多为‘南农红衣’‘Nannong Hongyi’、‘秦淮瑞雪’‘Qinhuai Ruixue’等综合抗性优异的核心种质。以上结果印证了“叶片先于花序衰老”的普遍性,易导致瓶插后期“有花无叶”,破坏观赏协调性;同时,品种间叶寿命的大幅波动,也为后续筛选“花叶同步耐衰”优异种质、开展保叶改良提供了表型差异基础。

      Figure 2.  Comparative of flower longevity and leaf longevity of 275 cut chrysanthemum cultivars during vase period after dry storage

    • 将275个切花菊品种干贮期表型性状进行相关性分析可知(表3):干贮0~7 d鲜质量变化率与干贮7~14 d花径变化率呈极显著正相关(r=0.213,P<0.01),表明贮藏前期水分保持能力强的品种,后期花径保持性也较好;干贮0~7 d花径变化率与干贮7~14 d鲜质量变化率同样呈极显著正相关(r=0.205,P<0.01),说明贮藏前期花径稳定性与后期水分保持能力密切相关。值得注意的是,2个时期的鲜质量变化率之间存在极显著正相关(r=0.300,P<0.01),表明切花菊在整个干贮期间的水分代谢特性具有一致性,水分保持能力是一个相对稳定的品种特性。叶片评级与干贮0~7 d鲜质量变化率、干贮7~14 d鲜质量变化率均呈极显著负相关(r=−0.304,r=−0.216,P<0.01),说明水分损失越严重的品种,叶片衰老程度越高,这证实了水分保持对于维持叶片观赏品质的重要性。然而,干贮前后2个时期的花径变化率之间相关性不显著(r=−0.091),花径稳定性在贮藏前期和后期表现的独立性,不同品种或适用于不同时长的储运周期。

      表型性状 花径变化
      率(0~7 d)
      花径变化
      率(7~14 d)
      鲜质量变化
      率(0~7 d)
      鲜质量变化
      率(7~14 d)
      花径变化率
       (7~14 d)
      −0.091
      鲜质量变化率
       (0~7 d)
      −0.024 0.213**
      鲜质量变化率
       (7~14 d)
      0.205** 0.110 0.300**
      叶片评级 −0.066 −0.109 −0.304** −0.216**
        说明:**表示在 0.01 水平上极显著相关;*表示在 0.05 水平上显著相关。

      Table 3.  Correlation analysis of phenotypic traits of cut chrysanthemums during storage

    • 对瓶插期表型性状进行相关性分析(表4):瓶插开放度与0~3 d鲜质量变化率极显著正相关(r=0.156,P<0.01),表明初期吸水强的品种花朵开放度更高、观赏性更好;0~3 d与3~7 d鲜质量变化率极显著正相关(r=0.428,P<0.01),体现瓶插期水分代谢的连续性与稳定性;3~7 d鲜质量变化率与花寿命极显著正相关(r=0.267,P<0.01),后期保水好的品种花寿命更长;叶寿命与花寿命极显著正相关(r=0.721,P<0.01)、与3~7 d鲜质量变化率显著正相关(r=0.145,P<0.01),说明花叶寿命高度协同且关联后期保水能力。此外,瓶插开放度与花叶寿命均呈不显著负相关,提示开放度过大或加速衰老。

      表型性状 瓶插开
      放度
      鲜质量变化
      率(0~3 d)
      鲜质量变化
      率(3~7 d)
      瓶插花
      寿命
      鲜质量变化
       率(0~3 d)
      0.156**
      鲜质量变化
       率(3~7 d)
      0.087 0.428**
      瓶插花寿命 −0.101 0.007 0.267**
      瓶插叶寿命 −0.046 −0.081 0.145* 0.721**
        说明:**表示在 0.01 水平上极显著相关;*表示在 0.05 水平上显著相关。

      Table 4.  Correlation analysis of phenotypic traits of cut chrysanthemums during vase period

    • 基于275 个切花菊品种的干贮期表型数据,采用 Ward 连接法进行层次聚类分析,结合环状谱系图(图3)及https://zlxb.zafu.edu.cn/fileZJNLDXXB/journal/article/file/f59970d4-f728-476c-b201-62e47c744846.pdf,可将所有样本清晰划分为 8 个独立类群。各类群在花径稳定性、保水能力及叶片衰老程度上呈现分化,具体特征如下:第Ⅰ类群包含‘秦淮金光’‘Qinhuai Jinguang’、‘秦淮红豹’‘Qinhuai Hongbao’等 4 个品种,花径保持能力尤为突出;第Ⅱ类群包含‘精布努诺绿’‘Brunswick Green’、‘秦淮冰滢’‘Qinhuai Bingying’等 18 个品种,叶片衰老程度高、耐贮性较差;第Ⅲ类群包含‘南农冰洁’‘Nannong Bingjie’、‘南农红蕊’‘Nannong Hongrui’等 30 个品种,各项性状接近总体平均值、表现均衡;第Ⅳ类群包含‘粉白相间’‘Fenbai Xiangjian’、‘南农锦心’‘Nannong Jinxin’等 66 个品种,干贮后期花径恢复能力较强;第Ⅴ类群包含‘南农红雀’‘Nannong Hongque’、‘坦率粉’‘Tanshuaifen’等 29 个品种,花径增长显著、展示性优;第Ⅵ类群包含‘南农紫云间’‘Nannong Ziyunjian’、‘秦淮白水晶’‘Qinhuai Baishuijing’等 13 个品种,花径波动极小、耐贮性优异;第Ⅶ类群为核心类群,包含‘星河小粉’‘Xinghe Xiaofen’、‘南农馨雅’‘Nannong Xinya’等 48 个品种,花径变化稳定、保水能力强,水分代谢与花径稳定性协同表现优异,代表优良耐贮水平;第Ⅷ类群包含‘秦淮霜白’‘Qinhuai Shuangbai’、‘龙都春晓’‘Longdu Chunxiao’等 67 个品种,花径变化波动较大、稳定性较差。

      Figure 3.  Systematic cluster analysis of phenotypic traitsof 275 cut chrysanthemum cultivars during dry storage

    • 基于 275 个切花菊品种的瓶插期表型数据,采用 Ward 连接法进行层次聚类分析,结合环状谱系图(图4)和https://zlxb.zafu.edu.cn/fileZJNLDXXB/journal/article/file/f59970d4-f728-476c-b201-62e47c744846.pdf可将所有样本清晰划分为 5 个独立类群:第Ⅰ类群包含 83 个品种,代表品种为‘旭风车’‘Xufengche’、‘星辰草莓’‘Xingchen Caomei’,瓶插花寿命与叶寿命普遍较长,瓶插 0~3 d 鲜质量变化率多为正值且波动小,后期失水缓慢,综合观赏期持久;第Ⅱ类群包含 70 个品种,代表品种为‘南农星辉’‘Nannong Xinghui’、‘南农黄玉’‘Nannong Huangyu’,瓶插期鲜质量变化平稳,花寿命中等偏长,各项性状表现均衡,代表瓶插期稳定水平;第Ⅲ类群包含 14 个品种,代表品种为‘南农瑗绿’‘Nannong Ailü’、‘南农冰洁’,最明显的特征是瓶插 3~7 d 鲜质量变化率负值较大,后期失水明显,部分品种叶寿命较短,整体观赏品质中等偏下;第Ⅳ类群包含 82 个品种,代表品种为‘南农小草莓’‘Nannong Xiaocaomei’、‘南农紫云间’,瓶插开放度普遍较高,花色展现充分,且鲜质量变化率后期波动小、保水性好,观赏表现力突出;第Ⅴ类群包含 26 个品种,代表品种为‘秦淮双龙’‘Qinhuai Shuanglong’、‘薇娅’‘Weiya’,各项性状均接近总体平均值,代表瓶插期主流中等水平,适应性较强。

      Figure 4.  Systematic cluster analysis of phenotypic traits during the bottle-cultivation period of 275 cut chrysanthemum germplasm resources

    • 通过对切花菊干贮期5个表型性状进行主成分分析,提取5个主成分累计贡献率达100%。第1主成分(36.81%)主要反映干贮后期水分保持能力与叶片衰老程度相关的综合生理状态;第2主成分(29.13%)体现干贮后期花径稳定性与前期水分代谢的协同特征;第3主成分(18.35%)主要反映干贮前期花径变化的稳定程度(表5)。

      表型性状 第1主成分 第2主成分 第3主成分 第4主成分 第5主成分
      花径变化率(0~7 d) −0 .069 0.479 0.873 −0.041 −0.039
      花径变化率(7~14 d) 0.174 0.821 −0.235 0.490 0.014
      鲜质量变化率(0~7 d) 0.515 0.646 −0.235 −0.508 0.061
      鲜质量变化率(7~14 d) 0.903 −0.201 0.053 0.066 −0.369
      叶片指数 0.851 −0.307 0.206 0.134 0.349
      特征值 1.840 1.457 0.918 0.522 0.264
      贡献率/% 36.809 29.133 18.352 10.435 5.271
      累计贡献率/% 36.809 65.942 84.294 94.729 100.000

      Table 5.  Principal component analysis of phenotypic traits of 275 cut chrysanthemum cultivars in during dry storage

    • 通过对切花菊瓶插期5个表型性状进行主成分分析,成功提取5个主成分并构建综合评价模型。第1主成分(33.24%)主要反映水分保持能力;第2主成分(22.99%)体现瓶插开放度的变化特征;第3主成分(16.89%)主要反映叶片寿命(表6)。

      表型性状 第1主成分 第2主成分 第3主成分 第4主成分 第5主成分
      瓶插开放度 0.114 0.723 0.364 −0.426 0.466
      鲜质量变化率(0~3 d) 0.261 −0.477 0.750 −0.446 −0.080
      鲜质量变化率(3~7 d) 0.446 −0.185 −0.191 0.398 0.891
      瓶插花寿命 0.409 0.291 0.235 0.611 −0.706
      瓶插叶寿命 −0.393 −0.014 0.631 0.669 0.359
      特征值 1.662 1.150 0.844 0.736 0.608
      贡献率/% 33.239 22.996 16.886 14.723 12.155
      累计贡献率/% 33.239 56.236 73.122 87.845 100.000

      Table 6.  Principal component analysis of phenotypic traits of 275 cut chrysanthemum cultivars in vase period

    • 以各主成分方差贡献率为权重,结合隶属函数分别计算275个品种的综合得分,分别对275个切花菊品种的干贮期(耐贮运特性)与瓶插期(观赏特性)性状进行定量化评价与精准排序。综合评价发现,‘南农红衣’、‘秦淮瑞雪’、‘皮普’‘Pip’、‘南农黄玉’等种质在2个时期的排名均稳居前列(表7)。这表明这些种质能够将良好的采后耐贮特性与优异的瓶插观赏品质完美结合。

      综合排名 种质名称 干贮期排名 瓶插期排名 综合评价
      1 ‘南农红衣’‘Nannong Hongyi’ 3 15 表现极其稳定且优异,核心种质
      2 ‘秦淮瑞雪’‘Qinhuai Ruixue’ 5 16 表现极其稳定且优异,核心种质
      3 ‘皮普’‘Pipu’ 10 7 表现极其稳定且优异,核心种质
      4 ‘南农黄玉’‘Nannong Huangyu’ 13 9 干贮期极优,瓶插期良好
      5 ‘福橙’‘Fucheng’ 16 45 表现稳定良好
      6 QD3-128 15 37 表现稳定良好
      7 ‘南农芝士’‘Nannong Zhishi’ 12 30 表现稳定良好

      Table 7.  7 cut chrysanthemum cultivars with top rankings in comprehensive evaluation of storage period and vase life

    • 变异分析显示:275 个切花菊品种在干贮期与瓶插期性状均表现出丰富遗传变异,研究结果与对月季[38]、芍药Paeonia lactiflora[39]的研究结论一致,证实切花菊采后性状变异主要源于品种遗传差异。从具体性状看,干贮期花径变化率呈现双向变异,部分品种花径收缩,部分维持生长或保持稳定,这种差异为筛选 “花径稳定型” 耐贮品种提供丰富遗传材料。瓶插期开放度的极端差异反映品种间花朵绽放潜力分化:开放度不足1%的切花小菊采后花形稳定,适合对 “观赏一致性” 要求高的场景;开放度超100%的品种具备极强后期观赏表现力,为市场细分提供品种选择依据。

      值得注意的是,瓶插期叶寿命高变异系数及最优品种叶寿命远超花寿命。YANG等[11]曾指出叶片早衰是制约采后品质的关键因素,本研究筛选的叶寿命超长品种,其叶片耐衰性与水分保持能力密切相关,为解决切花菊“花叶不同步” 问题提供优异育种亲本,也为探究叶片衰老分子机制奠定材料基础。

    • 相关性分析揭示切花菊采后生理代谢内在关联,明确“水分保持能力” 是连接干贮期与瓶插期品质的核心调控因子。干贮期内,0~7与7~14 d鲜质量变化率呈极显著正相关,表明品种水分保持能力在整个贮藏周期中具有稳定性,这与林立等[40] “切花水分状况决定冷贮效果”的结论一致;同时,叶片评级与2个时期鲜质量变化率均呈极显著负相关,证实水分损失是导致叶片衰老的直接原因,“减少干贮期失水”可作为耐贮性提升的关键技术方向。瓶插期内,0~3与3~7 d 鲜质量变化率呈极显著正相关,说明瓶插初期水分吸收能力可预测后期水分平衡状态;3~7 d鲜质量变化率与花寿命呈极显著正相关,且叶寿命与花寿命呈极强正相关,深化对“水分-衰老”关系的认知:花朵衰老依赖水分维持,叶片与花朵衰老进程存在协同调控机制,可能与整体养分运输、乙烯合成通路相关[38]。此外,瓶插开放度与花寿命、叶寿命的负相关趋势提示,过度开放可能加速花朵养分消耗与衰老,对高开放度品种需配套缩短瓶插前贮运时间,避免观赏期缩短。

      干贮期 0~7与7~14 d花径变化率相关性不显著,表明花径稳定性在贮藏前期与后期的调控机制独立,部分品种更适应短期贮藏,另一些品种适合长期贮藏,这一发现打破了前人 “花径稳定性贯穿全贮期” 的传统认知,为根据贮运周期精准选择品种提供了科学依据,弥补了前人研究中 “一刀切” 推荐品种的局限性。

    • 聚类分析与主成分分析的结合,实现了切花菊采后性状的 “分类-降维-精准评价”,结果符合刘龙昌等[41]“综合评价需兼顾客观性与实用性”的要求。本研究的方法整合度与分类精细度更高。干贮期聚类将品种划分为 8 个类群,其中第Ⅰ类群花径保持能力突出,第Ⅵ类群后期保水性优异,2个类群可直接应用于耐贮品种选育;瓶插期聚类将品种划分为5个类群,第Ⅰ类群花叶寿命最长,可作为长瓶插期育种核心亲本。这种分类方式明确各品种功能定位,也为后续“性状-基因”关联分析提供分组依据。

      主成分分析进一步提炼关键评价指标,干贮期第1主成分反映水分保持能力,第2主成分反映花径稳定性;瓶插期第1主成分反映水分保持能力,第2主成分反映开放度特征,第3主成分反映叶片寿命。这一结果与薛贤滨等[42]、李艳冬等[43]的结果一致,且与隶属函数结合,有效避免了“主成分分析因子意义模糊”的问题[44],综合评价实现了对品种耐贮性与瓶插性的定量排序,提升筛选结果客观性与可比性。

    • 本研究筛选出3类具有明确产业价值的切花菊品种,应用场景与市场需求高度匹配。一是全能型品种,以 ‘南农红衣’‘秦淮瑞雪’‘皮普’ 为代表,干贮期与瓶插期排名均稳居前列,兼具优异耐贮性与长瓶插期,符合切花菊产业对 “高产-耐运-长观赏期” 品种的需求,可作为主栽品种推广,同时是 “耐贮+长瓶插”双目标育种的理想亲本。二是耐贮型品种,以‘南农丽风车’‘南农槟云’ 为代表,干贮期综合评价排名靠前,瓶插期排名相对靠后,核心优势为采后生理代谢缓慢,可耐受14 d以上低温干贮,能有效缓解远距离运输导致的流通损耗,是出口型品种选育的优异亲本。三是耐瓶插型品种,以‘南农红点点’‘Nannong Hongdiandian’、‘荣山’‘Rongshan’ 为代表,瓶插期排名靠前,观赏品质极佳,但干贮期耐贮性较差,适合 “即采即售” 的本地高端市场,后续可通过 “耐贮基因导入” 改良,兼顾观赏品质与耐贮性。

      本研究虽实现了大规模切花菊种质筛选,但仍存在一定局限性:未探究不同贮藏温度或保鲜液处理对品种耐贮性的影响,后续可结合保鲜剂、贮藏环境、辐射处理技术[45],进一步优化特定品种采后处理方案;未涉及采后性状的分子机制,未来可通过转录组测序等手段[4647],解析‘南农红衣’等品种耐贮性优异的遗传基础,为分子育种提供靶点;当前275个品种未涵盖云南、山东等主产区样本,且生物学重复仅基于单一生长周期的30枝花枝,可能受季节环境(如温湿度、光照)误差影响,后续研究可拓展样本范围,涵盖设施栽培与露地栽培类型;叶片衰老度仅依赖人工视觉评级,缺乏量化指标支撑,未来可构建 “视觉-量化”双重评价体系,在保留视觉评级的基础上,测定叶片叶绿素相对含量、叶片色素参数、叶片萎蔫面积占比,建立量化指标与视觉级别的对应关系,减少主观误差,提升数据可靠性。

    • 本研究通过综合评价,成功筛选出‘南农红衣’‘秦淮瑞雪’等综合性状优良的全能型切花菊种质,同时明确了‘南农丽风车’(耐贮型)和‘ 南农红点点’(瓶插型)等具有特殊功能的种质,可直接服务产业需求。耐贮型品种配合“ 4 ℃预冷+气调贮藏”技术,可降低出口海运损耗率,全能型品种则适配电商冷链满足跨省配送,瓶插型品种可开发家庭“ 切花+保鲜盒”产品,进一步丰富消费场景与市场半径。

Reference (47)
Supplements:
2025-0474fubiao_print.pdf

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return